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Abstract ─ The spacecraft will experience the well-known 
“blackout” problem when it re-enters into the Earth’s 
atmosphere, which results in communication failures 
between the spacecraft and the ground control center. It 
is important to study the effect of the plasma on 
electromagnetic wave (EMW) propagation. The properties 
of EMW propagation in plasma based on theoretical 
analysis have been studied in this paper, which indicate 
that communications using terahertz (THz) wave is an 
alternative method for solving the blackout problem. The 
properties of 0.22 THz EMW propagation in plasma have 
been studied experimentally with shock tube, and the 
experimental results are in good agreement with the 
theoretical ones. Both the theoretical and experimental 
results indicate that communications using THz wave is 
an alternative and effective way to solve the blackout 
problem. 
 
Index Terms ─ Blackout, EMW propagation, plasma, 
THz. 
 

I. INTRODUCTION 
The spacecraft will experience the well-known 

“blackout” problem [1-3] when it re-enters into the Earth’s 
atmosphere, which results in communication failures 
between the spacecraft and the ground control center. 
This phenomenon has attracted more and more attention 
recently [4-8]. 

A number of approaches have been proposed to 
solve the blackout problem, such as aerodynamic shape 
modification, quenchant injection, magnetic window and 
so on; however, the true technological breakthough has 
not been achieved. 

One of the major reasons for communication failures 
is that the plasma frequency is greater than the EMW 
frequency. The plasma density may reach 1021/m3 and 
the corresponding plasma frequency is 0.284 THz, which 
are typical data of the RAM C (Radio Attenuation 
Measurement C) flight [9]. Besides, 0.2 THz has been 
specified for the next intersatellite communications by 
the International Telecommunication Union. For these  

reasons, communications using THz wave is an alternative 
method for solving the blackout problem and the great 
advance in THz source technology recently provides a 
great opportunity for this issue [10-14]. Moreover, it is 
possible to solve the blackout problem using THz wave 
with the development of THz technology. 

Therefore, it is important to study the properties of 
THz wave propagation in plasma. However, most 
published works were limited in microwave frequency 
(<100 GHz) and focus on theory and numerical simulations 
[15-19]. 

The effect of plasma on EMW propagation has been 
studied theoretically and the properties of 0.22 THz EMW 
propagation in plasma have been studied experimentally 
with shock tube in this paper. 
 

II. PHYSICAL MODEL 
The physical model used in this paper is as follows: 

the EMW incident vertically into the plasma along the  
z-axis, which is depicted in Fig. 1. The plasma is assumed 
to be homogeneous and unmagnetized. The electric field 
is parallel to the x-axis and the magnetic field is parallel 
to the y-axis. The thickness of plasma is d. 
 

 
 
Fig. 1. The physical model of EMW propagation in plasma. 
 

The Maxwell’s equations are the following [20-24]: 
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where E
�

 and H
�

 are the electric field and magnetic 
field, respectively, 0�  is the permeability of vacuum, �  
is the permittivity, 2 ,ƒ$ ��  and f is the frequency of the 
incident EMW. 

The electric field of the incident EMW can be 
expressed as: 0

0 ,jk z
xE E e��  where E0 is the amplitude 

of the incident electric field and k0 is the wave number in 
free space. 

From the Maxwell’s equations, we can obtain the 

magnetic field of the incident EMW: 
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Then the electric field and magnetic field in medium 
0 can be expressed as: 
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where r is the reflection coefficient. 
Similarly, the electric and magnetic fields in medium 

1 can be expressed as: 
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where EPT and EPR are the amplitudes of the transmission 
and reflection electric fields in medium 1, and kp is the 
wave number in plasma. 

The electric field and magnetic field in medium 2 
are presented as the following: 
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where ET is the amplitude of the transmission electric 
field in medium 2. 

The continuity boundary conditions of the electric 
and magnetic fields can be described as: 
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i.e., 
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The reflection coefficient r and transmission coefficient 
t can be obtained from equation (6): 

 
0

0

1
2 coth( ) 1

2
2 cosh( ) ( 1)sinh( )

r

r p r

jk d
rT

r p r p

r
jk d

eEt
E jk d jk d

�
� �

�

� �

�
�

� �

� �
� �

, (7) 

where r�  is the relative permittivity of plasma. 
Then the reflectance, transmission and attenuation 

of the EMW, i.e., R, T and Att can be expressed as the 
following: 
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III. NUMERICAL SIMULATION RESULTS 

The attenuation of the EMW versus plasma density 
and collision frequency at different EMW frequency are 
calculated and illustrated in Fig. 2, in which the thickness 
of the plasma d is 0.08 m. 

As shown in Fig. 2, the attenuation decrease with 
EMW frequency for identical plasma density and 
collision frequency. The mechanism responsible for this 
phenomenon can be explained through the electrons’ 
response to the electric field: the electrons will no longer 
be able to response to the electric field as the EMW 
frequency increases; hence, the EMW energy absorbed 
by electrons decrease and then the attenuation is decreased. 

The maximum attenuation for f = 1.5 GHz, f = 0.1 THz 
and f = 0.22 THz are 1100 dB, 350 dB and 100 dB, 
respectively, which can be seen from Fig. 2. The EMW 
attenuation is less than 30 dB for 0.22 THz EMW at most 
region when ne = 1012/cm3~1014/cm3, fen = 109Hz~1011Hz. 
For this reason, communications using THz wave can be 
considered for solving the blackout problem. 

From Fig. 2, we can also see that the attenuation 
increase with plasma density, which is because there are 
more electrons in plasma with higher plasma density, 
and then more EMW energy is absorbed by electrons and 
passed to neutral particles through collisions, i.e., the 
EMW attenuation is increased. 

Figure 2 also shows that the attenuation decreases 
with plasma collision frequency when f  <  fp while increases  
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with plasma collision frequency when f  > fp. The reason 
is that the electrons are oscillating at EMW frequency 
when f < fp, the acceleration time of electrons before 
collision with neutral particles is so short that there is 
little time for the electrons to receive energy from the 
electric filed with increasing plasma collision frequency, 
so the attenuation is decreased. However, the electrons 
are oscillating at the inherent frequency when f  > fp, and 
the collision probability between the electrons and 
neutral particles increases and the energy passed to 
neutral particles is increased for higher plasma collision 
frequency, then the attenuation is increased. 
 

 
 (a) f = 1.5 GHz 

 
 (b) f = 0.1 THz 

 
 (c) f = 0.22 THz 
 
Fig. 2. The attenuation of EMW versus plasma density 
and collision frequency for various EMW frequency. 

IV. EXPERIMENTAL RESULTS 
The 0.22 THz EMW propagation properties in the 

plasma are studied experimentally with shock tube. The 
shock tube is a cylindrical device and it can produce 
approximate uniform plasma, which are usually used to 
simulate the plasma near the aircrafts [25,26]. The 
schematic diagram of the experimental setup is illustrated 
in Fig. 3. The diameter of the shock tube is 0.08 m. The 
original wall of the shock tube was replaced by Teflon  
in order to reduce the reflection. A total of five effective 
experiments were carried out and we denoted the 
experiments by numbers: 1, 2, 3, 4 and 5. 
 

 
 
Fig. 3. The experimental setup of the 0.22 THz EMW 
propagation in the plasma. 
 

The plasma densities and collision frequencies used 
in the experiments are presented in Table 1, which are 
calculated based on the physical states of the shock tube 
in the experiments. 

A chemical reaction model consisting of 7 chemical 
reactions among 7 compounds was used in the calculation, 
which includes the reactions as follows: 
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where M is the collider in the reactions, and the reaction 
rate is presented in reference [27,28]. The theoretical 
plasma density ne can be obtained from these reactions. 

The collision frequency of the plasma fen was acquired 
from equation (10): 
 15 23.67 10 ,en pf T$�� �  (10) 
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where 2
0/ ,p e en e m$ ��  e is the charge of the electron, 

0�  is the vacuum permittivity, me is electron mass, and 
T is the temperature of the plasma which was measured 
in the experiments. 

The experimental EMW attenuation is acquired from 
the power of the receiver, which is proceeded by the 
“data processing system”. 
 
Table 1: The plasma densities and collision frequencies 
used in the experiments 

Number of the Experiments ne (m-3) fen (Hz) 
1 9.0�1017 8.2�1010 
2 3.0�1018 9.2�1010 
3 3.2�1018 9.7�1010 
4 7.3�1018 1.0�1011 
5 2.4�1019 1.2�1011 

 
Figure 4 shows the comparison of the experimental 

results and theoretical ones of the 0.22 THz EMW 
attenuation. The experimental results match well with 
the theoretical ones, which can be seen from Fig. 4. 
However, there are some differences between the 
experimental results and theoretical ones, which may be 
attributed to the errors of the experimental systems and 
the calculation errors of plasma densities and collision 
frequencies. The theoretical and experimental results are 
both smaller than 30 dB even if the plasma density reach 
as high as 2.4�1019/m3 and the plasma collision frequency 
is 1.2�1011Hz. According to these results, it can be 
deduced that communications using THz wave is an 
effective way to solve the reentry blackout problems. 
 

 
 
Fig. 4. The comparison of the experimental and theoretical 
results of 0.22 THz EMW attenuation. 
 

V. CONCLUSIONS 
The effect of plasma on EMW propagation have 

been studied theoretically in this paper, which indicate 
that communications using THz wave is an alternative 

method for solving the blackout problem. The 0.22 THz 
EMW propagation properties in the plasma have been 
studied experimentally with shock tube and the 
experimental results match well with the theoretical ones. 
Both the theoretical and experimental results indicate 
that communications using THz wave is an alternative 
and effective way to solve the reentry blackout problems. 
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