
Blockchain Smart Contract Meta-modeling

N. Sánchez-Gómez1,∗, J. Torres-Valderrama1,
Manuel Mejı́as Risoto1 and Alejandra Garrido2

1Web Engineering and Early Testing Research Group, ETSII, University of Seville,
Spain
2LIFIA, Fac. de Inform., Univ. Nac. de La Plata & CONICET, Argentina
E-mail: nicolas.sanchez@iwt2.org; jtorres@us.es; risoto@us.es;
garrido@lifia.info.unlp.edu.ar
∗Corresponding Author

Received 31 March 2021; Accepted 22 July 2021;
Publication 22 October 2021

Abstract

One of the key benefits of blockchain technology is its ability to keep
a permanent, unalterable record of transactions. In business environments,
where companies interact with each other without a centralized authority
to ensure trust between them, this has led to blockchain platforms and
smart contracts being proposed as a means of implementing trustworthy
collaborative processes. Software engineers must deal with them to ensure
the quality of smart contracts in all phases of the smart contract lifecycle,
from requirements specifications to design and deployment. This broad scope
and criticality of smart contracts in business environments means that they
have to be expressed in a language that is intuitive, easy-to-use, independent
of the blockchain platform employed, and oriented towards software quality
assurance. In this paper we present a key component: a first outline of a
UML-based smart contract meta-model that would allow us to achieve these
objectives. This meta-model will be enriched in future work to represent
blockchain environments and automated testing.

Keywords: Smart contract, model-based, meta-model, UML.

Journal of Web Engineering, Vol. 20 7, 2059–2080.
doi: 10.13052/jwe1540-9589.2073
© 2021 River Publishers



2060 N. Sánchez-Gómez et al.

1 Introduction

Blockchain is now one of the most transformative technological develop-
ments of our time. Basically, it is a form of distributed ledger: i.e., a
transactions log that ensures immutability and verifiability [1].

A blockchain transaction typically contains a predefined set of metadata
and an optional payload grouped into chronologically concatenated ”blocks”
which are linked together securely and immutably using cryptographic
techniques. Thanks to blockchain’s intrinsic mechanisms for facilitating
both external and internal audits [2], traceability is therefore one of this
technology’s biggest advantages over other solutions.

Smart contracts are programs deployed and run on blockchain networks.
These programs extend the functionality of a blockchain and allow untrusted
parties to establish trust in the truthful execution of an agreement [3].

Smart contracts for industries, public sector, financial institutions, etc.
require external off-chain data such as IoT (Internet of Things) data, citizen-
ship data or stock values to trigger execution. In the sectors mentioned, it is
also necessary to integrate business processes with blockchain networks [4].
Thus, the use of smart contracts is essential to his integration, since, from
an external viewpoint, the public function of smart contracts constitutes the
blockchain integration points.

There are currently numerous blockchain platforms: Ethereum, focuses
on the capability of automatic digital asset management, supports smart
contracts and also adapts the PoW consensus protocol; Hyperledger, an
open source collaborative effort created to advance permissioned or private,
cross-industry blockchain technologies; MultiChain, a platform to create and
deploy permissioned or private blockchain networks; and an extensive list of
platforms [5, 6].

In this blockchain platforms, smart contracts are invoked using different
protocols, techniques, and data formats, although their implementation is
like that of a Class in any object-oriented programming language (OOPL).
These peculiarities, together with typical human error, make the develop-
ment and integration process error-prone. Smart contracts therefore need
to be designed using best practices that reduce the number of coding and
operational errors [7].

For some years now, model-driven engineering and modelling tools have
helped to document the functionality of business processes and automati-
cally generate software source code through model transformations. Unified
Modelling Language (UML) and other modelling standards are used for



Blockchain Smart Contract Meta-modeling 2061

this purpose. Models are typically platform-independent [8] and easier to
understand than software source code [9].

Thus, the use of models improves development productivity and quality.
Moreover, modelling tools can ensure that the deployed code has not been
modified after its generation from the model [11]. But to achieve this objec-
tive, a good way is to realize a software development approach based on the
concepts of metamodel and model and model-to-model transformations. With
this approach, source models are transformed into target models to generate,
automatically or semi-automatically, the final executable source code during
the software development process.

With this in mind, and given the immutability of blockchain technology,
it is essential that software be fully evaluated and validated before a smart
contract code is deployed in a blockchain network. A defect in the code could
have an irreparable effect on the blockchain network, and this paper proposes
a way to minimize this impact through the use of Blockchain smart contract
meta-modeling.

The rest of this paper is organized as follows, Section 2 describes some
relevant background. In Section 3, we then analyze the structure of smart
contracts in detail. Section 4 includes research articles that propose, apriori,
the use of smart contract metamodels and their contributions. Section 5
presents our definition of an initial approach to a meta-model capable of
describing smart contracts independently of the blockchain platform. The
paper ends in Section 6, with a discussion of our proposal and ideas for future
work.

2 Background: Blockchain Smart Contract, Its Anatomy,
and Other Related Topics

This section introduces the most important concepts used throughout this
paper. First, the basic characteristics of a blockchain smart contract are
outlined. It then reviews the general characteristics and anatomy of smart
contracts, before going on to conceptualize model-based software engineer-
ing and the need for quality assurance in smart contract software, together
with the benefits this could bring.

2.1 Blockchain Smart Contract

A blockchain is a distributed peer-to-peer system of ledgers. It uses a software
unit comprising an algorithm, which negotiates the informational content of



2062 N. Sánchez-Gómez et al.

Figure 1 Supply chain traceability system for blockchain technology [19].

ordered connected blocks of data, also employing cryptographic and security
technologies to achieve and maintain its integrity [10].

A smart contract is a computer program which is intended to auto-
matically execute, control or document legally relevant events and actions
according to the terms of a contract or an agreement [13].

Smart contracts are supported on many blockchain platforms (e.g.,
Ethereum [14], Hyperledger [15], etc.), but may be very limited on others
(e.g., Bitcoin [16]). They extend the functionality of a blockchain and allow
untrusted parties to establish trust in the truthful execution of the agreement
[3]. In short, smart contracts are programs deployed and run on blockchain
networks, and are capable of executing triggers, rules, and business logic to
enable transactions [17].

Smart contracts must be deployed and instantiated on a blockchain net-
work, and this process creates an instance of the contract and initializes
its state. After this initialization, the computer program becomes accessible
to possible clients who can invoke the contract via its external interface,
by submitting suitable transactions that carry the invocation in their body.
Invocations may come from other smart contracts inside the same blockchain
or from the outside. The exact way in which smart contracts are invoked is,
again, dependent on the blockchain platform used.

To integrate business processes with blockchain networks [4], it is essen-
tial to use smart contracts since, from an external viewpoint, the public
functions of smart contracts are the access points where blockchains to be
used by other systems: i.e., they constitute the blockchain integration points.

To illustrate this concept, Figure 1 shows a supply chain traceability sys-
tem for blockchain technology. Supply chain is the connection of all business
processes involved in the commercialization, generation, and distribution of
goods, from raw materials to finished products and end consumers [18].



Blockchain Smart Contract Meta-modeling 2063

Figure 2 Smart contract anatomy.

Given the large number of blockchains, each one invoking a smart con-
tract using different protocols, techniques, and data formats, significantly
raising raises the integration barrier for systems wishing to use them. Soft-
ware engineers must be aware of these variations which make the integration
process prone to error.

2.2 Smart Contract Anatomy

Smart contract is a computer program which, once deployed, is run at a given
address on a blockchain network. Smart contracts are made up of Data and
Functions, as shown in Figure 2, that can be executed upon receipt of a
transaction [20]. During execution smart contracts can also send messages to
other contracts. These messages comprise the sender’s address, the recipient’s
address, the transfer value, and a data field containing the input data for the
recipient contract. There is a difference between message and transaction:
a transaction is produced by an external owned account (EOA) or a simple
account, while a message is produced by a smart contract.

There follows an overview of what a smart contract is (see Figure 2):

Data (Contract Status / Contract Values) Any data in the contract must be
assigned to a location, either memory or storage (modifying storage in a
smart contract is costly, so it is necessary to analyse in detail where the
data is to be housed):

Storage Persistent data is called storage and is represented by state
variables. These values are permanently stored on the blockchain.



2064 N. Sánchez-Gómez et al.

Memory Values that are stored only during the execution of a contract
function are called memory variables. Since these are not stored
permanently on the blockchain network, they are much cheaper to
use.
In addition to these variables, there also exist some special global
variables that are primarily used to provide information about the
blockchain or the current transaction.

Functions (pre-established conditions and rules) Functions basically obtain
or establish information in response to incoming transactions.

There are two basic types of functions: (i) internal, which are the
functions that can access state variables, and (ii) external, which are part
of the smart contract interface, meaning that they can be called from
other smart contracts and through transactions.

Functions can also be: (i) public functions, which can be called inter-
nally from within the contract or externally through messages, and (ii)
private functions, which are only visible for the smart contract they are
defined in and not in derived contracts. Both functions and state variables
can be made public or private. Finally, there is a specific function, called
constructor functions, which is executed only once, when the contract is
first deployed. Like constructors in class-based programming languages,
this functions typically initialise state variables to their specified values.

2.3 Model-Driven Software Engineering for Blockchain Smart
Contracts

Model-Driven Software Engineering (MDSE) is a paradigm that uses models
to address the complexity of software development at different levels of
abstraction [21].

Over the past few years, modelling tools have helped to document the
functionality of business processes and, through model transformations, to
partially automate the generation of software source code.

With regard to blockchain smart contracts, MDSE is of particular impor-
tance for the following reasons [9, 11]: It can facilitate communication;
Models are easier to understand than code, and is easier to check the cor-
rectness of a model; MDSE tools can implement best practices, generate
well-tested software code, and can produce artifacts for multiple blockchain
platforms, etc.



Blockchain Smart Contract Meta-modeling 2065

Figure 3 Model-based smart contract engineering.

2.4 Smart Contract Quality Assurance

A software defect is an error or bug in a computer program that causes it to
produce an incorrect or unexpected result, or to behave in unintended and/or
undesirable way. Smart contract defects are related not only to security issues,
but also to design flaws which might slow down development and/or increase
the risk of future bugs or errors.

Contract parties agree, sign, and fulfil contracts in accordance with the
contract code. Verification and validation of this contract code is therefore
essential for proper execution. It is critical to ensure that smart contracts are
error-free and well-designed, before deploying them on the blockchain net-
work. Each smart contract must go through an exhaustive quality assurance
process, because any bug in the smart contract code may have an irreparable
effect. If any error is found during the execution of the smart contract, a new
contract must be created, since the blockchain-based contract code cannot be
modified (and its data is immutable).

Model-based smart contract engineering (see Figure 3) aims to standard-
ize the smart contract generation process and produce quality contract code. It
offers the following benefits [22]: it covers all steps of contract development,
early analysis and verification during system design, it eliminates repetitive
low-level development work, it allows old models to be modified to obtain a
new well-designed contract, etc.

In summary, the smart contract verification and validation process carried
out in model-based smart contract engineering encompasses modeling, model
transformation, model verification and, above all, automatic test cases and



2066 N. Sánchez-Gómez et al.

automatic code generation, thereby facilitating the detection of potential
errors as early as possible.

3 Analysis of smart contracts structure

For the implementation of smart contracts, blockchain platforms sup-
port different programming languages. Popular programming languages for
blockchain development found in existing literature include Java, Python, C#,
C++, Ruby, Solidity, etc. This last language, Solidity, is a new programming
language designed specifically for writing Ethereum-based smart contracts.

One common misconception is that smart contracts built for Ethereum
must necessarily be written in Solidity. This is not true [20]. One of the beau-
ties of the Ethereum network and community is that you can participate using
almost any programming language. Ethereum does have developer-friendly
languages for writing smart contracts (Solidity and Vyper), but Ethereum
and its community also embrace open source, and community projects - client
implementations, APIs, development frameworks, testing tools - can be found
in a wide variety of languages.

Smart contract has several components, key elements being the program
code and the data storage [20]. The program code, in general, is an object that
has an identity, state variables and behaviours (executable functions, events
and modifiers). After reviewing different existing smart contract models (e.g.,
Ethereum [14], Hyperledger [15], etc.), the most important features (shown
schematically in Figure 4) can be summarized as follows:

Name In addition to a unique name, the program code has a specific address
corresponding to the deployment location of the contract (a smart
contract is a program that runs at an address).

Figure 4 Smart contract basic structure [20].



Blockchain Smart Contract Meta-modeling 2067

State variable These are variables with global scope, meaning that they are
visible (and therefore accessible) throughout the program. All these
variables, return information to the contract regarding the “current” state
of the blockchain. The state variables are persistent across multiple
invocations. A smart contract is immutable, and its state cannot be
changed after initialization (this state can be modified during the life
of the contract).

Behaviour under conditions or rules:

Events and Modifiers These occur when a contract triggers an action
or state change after being invoked. Normally, events have a name
and parameters that represent their payload. Some blockchain plat-
forms generate system events, others support developer defined
custom events. Depending on the blockchain network, single or
multiple events may be launched.

Functions These are the operations that a smart contract can perform
and thus constitute its behaviour. They can usually be private or
public in scope. When a function is executed, the state variables in
the smart contract change depending on the logic implemented in
the function. Functions all have a name, several input parameters
and, optionally, output parameters. Some blockchain platforms
allow direct invocation of functions using their name, while others
force the use of a single dispatcher function to forward input
values to target functions. Constructors are optional functions used
to initialize the state variables of a contract. If no constructor is
defined, a default constructor appears in the contract.

As can be deduced, then, a smart contract is like a Class in any OOPL.
Figure 5 illustrates this structure with a simple example of an Ethereum smart

Figure 5 Simple Ethereum contract example.



2068 N. Sánchez-Gómez et al.

contract. The Ethereum smart contract is divided into the following main
parts:

State variable This is the backbone of the smart contract. It records the
contract information. State variables are stored permanently and can
be modified by functions. However, these modifications will also be
included in the transaction, the update coming into effect after the
transaction has been confirmed by the blockchain network.

Modifier This is used to coat the function. It is a very important part of
the smart contract, because it is included in the function declaration to
provide additional functions, such as checking, cleaning, etc

Event This acts like a log, recording the occurrence of an event in the
blockchain network

Constructors These are used to deploy and initialize smart contracts, allow-
ing data to be passed in and written to the state variable. Unlike Java,
Solidity can only specify one constructor

Functions Functions are used to read and write state variables. Modification
of the state will be included in the transaction and will take effect after
being confirmed by the blockchain network. Once it takes effect, the
update will be permanently saved in the blockchain ledger. In the exam-
ple contract shown, there is a function with a view modifier, indicating
that the function does not modify any state variables (if it tries to modify
the state variable in the view function or access the state variable in the
pure function, the compiler will report an error).

4 Related Works

After a detailed literature search, we analysed different articles related to the
definition of smart contract meta-models, describing the approach and scope
of these works, as well as the differences with the one presented in this paper.
In particular, we performed selective searches with the term “smart contract”
and “model”, “metamodel”, “model-based”, “model-driven”, or “MDE”, and
we outline the findings below.

Hu et al. [22] propose the theoretical concept of smart contract engineer-
ing (SCE) to facilitate the generation of legal smart contracts, which is the
combination of software engineering, formal methods, and computational



Blockchain Smart Contract Meta-modeling 2069

law. The approach followed would not, in our opinion, allow the automatic
generation of test cases, as it remains at a very theoretical level.

Ladleif et al. [23] also aim to pave the way for a model-based approach in
the development of legal smart contracts. These authors, on the one hand,
focus on reducing the potential errors and improve efficiency during the
contract development process, and, on the other hand, they combine insights
from literature in law and legal informatics with capabilities of existing
modelling approaches and come up with a unifying model that encapsulates
the essential components of legal smart contracts. This theoretical unifying
model could be used as a reference for language designers aiming for a
holistic representation of legal smart contracts in a model-based architecture,
but it would focus only on the whole person and the whole problem as a way
of finding more healthy and sustainable solutions to legal problems. From
our point of view, its approach also does not allow the automatic generation
of test cases, since it is oriented to the legal representation of smart contracts.

Lu et al. [24] uses an MDE approach with the idea of implementing a
smart contract generation tool called Lorikeet to evaluate smart contracts in
terms of feasibility, functional correctness, and cost-effectiveness. In partic-
ular, this paper focuses on a metamodel for the smart contract interface with
input/output parameters and contract connection invocation parameters but
leaves out the metamodel of the smart contract behavior. In our opinion, the
approach followed would not allow the automatic generation of test cases,
because it focuses only on the smart contract interface.

Vandenbogaerde et al. [25] present a solidity smart contract “meta-
model”. From our point of view, what is defined in this paper is closer to
a high-level conceptual model that refers to elements contained in Ethereum
smart contracts such as functions, events, etc. and possible data structures,
without considering other possible platforms.

Butijn et al. [26] present an interesting meta-model of Smart contract
driven business transactions. A business process consists of a collection of
tasks that are performed by business partners to achieve the shared busi-
ness objectives of the stakeholders. Business Process Model and Notation
(BPMN) is a standard for business process modeling that provides a graphical
notation for specifying business processes in a Business Process Diagram
(BPD), based on a flow-charting technique very similar to activity diagrams
from UML. From our point of view, the incorporation of blockchain smart
contracts into business transactions can be specified in BPMN, with no need
to metamodel these business rules and functions.



2070 N. Sánchez-Gómez et al.

Skotnica et al. [27] propose a model-driven approach to create blockchain
smart contracts based on a visual domain-specific language. The design of
an XML-Based language class diagram is presented, and a code genera-
tion process into a blockchain smart contract is described. The approach
proposed by the authors is demonstrated in a proof-of-concept model of a
decentralized mortgage process in which the contract is designed, generated,
and simulated in a blockchain environment, without going into smart contract
meta-modeling.

All this research work is very interesting, but the approach followed by
them would not allow the automatic generation of test cases. In other cases,
these works are difficult to apply to industry, as they remain at a theoretical
level [22, 23, 25] or contemplate a high level of detail of data sources, when
these may not be available [23, 27].

5 A Conceptual Approach to Smart Contract Meta-model

5.1 Smart Contract Meta-model

As indicated above, meta-model is a model of a model, and meta-modeling is
the process of generating such models. Thus, meta-modeling is the analysis,
construction and development of the rules, constraints, models, and theories
that are applicable and useful when modeling a predefined class.

In this section, we present an approach to a smart contract meta-model
design based on the concepts introduced above. The definition of this meta-
model will help us to generalize the definition of a smart contract and
to specifically define each concept involved, together with any relevant
relationships and constraints.

Figure 6 presents our meta-model. This meta-model is defined using a
MOF (Meta-Object Facility) proposal and represented using a UML class
diagram. Following the guidelines of UML, which differentiates between
class types in its meta-models, green is used to refer to a behavioral class,
while red refers to a structural (concept) class. In addition, the relationships
between class, attribute and method have not been indicated since they are
specific to UML and can be obtained from the standard.

The smart contract meta-model has three important meta-classes. The
main one is smart contract. This meta-class represents the smart contract
concept and is identified by two attributes, the ID and the name. The ID is
an internal code that uniquely identifies the smart contract, and the name is a
brief description of the contract itself. If we compare this idea with Figure 5,
it matched the first part of the smart contract definition (name).



Blockchain Smart Contract Meta-modeling 2071

Figure 6 Smart Contract meta-model.

The other two meta-classes are Variable and Function. They were repre-
sented in the meta-model with different colours using the decorative options
of UML. The Variable meta-class, coloured red (the box on top), represents
the static aspect of the smart contract. The Function meta-class, coloured
green (the four boxes at the bottom), represents the behavioural aspect of the
smart contract. With this structure, we wanted to adhere to the same scheme
that UML uses to define its concepts. The variable meta-class represents the
smart contract’s set of variables. It includes two attributes: name, representing
the name of the variable and type, representing its type (boolean, string,
integer, etc.). The function meta-class represents any function that can act



2072 N. Sánchez-Gómez et al.

on the smart contract by changing its status. Function can have an output
parameter (represented as a Variable) and a set of input parameters (also
represented as a Variable).

There are several types of Functions. The most general is Function. This
corresponds to Function concept in Figure 5. It is a procedure that can consult
any parameter of the smart contract, but does not change anything. Apart from
the general type, there are three special types of Functions:

Constructor This is a function that creates a new instance of the smart
contract. Each smart contract must have at least one of this type of
Function (either implicitly or explicitly).

Modifier This is a type of function that can be used to agilely change the
behavior of functions. It can automatically check a condition before
executing a function.

Event This is another type of function. If an event is emitted, it stores
the arguments passed in transaction logs. These logs are stored in
blockchain and are accessible using the address of the contract for as
long as the contract remains present in the blockchain. An event is
actually a function that throws a trigger over another smart contract in
the blockchain procedure.

As the names used in the meta-model are the same as the ones, we used
in Figures 4 and 5, it is easy to make a simple comparison between the
meta-model and real models. It is also very important to note that this meta-
model only represents smart contracts. In future work we want to enrich it
to incorporate concepts that will let us represent blockchain environments. It
should also be mentioned that this meta-model, will constitute the baseline
for the automatic testing of smart contracts, as reported in [19]

5.2 Smart Contract Profile

As stated earlier in this section, our proposal is to adopt MOF and UML
principles in our smart contract approach. With this in mind, and to make our
meta-model in Figure 6 compatible with UML, in this section we propose a
UML profile.

It is shown in Figure 7. The structure that we used for our meta-model
in Figure 6 corresponds fairly closely to UML structure. In fact, the idea of
differentiating the structural and behavioural parts helped simplify our defi-
nition of profile. Also, as we had a set of classes (Modifier, Constructor and



Blockchain Smart Contract Meta-modeling 2073

Figure 7 An UML-Profile for smart contract meta-model.

Event) inherited from Function, we were able to obtain a very compact profile
with only three definitions (see Figure 7). The meta-class smart contract is an
instance of UML ”Class”, Function is an instance of UML ”Method” and
Variable is an instance of UML ”Attributes”.

The simplicity of this profile does not mean that it is not a powerful tool.
The definition of the meta-model and the profile allow as to clearly define
any concept involved in a smart contract and match each concept with similar
concepts in UML. We can therefore use the extension mechanisms that UML
offers to obtain a formal definition of a smart contract. This will be the base
for the automatic tests we intend to generate in future works.

6 Conclusions and Future Work

This paper summarizes the main concepts of blockchain, the general charac-
teristics and anatomy of smart contracts. It also outlines the conceptualization
of model-based software engineering and the need for software quality
assurance of smart contracts. We also discuss the structure of different
smart contracts and, given the benefits it brings, the use of model-based
smart contract engineering for verification, validation and code generation
is proposed. Subsequently, we analyze related works and indicate the general
deficiencies that are appreciated from our point of view, and finally we present
a new approach for a smart contract metamodel. Regarding the related works,
indicate that none of them allows the automatic generation of test cases,
which is the ultimate goal of this paper.



2074 N. Sánchez-Gómez et al.

The idea of the formal approach presented is to try to define a framework
that will help us establish an automatic process for validating smart contracts,
i.e., the automatic generation of test cases. As presented in another paper [19],
one of our future goals is actually to define a mechanism for automatizing
smart contracts using a model-driven approach. This idea has been applied in
other fields, like the that presented by Escalona et al. [28]. This work will
be the basis for work to improve the combination of smart contracts and
computational law by designing a legal-oriented smart contract model. We
also plan to develop a MDSE tool that will automatically detect conformance
between contract code and models, even in the natural language context. This
will accelerate the extension and development of smart contract engineering,
similar to that presented by Meidan et al. [29].

The work presented in this paper focused on smart contracts but, as has
been pointed out, a smart contract is a part of a blockchain. In future work,
we intend to include the concept of blockchain in our meta-model and ensure
that the testing we carry out on smart contracts is in line with that overall
concept.

Another possible line of activity is the transfer of our work. Previous
works related to MDSE for early testing have been successful in terms of
industry transference [30]. One of the main contributing factors to achieve
this success has been to offer a suitable tool to interact with meta-models
and transformations. In this regard, future work clearly needs to address the
implementation of our profile in a tool and the implementation of our testing
mechanisms in order to consolidate our results. Our idea is to design a case
tool based on a UML tool like those defined in other approaches such as NDT
(Navigational Development Techniques) [31].

Acknowledgments

This research was partially supported by the NICO Project (PID2019-
105455GB-C31) of the Spanish Government’s Ministry of Economy and
Competitiveness and the Trop@ (CEI-12) Project of Regional Government
of Andalusia, Spain.

References

[1] Satoshi, N. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System.
Available online at: https://bitcoin.org/bitcoin.pdf



Blockchain Smart Contract Meta-modeling 2075

[2] Westerkamp, M., Victor, F., and Kupper, A. (2020). Tracing manufac-
turing processes using blockchain-based token compositions. Digital
Communications and Networks, 6(2):167—176.

[3] Shailak, J. (2020). Smart Contracts: Building Blocks for Digital Trans-
formation. Available online at: https://doi.org/10.13140/RG.2.2.33316.
83847

[4] Viriyasitavat, W., and Hoonsopon, D. (2019). Blockchain characteris-
tics and consensus in modern business processes. Journal of Industrial
Information Integration, 13, 32–39.

[5] Nanayakkara, S., Rodrigo, M. N. N., Perera, S., Weerasuriya, G. T., and
Hijazi, A. A. (2021). A methodology for selection of a Blockchain plat-
form to develop an enterprise system. Journal of Industrial Information
Integration, 23, 100215.

[6] Tsung-Ting Kuo, Hugo Zavaleta Rojas, Lucila Ohno-Machado (2019).
Comparison of blockchain platforms: a systematic review and health-
care examples. Journal of the American Medical Informatics Associa-
tion, Volume 26, Issue 5, May 2019, Pages 462—478, https://doi.org/10
.1093/jamia/ocy185

[7] Huang, F. (2017). Human Error Analysis in Software Engineering.
Available online at: https://doi.org/10.5772/intechopen.68392.

[8] Object Management Group, Inc. Available online at: https://www.omg.
org/spec/UML/About-UML/

[9] Forward, A., and Lethbridge, T. (2008). Problems and opportunities for
model-centric versus code-centric software development: A survey of
software professionals. International Workshop on Models in Software
Engineering. Available online at: https://doi.org/10.1007/s11408-018-0
315-6

[10] Drescher, D. (2017). Blockchain Basics: A Non-Technical Introduction
in 25 Steps. Apress, USA.

[11] Lu, Q., Weber, I., and Staples, M. (2018). Why Model-Driven Engi-
neering Fits the Needs for Blockchain Application Development. IEEE
Blockchain Technical Briefs, September 2018.

[12] Wikipedia Blockchain. Available online at: https://en.wikipedia.org/w
iki/Blockchain

[13] Tapscott, D. and Tapscott, A. (2016). The Blockchain Revolution: How
the Technology Behind Bitcoin is Changing Money, Business, and the
World. pp. 72, 83, 101, 127. ISBN 978-0670069972.

[14] Buterin V., (2014). A next-generation smart contract and decentralized
application platform. White paper, 2014, vol. 3, no 37. Available online

https://doi.org/10.13140/RG.2.2.33316.83847
https://doi.org/10.13140/RG.2.2.33316.83847
https://doi.org/10.1093/jamia/ocy185
https://doi.org/10.1093/jamia/ocy185
https://doi.org/10.5772/intechopen.68392
https://www.omg.org/spec/UML/About-UML/
https://www.omg.org/spec/UML/About-UML/
https://doi.org/10.1007/s11408-018-0315-6
https://doi.org/10.1007/s11408-018-0315-6
https://en.wikipedia.org/wiki/Blockchain
https://en.wikipedia.org/wiki/Blockchain


2076 N. Sánchez-Gómez et al.

at: https://cryptorating.eu/whitepapers/Ethereum/Ethereum white pap
er.pdf

[15] Hyperledger Project. Available online at: https://www.hyperledger.org
[16] Lewis A. (2016), A gentle introduction to smart contracts, Available

online at: https://bitsonblocks.net/2016/02/01/a-gentle-introduction-to
-smart-contracts/

[17] Mohanta, B. K., Panda, S. S., and Jena, D. (2018). An overview of
smart contract and use cases in blockchain technology. In 9th Inter-
national Conference on Computing, Communication and Networking
Technologies (ICCCNT), pages 1—4. IEEE.

[18] Xu, X., Lu, Q., Liu, Y., Zhu, L., Yao, H., and Vasilakos, A. V. (2019).
Designing blockchain-based applications a case study for imported
product traceability. Future Generation Computer Systems, 92:399—
406.

[19] Sanchez-Gomez, N. et al. (2020). Current Limitations of Blockchain
Traceability: Challenges from Industry. WEBIST 2020. 16TH Interna-
tional Conference on Web Information Systems and Technologies.

[20] The Ethereum community. Available online at: https://ethereum.org/en/
developers/docs/programming-languages/

[21] Schmidt DC. (2006), Guest Editor’s Introduction: Model-Driven Engi-
neering. Computer 2006 Feb;39(2):25—31.

[22] Hu, K., Zhu, J., Ding, Y., Bai, X., and Huang, J. (2020). Smart Contract
Engineering. Electronics, 9(12), 2042.

[23] Ladleif, J., and Weske, M. (2019, November). A unifying model of legal
smart contracts. In International Conference on Conceptual Modeling
(pp. 323–337). Springer, Cham.

[24] Lu, Q., Binh Tran, A., Weber, I., O’Connor, H., Rimba, P., Xu,
X., . . . and Jeffery, R. (2020). Integrated model-driven engineering of
blockchain applications for business processes and asset management.
Software: Practice and Experience.

[25] Vandenbogaerde, B. (2019). A graph-based framework for analysing
the design of smart contracts. In Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering (pp. 1220–1222).

[26] Butijn, B. J., van den Heuvel, W. J., and Kumara, I. (2019). Smart
Contract-Driven Business Transactions. Essentials of Blockchain Tech-
nology, 81.

https://cryptorating.eu/whitepapers/Ethereum/Ethereum_white_paper.pdf
https://cryptorating.eu/whitepapers/Ethereum/Ethereum_white_paper.pdf
https://www.hyperledger.org
https://bitsonblocks.net/2016/02/01/a-gentle-introduction-to-smart-contracts/
https://bitsonblocks.net/2016/02/01/a-gentle-introduction-to-smart-contracts/
https://ethereum.org/en/developers/docs/programming-languages/
https://ethereum.org/en/developers/docs/programming-languages/


Blockchain Smart Contract Meta-modeling 2077

[27] Skotnica, M., Klicpera, J., and Pergl, R. (2020). Towards Model-Driven
Smart Contract Systems–Code Generation and Improving Expressivity
of Smart Contract Modeling.

[28] Escalona Cuaresma, M.J., Gutiérrez Rodrı́guez, J.J., Mejı́as Risoto, M.,
Aragón Serrano, G., Ramos Román, I. (2011). An Overview on Test
Generation from Functional Requirements. The Journal of Systems and
Software. Vol. 84. Núm. 8. Pag. 1379-1393.

[29] Meidan, A., Garcı́a-Garcı́a, J. A., Ramos, I., & Escalona, M. J. (2018).
Measuring software process: a systematic mapping study. ACM Com-
puting Surveys (CSUR), 51(3), 1–32.

[30] López, G., Garcı́a-Borgoñón, L., Vega, S., Escalona Cuaresma, M.J.,
Juristo, N. (2020). Cultivating Practitioners for Software Engineering
Experiments in industry. Best Practices learned from the experience.
Pag. 1–12. Advancements in Model-Driven Architecture in Software
Engineering. EEUU. IGI Global. ISBN 1799836614

[31] Escalona Cuaresma, M.J., Aragón Serrano, G. (2008). NDT. A Model-
Driven Approach for Web Requirements. IEEE Transactions on Software
Engineering. Vol. 34. Núm. 3. Pag. 377–390.

Biographies

N. Sánchez-Gómez received the degree in computer engineering and the
master’s degree in engineering and software technology from the University
of Seville, with the knowledge and skills of people management, ICT project
management, customer management and practical application of computer
engineering methodologies and techniques. He is currently a Researcher with
the Department of Computer Languages and Systems, ETSII. University of
Seville.

Since 1990 to 2001, he worked with Coritel (Accenture group), where he
also carried out management and project management activities. From 2001



2078 N. Sánchez-Gómez et al.

to 2009, he developed his professional activity as a Manager of Everis Spain,
being responsible for different accounts in both the public and private sectors.
He has developed a large part of its professional career in the technology and
process consultancy sector, both in the private and public sectors. Throughout
more than thirty years of professional experience, he has gone from imple-
menting ICT solutions to supervising work teams, managing clients, and
leading ICT projects. He is currently a member of the Web Engineering and
Early Testing Research Group. He has a broad knowledge of the functions
and processes that make up the activity environment of the sectors in which
he has participated.

Further information about her research activities and her list of publica-
tions can be found at https://investigacion.us.es/sisius/sis showpub.php?idp
ers=20733

J. Torres-Valderrama received his MSc and the Phd in Computer Systems
from Seville University. He has been working in the Department of Com-
puter Languages and Systems at the Seville University since 1991, where
he is currently a senior lecturer. Her main research interests are related to
requirements engineering, web-based systems development, user interfaces,
usability, and early software testing. In these areas, he has directed several
PhD theses and published numerous papers in journals and congresses.
He has managed and participated in a high number of projects related to her
areas of research.

He has been dean of School of Computer Engineering at Seville’s Uni-
versity from 2006 to 2014 and he is currently manager of the Foundation for
Research and Development of Information Technology in Andalusia since
2016.

Further information about her research activities and her list of publica-
tions can be found at https://investigacion.us.es/sisius/sis showpub.php?idp
ers=3278

https://investigacion.us.es/sisius/sis_showpub.php?idpers=20733
https://investigacion.us.es/sisius/sis_showpub.php?idpers=20733
https://investigacion.us.es/sisius/sis_showpub.php?idpers=3278
https://investigacion.us.es/sisius/sis_showpub.php?idpers=3278


Blockchain Smart Contract Meta-modeling 2079

Manuel Mejı́as Risoto received his degree in Industrial Engineering in 1985
and his PhD degree in Industrial Engineering in 1997 from the University of
Seville (Spain). He has been a professor of software engineering at the Uni-
versity of Seville since 1987. Dr. Mejı́as has focused his research activity on
Object Oriented System Modeling, Software Development Process, Testing,
Software Quality, Metrics and Software Project Management.

Further information about her research activities and her list of publica-
tions can be found at https://investigacion.us.es/sisius/sis showpub.php?idp
ers=3270

Alejandra Garrido is a full professor at Facultad de Informática, Univer-
sidad Nacional de La Plata, Argentina, where she is Associate Director of
the Research and Development in Advanced IT Lab (LIFIA). She is also
a researcher at CONICET. Her research interests are focused on software
evolution through refactoring and the application of patterns, to improve both
internal and external qualities of software. Alejandra is also the Director of
the Master degree in Software Engineering. She holds a PhD in Computer
Science from the University of Illinois at Urbana-Champaign (UIUC). She is
also a member of the Hillside Group.

https://investigacion.us.es/sisius/sis_showpub.php?idpers=3270
https://investigacion.us.es/sisius/sis_showpub.php?idpers=3270



	Introduction
	Background: Blockchain Smart Contract, Its Anatomy, and Other Related Topics
	Blockchain Smart Contract
	Smart Contract Anatomy
	Model-Driven Software Engineering for Blockchain Smart Contracts
	Smart Contract Quality Assurance

	Analysis of smart contracts structure
	Related Works
	A Conceptual Approach to Smart Contract Meta-model
	Smart Contract Meta-model
	Smart Contract Profile

	Conclusions and Future Work

