
The Computational Performance and Power Consumption of the Parallel 

FDTD on a Smartphone Platform 
 

 

Robert G. Ilgner and David B. Davidson 
 

Department of Electrical and Electronic Engineering 
University of Stellenbosch, Matieland, Private Bag X1, Western Cape, South Africa 

bobilgner@gmail.com, davidson@sun.ac.za 
 
 

Abstract ─ The use of the FDTD in Android applications 
heralds the use of mobile phone platforms for 
performing electromagnetic modeling tasks. The 
Samsung S4 and Alpha smartphones computations are 
powered by a pair of multi-core Advanced RISC 
Machines (ARM) processors, supported by the Android 
operating system, which comprises a self-contained 
platform, which can be exploited for numerical 
simulation applications. In this paper, the parallelized 
two dimensional FDTD is implemented on the Samsung 
Smartphone using threading and SIMD techniques. The 
computational efficiency and power consumption of the 
parallelized FDTD on this platform are compared to 
that for other systems, such as Intel’s i5 processor, and 
Nvidia’s GTX 480 GPU. A comparison is made of the 
power consumption of the different techniques that can 
be used to parallelize the FDTD on a conventional 
multicore processor. In addition to parallelizing the 
FDTD using threading, the feasibility of accelerating 
the FDTD with the SIMD registers inherent in the 
phone’s ARM processor is also examined. 
 
Index Terms ─ ARM, EXYNOS, FDTD, NEON. 
 

I. INTRODUCTION 
The viability of using Smartphones for High 

Performance Computing (HPC) is currently being 
examined for a variety of scientific disciplines [1], [2]. 
The Smartphone is commonly described as being a low 
power processing device and the work described in this 
article will quantify this assertion in the context of 
electromagnetic modeling using the FDTD method. 

The finite difference time domain technique has 
been used for the modelling of electromagnetic scenarios 
since the late 1960s and is a popular choice for 
parallelization in HPC owing to its simple deployment 
on a wide variety of hardware architectures [3]. 

Power consumption of processors is a topic of 
interest owing to the cost implications of supplying 
electricity to HPC processing centers [4]. Koomey’s 
law [5] states that the power being consumed by 
modern processors is halved every 18 months for an 

equivalent computational output. Here, the two 
dimensional parallel FDTD implemented on the 
Samsung S4’s ARM based platform will be used to 
gauge how the Samsung S4 compares to the power 
consumption of the FDTD on other HPC platforms. The 
power consumption of different parallelization techniques 
will be compared to a contemporary multi-core processor, 
Intel’s i5-4440k. 

This paper is structured into three main sections. 
The first section describes the parallelization of the two 
dimensional finite differences time domain (FDTD) 
method on the Samsung S4 and Alpha smartphones 
using generic threading. The second section presents 
measurements of computational performance and power 
consumption of the parallel FDTD on the Samsung S4. 
Comparison is made with different implementations of 
the parallel FDTD on an Intel i5 multi core processor. 
In the third section, the computational/power performance 
ratio of the parallel FDTD is also compared to the 
parallel FDTD implemented on other contemporary 
computing platforms. Several practical real world 
scenarios that can be computed on the Samsung S4 and 
Alpha are given as examples, including computing the 
RFI screening of a large soil berm; results are compared 
with computations on the Intel i5-4440k processor. 

The main contributions of this paper are firstly, a 
description of parallelizing the FDTD algorithm onto an 
Android platform, and secondly, an evaluation of the 
power efficiency of the Android based parallel FDTD 
implementation compared to the parallel FDTD 
implemented on a number of other more conventional 
computing-platforms. 
 

II. PROCESSING THE FDTD ON THE 

SAMSUNG S4 

A. Maxwell’s equations and the parallel FDTD method 

The FDTD is a numerical approximation to 
Maxwell’s equations [6] and is based on the finite 
differences formulation of the scalar computations as 
originally proposed by Yee [7]. For most of the work in 
this article the peripheral boundaries of the computational 
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space are defined using the split field perfectly matched 
layers (PML). A computational stencil, incorporating 
some values of adjacent cells, is applied to every field 
value in the calculation space and repeated in an 
iterative leap-frog manner [6], [7]. The implications of 
this stencil processing are two-fold: 

i) The vector processing of data has to 
accommodate non-consecutive array reads [8] for two 
and three dimensional data. 

ii) Threads must communicate fringe data 
between adjacent data chunks as the values contributing 
to the computational stencil may be contributed by 
different data chunks. This inter-chunk communication 
results in the parallelization of the FDTD being more 
sophisticated than for an embarrassingly parallel 
algorithm. 

Parallelisation technologies such as MPI, OpenMP 
and generic threading are generally used to speed up the 
FDTD in parallel form on multi-core microprocessors 
[9], [10]. The openMP and generic threading method 
for the parallelization of the FDTD requires a shared 
memory architecture, such as a multi-core microprocessor, 
as the representative sections of the FDTD code are 
divided amongst several threads and these are each 
computed on dedicated cores. The FDTD was parallelised 
for the ARM processors using generic threading, as 
neither the openMP or the MPI facilities were readily 
available for the Android platform. 

Results for the acceleration of the FDTD on the 
GPU were attained using the techniques described by 
[11]. Further acceleration of the parallel FDTD for the 
Intel processors using SIMD engines such as the SSE 
and AVX were implemented according to the descriptions 
by [12]. 

 
B. Hardware architecture of the ARM platform 

The ARM platform used for the processing of the 
results shown in this article is part of Exynos System 
[13] on a Chip (SoC) processors. The Exynos 5410 or 
Exynos 5430 processor provides the processing power 
of the Samsung S4 phone. The Exynos 5410 and the 
5430 SoCs shown in Figs. 1 and 2, both have an 
embedded ARM 7 and an ARM 15 processor, a GPU, 
and embedded storage, albeit in different configurations. 
The Exynos 5410 resident ARM cores are configured 
such that low power tasks are processed on the cores of 
the ARM 7 processor and more computationally 
intensive tasks are processed on the ARM 15 cores. 
Although there are eight cores available in total, the 
tasks are managed between corresponding ARM 7 and 
ARM 15 cores, as shown in Fig. 1, in a power saving 
strategy that ARM refers to as a “big.Little” 
configuration. The switching of the tasks between the 
ARM 7 and ARM 15 cores is controlled by the firmware 
and is not available to the programmer. 

The Exynos 5430 SoC on the other hand, uses a 
more conventional arrangement of the ARM 7 and the 
ARM 15 cores, where the scheduler has direct access to 
both the ARM 15 and ARM 7 cores. This configuration 
will allow the processing of eight tasks simultaneously, 
but the ARM 7 processor cores will run at a lower 
operating frequency than the ARM 15 cores. Although 
the availability of the larger number of cores is 
appealing at first impression, one has to note that the 
speed of processing of equal sized computational loads 
will be limited by the capacity of the slowest core. It is 
not programmatically trivial to assign computational 
threads to specific cores in the Exynos 5430 SoC. 
 

 
 
Fig. 1. Schematic arrangement of ARM cores in the 
Exynos 5410 SoC. 
 

 
 
Fig. 2. Schematic arrangement of ARM 7 and ARM 15 
cores in the Exynos 5430 SoC. 
 

The 5430 SoC has better computational performance 
than the 5410 SoC but will consume more power, as is 
described in the subsequent discussion. 
 
C. Programming on the Exynos System on a Chip 

The serial form of the FDTD was parallelised on 
the Samsung S4’s Android v4.4.2 platform using 
generic threading techniques. The program was built on 
the phone using the Android-specific gcc compiler. The 
editing of the program code itself was performed on a  
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desktop computer and the code was transferred to the 
phone using local area wireless technology (WiFi). 
Timing markers were embedded in the code to provide 
profiling and performance statistics. All computational 
performance and power consumption measurements for 
this work were made with programs written in single 
floating point precision. Graphical results were written 
to the phone’s storage in the VTK [14] format and 
transferred to the desktop computer for visualisation 
using Paraview [15]. 

Android v4.4.2 uses the Dalvik runtime system for 
the interpretation of the FDTD code. The newer Android 
Run Time (ART) system is claimed to process Android 
application code quicker and more power efficiently. 
The ART was not available for the development 
platforms used for this work and will be superseded by 
the Dalvik runtime system in subsequent versions of the 
Android generations. 

For the purpose of comparison with the ARM 
platform, the two dimensional serial FDTD was also 
parallelised for the i5-4440k processor using the 
openMP, MPI, generic threading and various SIMD 
techniques. 
 
D. The parallel FDTD on multicore platforms using 

generic threading 

The serial form of the FDTD was parallelised using 
the generic threading for the Exynos 5410 SoC, Exynos 
5430 SoC, and the Intel i5-4440k processor. 

The computational throughput of the serial FDTD 
and the parallel FDTD on the four core i5-4440k is 
shown in Fig. 3. The performance of the serial FDTD 
on the i5-4440k is shown as a performance reference. 
The computational throughput of the parallel FDTD on 
the i5 results shown in Fig. 3 was achieved by using 
four threads, so that each core is occupied by one 
thread. The results shown in Fig. 3 do not include the 
optimisation using the SIMD registers in the i5 
processor, although these throughput results are used in 
Table 1 and shown in Fig. 4. 

The computational throughput of the 2D parallel 
FDTD on the 5410 and 5430 Exynos SoCs is also 
shown in Fig. 3. The computational throughput was 
achieved using four threads on the Exynos 5410, 
although eight cores are made available when one 
combines the number of ARM 7 and ARM 15 cores, as 
shown in Fig. 1. The Exynos 5410 did not achieve 
greater throughput by doubling the number of threads 
owing to the exclusive core scheduling strategy of the 
Exynos 5410, as described in section II.B. The 
computational performance of the 2D FDTD implemented 
on the Exynos 5430 was not improved either when 
using more than four threads, very probable because the 
smaller processing capacity of the ARM 7 core is a 
limiting factor. 
 

 
 
Fig. 3. The processing throughput of the two dimensional 
FDTD with an increase in grid size. 
 

 
 
Fig. 4. The performance of the parallel FDTD on the 
Exynos SoC and the Intel i5-4440k processor. Peak 
throughput for a grid of 16 million cells. 
 
E. Further parallelisation using the NEON SIMD 

registers on the Exynos processor 

The ARM 7 and ARM 15 processors both have an 
inherently SIMD engine called NEON. The width of 
the NEON registers is 128 bits and the NEON 
operations are capable of handling four floating point 
operations simultaneously. FDTD implementations 
making use of the SIMD engines on other processors 
have shown acceleration of two to three times that of 
the serial versions. 

The implementation of the serial FDTD when 
using the NEON compiler intrinsics in the Exynos 
processor did not provide any improvement in 
computational performance over the serial FDTD. As a 
test, the FDTD array data was substituted with constant 
data values, which did indeed provide a marked 
speedup of the SIMD based acceleration. Whilst the 
computed results in this case are clearly of no value 
from a modelling perspective, it showed that the NEON 
registers are indeed processing the data values 
effectively, but moving the FDTD data to the NEON 
registers from the data array to the SIMD engine is  
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inefficient. Attempts to improve the performance of the 
array data movement to the SIMD engine by explicitly 
prefetching the FDTD array data into the cache memory 
did not enhance the efficiency of the FDTD program 
when making use of the NEON functionality. 

It can also be noted that making use of the 
automated implementation of the NEON functionality 
provided by the gcc compiler did not provide any further 
acceleration of the FDTD either. 

By contrast with the lack of acceleration improvement 
obtained using the SIMD facility for the ARM 
processors on the Exynos SoCs, further acceleration of 
the FDTD by using the SIMD facilities inherent in Intel 
processors provided very good speedups. The speedup 
in the computational throughput of the two dimensional 
FDTD on the i5-4440k is shown in Fig. 5. The FDTD 
was implemented using compiler intrinsic and single 
precision floating point arithmetic for the AVX registers. 
The computational performance of the i5-4440k 
processor is limited when supplying data using only one 
channel to the physical memory chip, a situation which 
is alleviated when using two memory channels to the 
physical memory chips. The use of the auto-vectorisation 
options on different compilers resulted in a small 
improvement in computational performance of the 
FDTD on one core only. Auto-vectorization did not 
accelerate the parallel FDTD when implemented for 
more than one core. 
 

 
 
Fig. 5. The data bottleneck effect of using the SIMD 
registers on the Intel i5-4440k. 
 

III. FDTD COMPUTATIONAL 

PERFORMANCE/POWER COMPARISON 

A. A note on the use of power consumption values 

on different processors and systems 

Although power consumption values are readily 
given by manufacturers, it is often unclear what these 
values refer to or how to apply this data to calculate the 
power consumed by a specific program or process. The 
peak power consumed for different processes performing 
at the their maximum capacity is varied [4] and even 
relatively minor variations within one algorithm can affect 

the power consumption, as is shown by the results of 
the parallel FDTD on the i5-4440k, shown in Fig. 6. 

The power consumption measurements made for 
the Intel i5 processor results used in this article were 
made using a dedicated power meter between the 
desktop computer and the mains power supply. The 
baseline power consumption of the desktop computer 
was measured before the testing and readings were 
taken while the program was running. The difference in 
these two power values was used to identify the amount 
of power consumed by the FDTD itself. Readings were 
also taken to determine what the effect of the AVX is 
on the power consumption of the parallel FDTD, as is 
shown in Fig. 6. 

The power consumed by the FDTD on the 
Samsung phone was determined by calculating the drop 
of the battery capacity and relating that to the Watt 
Hour rating of the phone’s battery. As it was not 
possible to exclude the functioning of the myriad of 
other devices operating in the phone, such as the screen, 
this power consumption calculation should be assumed 
to be the worst case scenario for the FDTD. WiFi, 
Bluetooth, and other unrequired phone features, were 
switched off during the performance testing. 

Another variable affecting the power consumption 
comparison is the effect of the release age of the 
processor. According to Koomey’s law, new generations 
of processors are becoming twice as efficient every 18 
months. It is therefore implied that newer processors 
will be more power efficient than older processors. 
When comparing performance across platforms, 
programming implementation can also impact on 
performance evaluation; however, other than the data 
obtained from Simon [9], all implementations were 
done by the present authors using very similar code. 
The power measurements to be presented later on in the 
article are taken from manufacturers’ specification 
sheets. 
 
B. The performance/power ratio of different parallel 

algorithms 

When comparing the power consumption of the 
parallelized FDTD for different platforms, it has to be 
noted that the FDTD may have been parallelized using 
a different technique to the method with generic 
threading, and that these techniques all consume power 
at different rates. This can be demonstrated by 
examining the techniques used to parallelize the FDTD 
on the Intel i5-4440k four core processor, where each 
technique consumes different amounts of power, as 
shown in Fig. 6. The technique consuming the least 
amount of power on the Intel four core i5-4440k 
platform is the FDTD implemented with generic 
threads, and this has been implemented on the Exynos 
5410 SoC, as is shown in Fig. 6. As expected, the 
FDTD implementation using the SIMD capability of 
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the i5-4440k also consumes more power than the non-
vectorized version. The relative throughput of the 
parallelized 2D FDTD shown in Fig. 4, measured in 
millions of cells per second, is as one would expect. 
The throughput from the Intel i5 four core processor far 
outstrips the eight cores on the Exynos processor. To 
achieve this computational throughput advantage though, 
the i5-4440k processor consumes much more power. 
 

 
 
Fig. 6. Power consumption of the parallel FDTD on the 
Exynos and Intel i5-4440k processors. 
 
C. The performance/power consumption of the 

parallel FDTD compared to other popular computing 

platforms 

One of the features of ARM processors that is 
constantly emphasized in the popular literature is that 
the ARM platform consumes very little power. As 
shown in Fig. 7, the values of FDTD cell throughput 
normalized by the power consumption seems to verify 
this for the i5-4440k and Exynos 5410 at least. Table 1 
is a comparison of the performance/power ratio of the 
parallelized FDTD on a variety of computing platforms 
and illustrates how the FDTD on the Exynos platform 
relates to these systems. Apart from the FDTD results 
for the i7 processor [9], all of the parallel FDTD 
implementations on these platforms originated from the 
same serial two dimensional FDTD program and was 

coded by the present authors. It is obvious from this 
comparison that the processing of the FDTD on the 
ARM platform does not provide any considerable 
saving in power consumption. Although the Nvidia 
GTX 480 appears to have the lowest performance/power 
rating, it should be noted that this is probably owing to 
the age of the processor’s generation, as predicted by 
Koomey’s law. 
 

 
 
Fig. 7. FDTD performance/power ratio of the Exynos 
and the Intel i5-4440k. 
 

The Power PC A2 processor is of particular interest 
as it processing building block used by IBM’s Blue 
Gene/Q [16] supercomputer. Although released as early 
as 2011, the Blue Gene/Q still occupies a large proportion 
of the rankings in Green500 [17] list of energy efficient 
computers. 

The FDTD power efficiency ratings (MCPS per 
watt) shown in Table 1 agree with the ratings of the top 
energy efficient processors shown in the Green500 list 
of November 2014, in that the top 10 positions in the 
Green 500 list all use Xeon processors similar to the 
Intel Xeon E5-2640 featuring in Table 1. Although the 
ARM processors deployed for the FDTD implementations 
in this work feature near the top of the evaluation in 
Table 1, they do not appear to feature highly in the 
current Green500 list. 

Table 1: A comparison of the power efficiency of the parallel FDTD on different platforms 
Platform Processor 

Type 
Cores Release 

Date 
Peak Power 

(Watt) 
Peak 

MCPS 
MCPS 

Per Core 
MCPS 

Per Watt 
GTX 480 Nvidia GPU 480 2010 320 680 1,4 2,1 

IBM Power PC A2 CPU 16 + 2 2010 55 176 11 3,2 
C2070 Nvidia GPU 448 2009 238 780 3,2 3,3 
i5-4440 Intel CPU+AVX 4 2013 56,5* 296 75 5,2 
Exynos 5410 CPU 4 2013 2,3* 17,5 4,4 7,6 
E5-2640 Intel CPU+AVX 6 2012 95 1153 192 12,1 
Exynos 5430 CPU 4 2014 1,7* 22,7 5,7 13,3 

i7-3960x Intel [9] CPU+AVX 6 2011 130 1800 300 13,8 
*Power measurements made manually 

ILGNER, DAVIDSON: THE COMPUTATIONAL PERFORMANCE AND POWER CONSUMPTION OF THE PARALLEL FDTD 1266



IV. FDTD APPLICATIONS ON THE 

SAMSUNG S4 
Despite the limitations of Android platforms on 

contemporary smartphones as noted in this paper, some 
quite useful, albeit limited, 2D FDTD simulations can 
be performed. A commercial application is available on 
the Android platform to calculate the most suitable 
position of a WiFi router in an apartment [18]. The 
FDTD is used to calculate the propagation of the WiFi 
router’s radio transmission throughout the residence so 
as to determine areas of good and poor WiFi reception. 

As a proof of concept, the authors also made 
computations on the Samsung S4 Smartphone using the 
two dimensional parallelized FDTD described in this 
paper. The objective of the computation was to quantify 
the radio frequency interference shielding provided by a 
berm (a large earth mound) on a sensitive radio 
astronomy site in Southern Africa [19]. The results 
from the FDTD process on the Samsung S4 agreed with 
those derived from a similar FDTD process modelled 
on an Intel i5-4440k processor and are shown in Fig. 8. 
The agreement is satisfactory, given that the application 
focused on screening, and a 2D model of the 3D berm 
was used in the simulations, so precise agreement 
between simulations and measurements was neither 
expected nor required. 
 

 
 
Fig. 8. The signal strength as calculated by the parallel 
2D FDTD on the Samsung 4 compared to the signal 
observed by the unmanned aerial vehicle. 
 

V. CONCLUSION 
A comparison of the computational efficiency with 

the 2D FDTD on other HPC platforms reveals that the 
ARM processors do not afford a large power saving 
when computing the FDTD in terms of power-
normalized performance. This result may appear 
surprising, given the claims surrounding low-power 
processors, but is of course a consequence of their 
limited performance. For the FDTD at least, most 
contemporary high performance processors achieve a 
similar computational efficiency. For applications in 
large HPC systems, it is the fabric of the system - in 
particular, the interconnect technology and access to 

memory - which differentiate systems on the basis of 
computational efficiency [20]. Nonetheless, as has been 
described here, the parallel FDTD can be easily 
deployed in parallel on a Smartphone and used for 
small-scale rudimentary electromagnetic modeling. 
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