
The Computational Performance and Power Consumption of the Parallel

FDTD on a Smartphone Platform

Robert G. Ilgner and David B. Davidson

Department of Electrical and Electronic Engineering
University of Stellenbosch, Matieland, Private Bag X1, Western Cape, South Africa

bobilgner@gmail.com, davidson@sun.ac.za

Abstract ─ The use of the FDTD in Android applications
heralds the use of mobile phone platforms for
performing electromagnetic modeling tasks. The
Samsung S4 and Alpha smartphones computations are
powered by a pair of multi-core Advanced RISC
Machines (ARM) processors, supported by the Android
operating system, which comprises a self-contained
platform, which can be exploited for numerical
simulation applications. In this paper, the parallelized
two dimensional FDTD is implemented on the Samsung
Smartphone using threading and SIMD techniques. The
computational efficiency and power consumption of the
parallelized FDTD on this platform are compared to
that for other systems, such as Intel’s i5 processor, and
Nvidia’s GTX 480 GPU. A comparison is made of the
power consumption of the different techniques that can
be used to parallelize the FDTD on a conventional
multicore processor. In addition to parallelizing the
FDTD using threading, the feasibility of accelerating
the FDTD with the SIMD registers inherent in the
phone’s ARM processor is also examined.

Index Terms ─ ARM, EXYNOS, FDTD, NEON.

I. INTRODUCTION
The viability of using Smartphones for High

Performance Computing (HPC) is currently being
examined for a variety of scientific disciplines [1], [2].
The Smartphone is commonly described as being a low
power processing device and the work described in this
article will quantify this assertion in the context of
electromagnetic modeling using the FDTD method.

The finite difference time domain technique has
been used for the modelling of electromagnetic scenarios
since the late 1960s and is a popular choice for
parallelization in HPC owing to its simple deployment
on a wide variety of hardware architectures [3].

Power consumption of processors is a topic of
interest owing to the cost implications of supplying
electricity to HPC processing centers [4]. Koomey’s
law [5] states that the power being consumed by
modern processors is halved every 18 months for an

equivalent computational output. Here, the two
dimensional parallel FDTD implemented on the
Samsung S4’s ARM based platform will be used to
gauge how the Samsung S4 compares to the power
consumption of the FDTD on other HPC platforms. The
power consumption of different parallelization techniques
will be compared to a contemporary multi-core processor,
Intel’s i5-4440k.

This paper is structured into three main sections.
The first section describes the parallelization of the two
dimensional finite differences time domain (FDTD)
method on the Samsung S4 and Alpha smartphones
using generic threading. The second section presents
measurements of computational performance and power
consumption of the parallel FDTD on the Samsung S4.
Comparison is made with different implementations of
the parallel FDTD on an Intel i5 multi core processor.
In the third section, the computational/power performance
ratio of the parallel FDTD is also compared to the
parallel FDTD implemented on other contemporary
computing platforms. Several practical real world
scenarios that can be computed on the Samsung S4 and
Alpha are given as examples, including computing the
RFI screening of a large soil berm; results are compared
with computations on the Intel i5-4440k processor.

The main contributions of this paper are firstly, a
description of parallelizing the FDTD algorithm onto an
Android platform, and secondly, an evaluation of the
power efficiency of the Android based parallel FDTD
implementation compared to the parallel FDTD
implemented on a number of other more conventional
computing-platforms.

II. PROCESSING THE FDTD ON THE

SAMSUNG S4

A. Maxwell’s equations and the parallel FDTD method

The FDTD is a numerical approximation to
Maxwell’s equations [6] and is based on the finite
differences formulation of the scalar computations as
originally proposed by Yee [7]. For most of the work in
this article the peripheral boundaries of the computational

1054-4887 © 2015 ACES

Submitted On: July 2, 2015
Accepted On: November 3, 2015

1262ACES JOURNAL, Vol. 30, No. 12, December 2015

space are defined using the split field perfectly matched
layers (PML). A computational stencil, incorporating
some values of adjacent cells, is applied to every field
value in the calculation space and repeated in an
iterative leap-frog manner [6], [7]. The implications of
this stencil processing are two-fold:

i) The vector processing of data has to
accommodate non-consecutive array reads [8] for two
and three dimensional data.

ii) Threads must communicate fringe data
between adjacent data chunks as the values contributing
to the computational stencil may be contributed by
different data chunks. This inter-chunk communication
results in the parallelization of the FDTD being more
sophisticated than for an embarrassingly parallel
algorithm.

Parallelisation technologies such as MPI, OpenMP
and generic threading are generally used to speed up the
FDTD in parallel form on multi-core microprocessors
[9], [10]. The openMP and generic threading method
for the parallelization of the FDTD requires a shared
memory architecture, such as a multi-core microprocessor,
as the representative sections of the FDTD code are
divided amongst several threads and these are each
computed on dedicated cores. The FDTD was parallelised
for the ARM processors using generic threading, as
neither the openMP or the MPI facilities were readily
available for the Android platform.

Results for the acceleration of the FDTD on the
GPU were attained using the techniques described by
[11]. Further acceleration of the parallel FDTD for the
Intel processors using SIMD engines such as the SSE
and AVX were implemented according to the descriptions
by [12].

B. Hardware architecture of the ARM platform

The ARM platform used for the processing of the
results shown in this article is part of Exynos System
[13] on a Chip (SoC) processors. The Exynos 5410 or
Exynos 5430 processor provides the processing power
of the Samsung S4 phone. The Exynos 5410 and the
5430 SoCs shown in Figs. 1 and 2, both have an
embedded ARM 7 and an ARM 15 processor, a GPU,
and embedded storage, albeit in different configurations.
The Exynos 5410 resident ARM cores are configured
such that low power tasks are processed on the cores of
the ARM 7 processor and more computationally
intensive tasks are processed on the ARM 15 cores.
Although there are eight cores available in total, the
tasks are managed between corresponding ARM 7 and
ARM 15 cores, as shown in Fig. 1, in a power saving
strategy that ARM refers to as a “big.Little”
configuration. The switching of the tasks between the
ARM 7 and ARM 15 cores is controlled by the firmware
and is not available to the programmer.

The Exynos 5430 SoC on the other hand, uses a
more conventional arrangement of the ARM 7 and the
ARM 15 cores, where the scheduler has direct access to
both the ARM 15 and ARM 7 cores. This configuration
will allow the processing of eight tasks simultaneously,
but the ARM 7 processor cores will run at a lower
operating frequency than the ARM 15 cores. Although
the availability of the larger number of cores is
appealing at first impression, one has to note that the
speed of processing of equal sized computational loads
will be limited by the capacity of the slowest core. It is
not programmatically trivial to assign computational
threads to specific cores in the Exynos 5430 SoC.

Fig. 1. Schematic arrangement of ARM cores in the
Exynos 5410 SoC.

Fig. 2. Schematic arrangement of ARM 7 and ARM 15
cores in the Exynos 5430 SoC.

The 5430 SoC has better computational performance
than the 5410 SoC but will consume more power, as is
described in the subsequent discussion.

C. Programming on the Exynos System on a Chip

The serial form of the FDTD was parallelised on
the Samsung S4’s Android v4.4.2 platform using
generic threading techniques. The program was built on
the phone using the Android-specific gcc compiler. The
editing of the program code itself was performed on a

1263 ACES JOURNAL, Vol. 30, No. 12, December 2015

desktop computer and the code was transferred to the
phone using local area wireless technology (WiFi).
Timing markers were embedded in the code to provide
profiling and performance statistics. All computational
performance and power consumption measurements for
this work were made with programs written in single
floating point precision. Graphical results were written
to the phone’s storage in the VTK [14] format and
transferred to the desktop computer for visualisation
using Paraview [15].

Android v4.4.2 uses the Dalvik runtime system for
the interpretation of the FDTD code. The newer Android
Run Time (ART) system is claimed to process Android
application code quicker and more power efficiently.
The ART was not available for the development
platforms used for this work and will be superseded by
the Dalvik runtime system in subsequent versions of the
Android generations.

For the purpose of comparison with the ARM
platform, the two dimensional serial FDTD was also
parallelised for the i5-4440k processor using the
openMP, MPI, generic threading and various SIMD
techniques.

D. The parallel FDTD on multicore platforms using

generic threading

The serial form of the FDTD was parallelised using
the generic threading for the Exynos 5410 SoC, Exynos
5430 SoC, and the Intel i5-4440k processor.

The computational throughput of the serial FDTD
and the parallel FDTD on the four core i5-4440k is
shown in Fig. 3. The performance of the serial FDTD
on the i5-4440k is shown as a performance reference.
The computational throughput of the parallel FDTD on
the i5 results shown in Fig. 3 was achieved by using
four threads, so that each core is occupied by one
thread. The results shown in Fig. 3 do not include the
optimisation using the SIMD registers in the i5
processor, although these throughput results are used in
Table 1 and shown in Fig. 4.

The computational throughput of the 2D parallel
FDTD on the 5410 and 5430 Exynos SoCs is also
shown in Fig. 3. The computational throughput was
achieved using four threads on the Exynos 5410,
although eight cores are made available when one
combines the number of ARM 7 and ARM 15 cores, as
shown in Fig. 1. The Exynos 5410 did not achieve
greater throughput by doubling the number of threads
owing to the exclusive core scheduling strategy of the
Exynos 5410, as described in section II.B. The
computational performance of the 2D FDTD implemented
on the Exynos 5430 was not improved either when
using more than four threads, very probable because the
smaller processing capacity of the ARM 7 core is a
limiting factor.

Fig. 3. The processing throughput of the two dimensional
FDTD with an increase in grid size.

Fig. 4. The performance of the parallel FDTD on the
Exynos SoC and the Intel i5-4440k processor. Peak
throughput for a grid of 16 million cells.

E. Further parallelisation using the NEON SIMD

registers on the Exynos processor

The ARM 7 and ARM 15 processors both have an
inherently SIMD engine called NEON. The width of
the NEON registers is 128 bits and the NEON
operations are capable of handling four floating point
operations simultaneously. FDTD implementations
making use of the SIMD engines on other processors
have shown acceleration of two to three times that of
the serial versions.

The implementation of the serial FDTD when
using the NEON compiler intrinsics in the Exynos
processor did not provide any improvement in
computational performance over the serial FDTD. As a
test, the FDTD array data was substituted with constant
data values, which did indeed provide a marked
speedup of the SIMD based acceleration. Whilst the
computed results in this case are clearly of no value
from a modelling perspective, it showed that the NEON
registers are indeed processing the data values
effectively, but moving the FDTD data to the NEON
registers from the data array to the SIMD engine is

ILGNER, DAVIDSON: THE COMPUTATIONAL PERFORMANCE AND POWER CONSUMPTION OF THE PARALLEL FDTD 1264

inefficient. Attempts to improve the performance of the
array data movement to the SIMD engine by explicitly
prefetching the FDTD array data into the cache memory
did not enhance the efficiency of the FDTD program
when making use of the NEON functionality.

It can also be noted that making use of the
automated implementation of the NEON functionality
provided by the gcc compiler did not provide any further
acceleration of the FDTD either.

By contrast with the lack of acceleration improvement
obtained using the SIMD facility for the ARM
processors on the Exynos SoCs, further acceleration of
the FDTD by using the SIMD facilities inherent in Intel
processors provided very good speedups. The speedup
in the computational throughput of the two dimensional
FDTD on the i5-4440k is shown in Fig. 5. The FDTD
was implemented using compiler intrinsic and single
precision floating point arithmetic for the AVX registers.
The computational performance of the i5-4440k
processor is limited when supplying data using only one
channel to the physical memory chip, a situation which
is alleviated when using two memory channels to the
physical memory chips. The use of the auto-vectorisation
options on different compilers resulted in a small
improvement in computational performance of the
FDTD on one core only. Auto-vectorization did not
accelerate the parallel FDTD when implemented for
more than one core.

Fig. 5. The data bottleneck effect of using the SIMD
registers on the Intel i5-4440k.

III. FDTD COMPUTATIONAL

PERFORMANCE/POWER COMPARISON

A. A note on the use of power consumption values

on different processors and systems

Although power consumption values are readily
given by manufacturers, it is often unclear what these
values refer to or how to apply this data to calculate the
power consumed by a specific program or process. The
peak power consumed for different processes performing
at the their maximum capacity is varied [4] and even
relatively minor variations within one algorithm can affect

the power consumption, as is shown by the results of
the parallel FDTD on the i5-4440k, shown in Fig. 6.

The power consumption measurements made for
the Intel i5 processor results used in this article were
made using a dedicated power meter between the
desktop computer and the mains power supply. The
baseline power consumption of the desktop computer
was measured before the testing and readings were
taken while the program was running. The difference in
these two power values was used to identify the amount
of power consumed by the FDTD itself. Readings were
also taken to determine what the effect of the AVX is
on the power consumption of the parallel FDTD, as is
shown in Fig. 6.

The power consumed by the FDTD on the
Samsung phone was determined by calculating the drop
of the battery capacity and relating that to the Watt
Hour rating of the phone’s battery. As it was not
possible to exclude the functioning of the myriad of
other devices operating in the phone, such as the screen,
this power consumption calculation should be assumed
to be the worst case scenario for the FDTD. WiFi,
Bluetooth, and other unrequired phone features, were
switched off during the performance testing.

Another variable affecting the power consumption
comparison is the effect of the release age of the
processor. According to Koomey’s law, new generations
of processors are becoming twice as efficient every 18
months. It is therefore implied that newer processors
will be more power efficient than older processors.
When comparing performance across platforms,
programming implementation can also impact on
performance evaluation; however, other than the data
obtained from Simon [9], all implementations were
done by the present authors using very similar code.
The power measurements to be presented later on in the
article are taken from manufacturers’ specification
sheets.

B. The performance/power ratio of different parallel

algorithms

When comparing the power consumption of the
parallelized FDTD for different platforms, it has to be
noted that the FDTD may have been parallelized using
a different technique to the method with generic
threading, and that these techniques all consume power
at different rates. This can be demonstrated by
examining the techniques used to parallelize the FDTD
on the Intel i5-4440k four core processor, where each
technique consumes different amounts of power, as
shown in Fig. 6. The technique consuming the least
amount of power on the Intel four core i5-4440k
platform is the FDTD implemented with generic
threads, and this has been implemented on the Exynos
5410 SoC, as is shown in Fig. 6. As expected, the
FDTD implementation using the SIMD capability of

1265 ACES JOURNAL, Vol. 30, No. 12, December 2015

the i5-4440k also consumes more power than the non-
vectorized version. The relative throughput of the
parallelized 2D FDTD shown in Fig. 4, measured in
millions of cells per second, is as one would expect.
The throughput from the Intel i5 four core processor far
outstrips the eight cores on the Exynos processor. To
achieve this computational throughput advantage though,
the i5-4440k processor consumes much more power.

Fig. 6. Power consumption of the parallel FDTD on the
Exynos and Intel i5-4440k processors.

C. The performance/power consumption of the

parallel FDTD compared to other popular computing

platforms

One of the features of ARM processors that is
constantly emphasized in the popular literature is that
the ARM platform consumes very little power. As
shown in Fig. 7, the values of FDTD cell throughput
normalized by the power consumption seems to verify
this for the i5-4440k and Exynos 5410 at least. Table 1
is a comparison of the performance/power ratio of the
parallelized FDTD on a variety of computing platforms
and illustrates how the FDTD on the Exynos platform
relates to these systems. Apart from the FDTD results
for the i7 processor [9], all of the parallel FDTD
implementations on these platforms originated from the
same serial two dimensional FDTD program and was

coded by the present authors. It is obvious from this
comparison that the processing of the FDTD on the
ARM platform does not provide any considerable
saving in power consumption. Although the Nvidia
GTX 480 appears to have the lowest performance/power
rating, it should be noted that this is probably owing to
the age of the processor’s generation, as predicted by
Koomey’s law.

Fig. 7. FDTD performance/power ratio of the Exynos
and the Intel i5-4440k.

The Power PC A2 processor is of particular interest
as it processing building block used by IBM’s Blue
Gene/Q [16] supercomputer. Although released as early
as 2011, the Blue Gene/Q still occupies a large proportion
of the rankings in Green500 [17] list of energy efficient
computers.

The FDTD power efficiency ratings (MCPS per
watt) shown in Table 1 agree with the ratings of the top
energy efficient processors shown in the Green500 list
of November 2014, in that the top 10 positions in the
Green 500 list all use Xeon processors similar to the
Intel Xeon E5-2640 featuring in Table 1. Although the
ARM processors deployed for the FDTD implementations
in this work feature near the top of the evaluation in
Table 1, they do not appear to feature highly in the
current Green500 list.

Table 1: A comparison of the power efficiency of the parallel FDTD on different platforms
Platform Processor

Type
Cores Release

Date
Peak Power

(Watt)
Peak

MCPS
MCPS

Per Core
MCPS

Per Watt
GTX 480 Nvidia GPU 480 2010 320 680 1,4 2,1

IBM Power PC A2 CPU 16 + 2 2010 55 176 11 3,2
C2070 Nvidia GPU 448 2009 238 780 3,2 3,3
i5-4440 Intel CPU+AVX 4 2013 56,5* 296 75 5,2
Exynos 5410 CPU 4 2013 2,3* 17,5 4,4 7,6
E5-2640 Intel CPU+AVX 6 2012 95 1153 192 12,1
Exynos 5430 CPU 4 2014 1,7* 22,7 5,7 13,3

i7-3960x Intel [9] CPU+AVX 6 2011 130 1800 300 13,8
*Power measurements made manually

ILGNER, DAVIDSON: THE COMPUTATIONAL PERFORMANCE AND POWER CONSUMPTION OF THE PARALLEL FDTD 1266

IV. FDTD APPLICATIONS ON THE

SAMSUNG S4
Despite the limitations of Android platforms on

contemporary smartphones as noted in this paper, some
quite useful, albeit limited, 2D FDTD simulations can
be performed. A commercial application is available on
the Android platform to calculate the most suitable
position of a WiFi router in an apartment [18]. The
FDTD is used to calculate the propagation of the WiFi
router’s radio transmission throughout the residence so
as to determine areas of good and poor WiFi reception.

As a proof of concept, the authors also made
computations on the Samsung S4 Smartphone using the
two dimensional parallelized FDTD described in this
paper. The objective of the computation was to quantify
the radio frequency interference shielding provided by a
berm (a large earth mound) on a sensitive radio
astronomy site in Southern Africa [19]. The results
from the FDTD process on the Samsung S4 agreed with
those derived from a similar FDTD process modelled
on an Intel i5-4440k processor and are shown in Fig. 8.
The agreement is satisfactory, given that the application
focused on screening, and a 2D model of the 3D berm
was used in the simulations, so precise agreement
between simulations and measurements was neither
expected nor required.

Fig. 8. The signal strength as calculated by the parallel
2D FDTD on the Samsung 4 compared to the signal
observed by the unmanned aerial vehicle.

V. CONCLUSION
A comparison of the computational efficiency with

the 2D FDTD on other HPC platforms reveals that the
ARM processors do not afford a large power saving
when computing the FDTD in terms of power-
normalized performance. This result may appear
surprising, given the claims surrounding low-power
processors, but is of course a consequence of their
limited performance. For the FDTD at least, most
contemporary high performance processors achieve a
similar computational efficiency. For applications in
large HPC systems, it is the fabric of the system - in
particular, the interconnect technology and access to

memory - which differentiate systems on the basis of
computational efficiency [20]. Nonetheless, as has been
described here, the parallel FDTD can be easily
deployed in parallel on a Smartphone and used for
small-scale rudimentary electromagnetic modeling.

ACKNOWLEDGMENT
DBD and RGI acknowledge the support of SKA

South Africa, the South African Research Chairs
Initiative of the Department of Science and Technology
(DST) and National Research Foundation (NRF), and
the Centre for High Performance Computing. The loan
of the Alpha Smartphone containing the Exynos 5430
SoC by Samsung is greatly appreciated.

REFERENCES
[1] M. H. Tandel and V. S. Venkitachalam, “Cloud

computing in Smartphone: is offloading a better
bet?,” Wichita State University, Wireless Networking
and Energy Systems Research Lab., [Online]:
http://webs.wichita.edu/?u=WINES&p=/Publications/.

[2] M. Y. Arslan, I. Singh, S. Singh, H. V. Madhyastha,
K. Sundaersan, and S. V. Krishnamurthy,
“Computing while charging: building a distributed
computing infrastructure using Smartphones,” 8th

International Conference on Networking Experiments

and Technologies, Nice, France, 2012.
[3] R. Ilgner and D. B Davidson, “Price-performance

aspects of accelerating the FDTD method using
the vector processing programming paradigm on
GPU and multi-core clusters,” Applied Computational

Electromagnetics Society (ACES) Journal, vol.
29, no. 5, pp. 351-359, Apr. 2014.

[4] D. Hackenberg, R. Schöne, D. Molka, M. Müller,
and A. Knüpfer, “Quantifying power consumption
variations of HPC systems using SPEC MPI
benchmarks,” Computer Science–Research and

Development, vol. 25, pp. 155-163, Sep. 2010.
[5] J. G. Koomey, S. Berard, M. Sanchez, and H.

Wong, “Implications of historical trends in the
electrical efficiency of computing,” IEEE Annals

of the History of Computing, vol. 33, pp. 46-54,
2011.

[6] A. Taflove and S. C. Hagness, Computational

Electrodynamics, The Finite-Difference Time-

Domain Method, Third Edition, Artech House,
Chapters 3 to 7, 2005.

[7] K. S. Yee, “Numerical solution of initial boundary
value problems involving Maxwell’s equations in
isotropic media,” IEEE Trans. Antennas Propagation,
vol. AP-14, pp. 302-307, 1966.

[8] C. Yuan and Y. Canqun, “Optimizing SIMD
parallel computation with non-consecutive array
access in inline SSE assembly language,” Fifth

International Conference on Intelligent Computation

Technology and Automation, Zhangjiajie, Hunan,

1267 ACES JOURNAL, Vol. 30, No. 12, December 2015

China, pp. 254-257, 2012.
[9] W. Simon, A. Lauer, and A. Wien, “FDTD

simulations with 1011 unknowns using AVX and
SSD on a consumer PC,” IEEE Antennas and

Propagation Society International Symposium

(APSURSI), Chicago, IL, USA, pp. 1-2, July 2012.
[10] A. Asaduzzaman, F. Sibai, and H. El-Sayed,

“Performance and power comparisons of MPI Vs
Pthread implementations on multi-core systems,”
9th International Conference on Innovations in

Information Technology, Abu-Dhabi, 2013.
[11] D. K. Price, A. L. Paolini, K. E. Spagnoli, and J.

P. Durbano, “An accelerated GPU FDTD solver
using CUDA,” 24th Annual Review of Progress in

Applied Electromagnetics, Niagra Falls, Apr. 2008.
[12] L. Zhang, X. Yang, and W. Yu, “Acceleration

study for the FDTD method using SSE and AVX
instructions,” Conference on Consumer Electronics,

Communications and Networks, Yichang, China,
pp. 2342-2344, Apr. 2012.

[13] Exynos Processor Family, [Online]: available at
http://en.wikipedia.org/wiki/Exynos.

[14] W. Schroeder, K. Martin, and B. Lorensen, The

Visualization Toolkit, 4th edition, Kitware Inc.,
2006.

[15] A. Henderson, Paraview Guide, A Parallel

Visualization Application, Kitware Inc., 2007.
[16] IBM, Introduction to Blue Gene/Q. 2011. [Online]:

available at: http://public.dhe.ibm.com/commonlss
ilecm/enldcI12345 usen/ DCL l2345USEN.PDF.

[17] Green500 list November 2014, [Online]: available
at http://www.Green500.org.

[18] Wifi Solver FDTD. [Online]: available Google
Android Playstore.

[19] H. Reader and H. Pienaar, “Model and full scale
study of soil berm for Karoo array telescope
shielding,” International Symposium on Electromag.

Compatibility, Raleigh, North Carolina, Aug. 2014.
[20] R. G. Ilgner, “A comparative analysis of the

performance and deployment overhead of
parallelized finite difference time domain (FDTD)
algorithms on a selection of high performance
multiprocessor computing systems,” Ph.D. Thesis,
Dept. of Electronic and Electrical Eng., Stellenbosch
Univ., Stellenbosch, South Africa, 2013.

Robert G. Ilgner obtained his
B.Sc. and B.Sc. (Hons) degrees in
Geophysics from the University of
Witwatersrand in 1982 and 1983
respectively. He received a M.Sc.
in Telematics in 1991 from the
University of Surrey in Guildford,
UK, and was awarded a Ph.D. from

the University of Stellenbosch in 2013.
As a Geophysicist he conducted geophysical

exploration surveys for mining houses in Southern
Africa. He then worked for Siemens (UK) in the
Information Technology Industry designing large
database systems. He was subsequently employed by
Schlumberger in their Seismic Division creating parallel
processing applications used for seismic data reduction
and modeling. He has built software for the creation of
imaging applications and advertising on the internet.

His research interests are in HPC and CEM with
the FDTD. He currently manages a variety of commercial
IT projects and is a Member of ACES and the South
African Geophysical Association.

David B. Davidson received the
B.Eng., B.Eng. (Hons), and M.Eng.
degrees (all cum laude) from the
University of Pretoria, South
Africa, in 1982, 1983, and 1986
respectively, and the Ph.D. degree
from the University of Stellenbosch,
Stellenbosch, South Africa, in

1991.
In 1988, he joined the University of Stellenbosch.

He currently holds the South African Research Chair in
Electromagnetic Systems and EMI Mitigation for SKA,
there in 2014, he was promoted to Distinguished
Professor. He has held a number of visiting appointments
in Europe, the UK and the USA.

His main research interest through most of his
career has been computational electromagnetics (CEM),
and he has published extensively on this topic. He is the
author “Computational Electromagnetics for RF and
Microwave Engineering” (Cambridge, U.K.: Cambridge
Univ. Press, 1st ed, 2005, 2nd ed., 2011). Recently, his
interests have expanded to include engineering
electromagnetics for radio astronomy.

Davidson is a Fellow of the IEEE, a Member of the
South African Institute of Electrical Engineers and the
Applied Computational Electromagnetic Society, and is
a registered professional engineer. He was a recipient of
the South African FRD (now NRF) President’s Award
in 1996. He received the Rector’s Award for Excellent
Research from the University of Stellenbosch in 2005.
He is the Editor of the “EM Programmer’s Notebook”
column of the IEEE Antennas and Propagation
Magazine. He was Chair of the local organizing
committee of ICEAA’12-IEEE APWC-EEIS’12, held
in Cape Town in September 2012. He received the
inaugural IEEE/SAIEE Distinguished Volunteer Award
in 2015. He currently serves on South Africa’s national
Astronomy Advisory Council.

ILGNER, DAVIDSON: THE COMPUTATIONAL PERFORMANCE AND POWER CONSUMPTION OF THE PARALLEL FDTD 1268

