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Abstract ─ The analysis of complex circuit components 
with electrically small size is an important problem for 
radio frequency circuit modeling. In this paper, we 
present a fast solver which is based on low-frequency 
stable integral equation and accelerated with the 
multilevel accelerated Cartesian expansion algorithm 
(MLACEA). MLACE algorithm is usually based on 
electric field integral equation which suffers from low-
frequency breakdown problems. To keep the algorithm 
stable, the augmented electric field integral equation 
(AEFIE) is used in our solver. Regarding the truncation 
order of the expansion, the efficiency and accuracy of 
MLACEA are investigated. By adjusting the truncation 
order, we can keep the algorithm in good performance. 
Numerical examples show the efficiency and the 
capability of the proposed method. 

Index Terms ─ Fast algorithm, low-frequency problem,
method of moments. 

I. INTRODUCTION 
The electric field integral equation (EFIE) solved by 

the method of moments (MoM) [4] is widely used in 
practical RF and microwave circuit modeling and design 
[6]. Due to the increasing integration density, the 
electromagnetic (EM) analysis of circuit problems become 
more challenging. Furthermore, the manufacturing 
technique of three-dimensional (3D) passives RF 
components [1], logic cells [2] and system in package 
(SIP) techniques [3] have received considerable amount 
of attention recently. By utilizing these techniques, the 
2D planar structures are changed into 3D multilayer 
stereoscopic and even curved structures. Because of the 
increasing complexity, the scale of numerical problem 
for EM modeling is dramatically increased. 

For 3D circuit modeling, the following two 
problems need to be concerned. One is the high 
computational complexity of MoM. To reduce the 
complexity and accelerated the simulation speed, many 
kinds of fast algorithms have been studied. The 
algorithms based on fast Fourier transforms (FFT) are 
widely used for quasi-planar structures. Suppose the 
scale of a problem is N. Then numerical complexity of 

the matrix vector production (MVP) and memory 
consumption can be reduced from 2( )O N  to ( log )O N N
[5,6]. However, FFT methods require a projection 
between the original mesh and the uniform grid, so it is 
difficult to balance the workload for multiscale 
problems. The oct-tree based fast algorithms, such as the 
low-frequency multilevel fast multipole algorithm (LF-
MLFMA) [7] and the multilevel accelerated Cartesian 
expansion algorithm (MLACEA) [8,9], have lower 
numerical complexity. Even for 3D structures the MVP 
time and memory consumptions of these two methods 
have ( )O N  complexity. LF-MLFMA has been successfully 
applied on low-frequency EM modeling such as [7,10], 
while the implementation of MLACEA on low-
frequency EM modeling is seldom reported. 

The other problem need to be concerned is the low-
frequency breakdown problem of EFIE, which restricts 
the fast algorithm to handle low-frequency EM 
problems. The low-frequency breakdown problem of 
EFIE occurs when the discretization is so fine that the 
mesh size is much smaller than the wavelength [11]. In
this situation, the condition number of the matrix 
increases, and the convergence of iterative method is 
getting worse. The low-frequency breakdown problem 
often influenced the accuracy of circuit device modeling. 
Loop-tree decomposition [12] is usually employed to 
remedy the low-frequency breakdown problem, and 
many fast solvers base on this method have been 
developed [6,7]. However, searching for loop basis 
functions is difficult for multiple connected surfaces, 
especially in 3D case. Recently some low-frequency 
stable EFIE methods were developed, such as the 
augmented electric field integral equations (AEFIE) [10],
the current and charge integral equations (CCIE) [13], 
the separated potential integral equations (SPIE) [14], 
and surface integral equations using constraint-based 
Helmholtz decompositions [16,17]. They all remedy the 
low-frequency breakdown problem successfully. 

In this paper, we used AEFIE to remedy the low-
frequency breakdown problem. Compared with other 
integral equations, the operator in AEFIE is simpler. This 
advantage not only results in simplicity of programming 
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but also in less memory and time consumption of the fast 
algorithm. However, the AEFIE still suffers from the 
low-frequency inaccuracy problem in extremely low-
frequency, but this inaccuracy problem can be eliminated 
with perturbation method [15]. The paper is organized as 
follows. The AEFIE and its MoM solution are reviewed 
in Section II. Then, in order to remedy the low-frequency 
breakdown problem of EFIE and to keep the matrix 
equation in good condition, the AEFIE is used as the 
basic formula of the MLACEA algorithm. Particularly, 
the truncation order of MLACEA is analyzed to figure 
out its influence on the efficiency and the accuracy. At 
last, several large unknown targets have been simulated 
to show the capability of the proposed method. 

II. THEORY 
A. Augmented electric field integral equation 

Consider a perfect electric conducting (PEC) 
surface S placed in free space is excited by a incident 
field .incE  The mixed potential integral equation in 
terms of the induced current ( )J r  on the PEC surface S
can be achieved by using the tangential boundary 
condition of electric field, given as: 
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In the above equations, ( )G , 'r r  is the scalar Green’s

function in free space: 
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where R ?� �r r  represents the distance between the 

source point ?r  and the field point .r 0 0; < ��  denotes 

the wave impendence, 0 0k � � <�  denotes the wave 
number of free space and n is the unit outer normal to
surface S. This integral equation suffers from the low-
frequency breakdown problem, because of the different 
frequency dependence of vector potential and scalar 
potential in the low-frequency region [11]. In order to 
separate the vector and scalar potential and remove the 
frequency dependence, the current continuity equation 
given as: 

( ) j ( ),�7,� � �J r r (3) 
is added. It works as a constraint for the charge and the 
current. To get the discretized form of the equations, the 
surface current ( )J r is expanded over a set of RWG 
basis functions as: 
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The charge is expanded as pulse functions: 

( ) 1 ,     n n nh A T� Dr r , (5) 
where iA  is the area of triangle iT . Then EFIE is tested by 
RWG basis functions ( ),mf r  and the current continuity 
equation is tested by ( ).mh r  Matrix equations can be 
finally written as: 

1j ,Tk c η�� � � �B I + D P ρ b  (6a)
j .2k ck� � �2D I + ρ 0EE (6b) 
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where n n nS T T	 �� nTn
�T . I and ρ  denote the coefficients of 

current and charge unknowns. EE is the identity matrix. 
c  is the light speed in free space. In this matrix equation, 
the vector potential and scalar potential are balanced. 
After using a proper frequency scaling [10], the low-
frequency breakdown can be remedied. 

B. Implementation of MLACEA 
In this section, MLACEA is applied on the AEFIE 

for acceleration. Similar to MLFMA, the basis functions 
are divided into groups of small cubes using the oct-tree 
structure. Based on whether two boxes are within one 
box interval, the interaction between the basis functions 
and the testing functions inside any two boxes is
classified as the near-field interaction or the far-field 
interaction. 

To calculate the far-field interaction with MLACEA, 
the scalar Green’s function is expanded with the 
Cartesian tensor expansion which is given as: 
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where ( )q, is q-fold grid operator of r  and ( ) ( )p q qq	 � �A B
represents q-fold tensor contraction between tensors 

( )p q	A  and ( ) .qB  Then this expansion is applied on the 
Green’s function. As an example, the scalar Green’s 

function is expanded with two-level accelerated 
Cartesian expansion algorithm in the following 
derivation. For far-field group interaction, the scalar 
Green’s function ( )G ?r,r  is expanded using (11) twice, 
both in the center of source group c

�r  and the center of 
field group c

� ?r as: 
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where Q  is the truncation order. 
Then we can apply this expansion in MoM. When 

we solve the MoM linear equations using an iterative 
method, the matrix vector product (MVP) is a very time 
consuming part. To reduce the MVP time, fast algorithm 
is applied. The matrices in (6b) are calculated directly 
because they are highly sparse matrix. While MLACEA 
is applied on the matrices in (6a) to speed up the 
calculation. After the expansion using (12), the storage 
for far-field interaction matrix is no more needed, and 
the calculation of: 

j ,Tk c� � � �V B I + D P ρ  (13)
can be represented by MLACEA approximately, given 
as: 

j j ,Tk c k c 9F � 	 � � 	 	V B I D P ρ V Vfar far
near near A  (14)

where Bnear and Pnear represent the near-field interactions 
corresponding to vector and scalar potentials 
respectively. They are computed and stored using 
conventional MoM. V far

A  and 9V far  are far-field interactions 
of vector potential and scalar potential. Corresponding to 
any testing function ( )mf r  or ( ),nh r  we denote the 
contributions from charge and current in far-field groups 
as ( )AV mfar  or ( ).V m9

far  They can be represented into two 
level MLACEA form as: 
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where �G far  denotes the set of far-field groups related to 
the group .�  In MLACEA, the tensors formed by 
aggregating the source points inside a group are called 
multipole expansions. The corresponding current and 
charge multipole expansions are given as: 
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where � ?G self represents the set of current and charge basis 
functions in the group .�? ,

n
	F A  and ,

n
9 	F  are aggregation 

factors corresponding to each basis function, called 
multipole factors. The multipole factors of currents and 
charges in (16) are given ast: 

, ( )

 

( 1)( , ) d  ( ) ( ),
! n

p
A c c p

n nS
p S '

p� �
	

? ?
� ? ?� �/F r r r f r  (17a)

and 
, ( )

 

( 1)( , ) d  ( ) ( ).
! n

p
c c p

n nT
p S h '

p
9

� �
	

? ?
� ? ?� �/F r r r r  (17a)

The integration regions of the two integrals above 
are different. One is on a basis function, and the other is 
on a triangle patch. The interaction from source group to 
field group is connected by the translation operator: 

( )( ; , ) ( , ).c c p c cp G� � � �? ?� ,T r r r r  (18)
It is applied on the multipole expansion and transforms 
them into the local expansion ( , )cq� �R r  in field region. 
Then the local expansion will be contracted with the 
local factors to achieve ( )AV mfar  and ( ).V m9

far  The local 
factors in (15) are: 
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Similarly the multilevel form use a translation 
operator between the parent level and the child level 
recursively. With multilevel recursion, higher efficiency 
can be achieved. Here, (15a) which corresponds to the 
vector potential is used as an example to show the 
derivation of the multilevel algorithm. It is written in a 
new form as: 
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where ( , )
l l

l cq� �R r  is the local expansion of l� on the l th 

level. 
l�

Grel  indicates the set of the distant relative groups. 

The term 1l� �  indicates the parent group of l� , and the 
distant relative groups can be defined as the groups on
the l th level who are not only in the far-field region of 

l�  but also inside the near-field region of 1l� � . On each 
level, the local expansion is given as: 
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where 
l

c
�r  and 

1l

c
� �

r are the centroids of the child groups 
and the parent group respectively. The first part on the  
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right hand side of this equation does not need to be 
calculated when this equation is applied on the highest 
level. Similarly, the multipole-to-multipole translation is 
expressed with: 
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where 
1l� �?

G son  indicates the child groups of 1.l� �?  This 
equation is applied on the aggregation of child groups. 
Recursively using (21) and (22), the algorithm can be 
easily applied to multilevel form. 

III. NUMERICAL RESULTS 
All numerical computations have been performed 

on a 64-bit PC using Intel core-i5 CPU with 3.0 GHz 
clock speed. The generalized minimum residual 
(GMRES) which restarts every 30 iterations was used as 
solver of linear equation. 

The computational complexity of proposed method 
is analyzed in the first example. A PEC cube with a side 
length of 10 mm is calculated at 300 MHz. The target is 
divided into 1200 triangular patches, and the induced 
current is then expanded with 1800 RWG basis functions. 
By connecting each pair of the adjacent midpoints of the 
three edges in a triangular patch, this triangle is divided 
into the four small triangular patches with one-half of the 
original edge length. This refinement is done recursively 
to obtain five different discretization schemes. They are 
named from coarse to fine by the letters A to F. The 
group size is optimized to keep the average number of 
unknowns around 30 approximately in each group on the 
bottom level. The truncation order of Cartesian 
expansion is set as 2. The CPU times for calculating the 
near-field matrix and the matrix vector product are both 
shown in Fig. 1. The black solid line, a linear function in 
terms of the number of unknowns N, is shown as a 
reference. According to this solid line, it is easy to find 
out that the memory consumption, the CPU time for the 
near-field matrix calculation and the MVP are all ( )O N . 

The error convergence of MLACEA when 
calculating the finest mesh F is discussed. The mesh 
contains 1228800 triangle patches and 1843200 RWG 
basis functions. For the Cartesian expansion the 
truncation order Q  impacts the accuracy of the algorithm. 
To balance the efficiency and accuracy, the truncation 
order should be carefully selected. Although the 
numerical precision has been tested in previous work by 
calculating the relative error of the scalar potential, here 
we evaluate the relative error of the impedance matrix so 
that the error induced by the transformation form 
potential to impedance matrix elements can be included. 
The relative error defined as: 
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is used to measure the truncation error of the algorithm 
quantitatively. By a given vector ,I MoM �Z I  is calculated 
by direct multiplication. ( , )ACEV Z I  is achieved by 
MLACEA. In Table 1, as truncation order increases, the 
time consumption of MVP grows exponentially, while 
the relative error only decreases slowly. After the trade-
off between efficiency and accuracy, two orders 
expansion is used in the following example for better 
numerical performances. With the help of the 
preconditioner in [10], the residual error can be 
converged to less than 10-4 within 110 iterations. The 
details on the convergence history of five cases are 
shown in Fig. 2. The bi-static RCS results of first five 
cases, shown in Fig. 3, are in good agreement. 

Fig. 1. The computational complexity of time and 
memory for the proposed method. 

Table 1: Relative error convergence and normalized time 
consumption 

Truncation
Order

Normalized 
Time

Relative 
Error O(B)

Relative 
Error O(P)

0 1 1.92×10-1 1.08×10-1

1 2 3.98×10-2 2.13×10-2

2 5 9.76×10-3 5.71×10-3

3 16 2.98×10-3 1.76×10-3

4 44 1.06×10-3 5.36×10-4

Fig. 2. History of iteration for different mesh densities. 
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Fig. 3. The bi-static RCS results for different mesh 
densities. 

In the second example, a 3D micro-coil inductors 
has been modeled to test the capability of the algorithm. 
The design of the inductor is referred from [1], with the 
length of 275 μm, the width of 75 μm, the height of  
100 μm, the inner diameter of 50 μm, and the total length 
of about 5.25 mm. Because the low-frequency 
breakdown problem is more serious compared with lossy 
media, the inductor is set as a PEC to investigate the 
performance of our solver. The inductor model is divided 
into 6776 triangles. Based on these triangles, 8862
current unknowns and 6776 charge unknowns are 
formed. Port 1 is excited with delta gap voltage source 
as shown in Fig. 4. To verify the accuracy of the solution, 
the inductance is extracted by the three methods, namely: 
EFIE, AEFIE and AEFIE combined with MLACEA. 
They are compared through a wide frequency band from 
500 MHz to 25 GHz. The structure is divided into 5
levels oct-tree to keep the average number of unknowns 
in each group within 20 RWG basis functions. The 
truncation order is set as two to cut down the time 
consumption. EFIE is solved by LU decomposition for 
its bad condition number of matrix in the low-frequency. 
AEFIE is solved by GMRES both with and without the 
acceleration of MLACEA. The comparison of 
consumption in computation from Table 2 proves that 
AEFIE combined with MLACEA is much more efficient 
than the direct MoM solver. The results of inductance 
obtained by AEFIE combined with MLACEA have the 
same the accuracy as the traditional MoM throughout the 
whole bandwidth. On the other hand, EFIE can’t provide 

the correct inductance results in the low-frequency band 
from 500 MHz to 8 GHz due to the low-frequency 
breakdown of the solutions. 

Next, six discretizations of a spiral inductor are 
generated and named as A to F, from coarse to fine. Mesh 
A has 6147 inner edges. While F has 285 909 edges, 
which is 44 times larger than A. The total size of the 
inductor is 1.2×10-3 λ at 3 GHz. Figure 5 shows the 
extracted inductance for all the cases. The inductance 
converges to 2.348 nH as the mesh density increases. It  

agrees well with the result from the MoM. With the limit 
of computer memory, mesh A is calculated using the 
MoM and the inductance is 2.329 nH. The surface 
current distribution on the densest mesh F is presented in 
Fig. 6 with color bar in dB scale. The computational 
costs of mesh E and F are summarized in Table 3 in detail. 
By keeping the average number of unknowns in each 
finest box around 20, the fast solver consumed very little 
time in near-field matrix calculation. All cases can 
converge to 10-4 quickly and show good stability. 

Fig. 4. The inductor model and the inductance calculated 
by EFIE-MoM, AEFIE-MoM and AEFIE-MoM with 
MLACEA acceleration. 

Table 2: Average memory and time consumption of one 
frequency point using AEFIE 

MoM MLACEA
Total memory (MB) 1960 59
Near field calculation time (s) 160 3.8
Number of iterations 48 49
Time per iteration (s) 1.05 0.12
Total time (s) 210 10

Fig. 5. The inductance calculated by meshes in different 
densities. 
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Fig. 6. The current distribution of inductor model: mesh 
F, unit in mm. 

Table 3: Memory and time consumption of different 
mesh density 

Mesh E Mesh F
Number of total unknowns 217 270 476 515
Total memory (MB) 813 1 239
Near field calculation time (s) 146 233
Number of iterations 149 188
Time per iteration (s) 1.23 2.59
Total iteration time (s) 184 502
Total time (s) 334 747

IV. CONCLUSION 
A fast numerical algorithm, AEFIE combined with 

MLACEA, has been presented in this paper to model the 
circuit devices with electrically small and complex 
structures. The condition number of the impedance 
matrix is greatly improved by AEFIE. Because of this 
MLACEA shows a good stability for the low-frequency 
problems with large number of unknowns. With the 
optimization of the truncation order, the efficiency as 
well as the accuracy of the solver has been ensured. Its 
ability to cut down the memory cost and CPU time 
consumption can be put to use. Some work are under 
going to eliminate the low-frequency inaccuracy 
problem of AEFIE, in order to achieve a stable solver for 
more wide frequency band. 
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