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Abstract – Additively manufactured graded index lenses,
such as the Luneburg lens, often result in some degree
of uniaxial anisotropy in the effective permittivity dis-
tribution. A uniaxially anisotropic Luneburg lens mod-
ifies the polarization state of an incident electromag-
netic field, thus giving rise to a polarization mismatch
at the receiving antenna. Using 3D finite element sim-
ulation, the lens focal point polarization is analyzed
and a model that fits the simulation data is created.
The model allows prediction of polarization mismatch
loss given any incident field and any receiving antenna
polarization without resorting to further time-consuming
simulations.

Index Terms – Anisotropic lens, finite element analysis,
Luneburg lens, 3D printing.

I. INTRODUCTION
Numerous researchers have reported on the use of

sub-wavelength unit cells as fundamental building blocks
to additively manufacture graded index components
such as the Luneburg lens [1–9]. In these accounts, a 3D
printer dispenses precise amounts of material within each
unit cell volume, thus controlling the effective permit-
tivity of the cell. Depending upon the complexity of the
design, certain fabrication techniques and cell geometries
are best suited in terms of manufacturability. Figure 1
provides sketches of two successful unit cell geometries
that have been implemented. In (a), the researchers
employ a lattice of ultraviolet-curable polymer cubes
with interconnecting rods [3], and, indeed, this design
is isotropic. The implementation uses a polymer-jetting
technique that requires an interposed water-soluble poly-
mer that supports the lattice as it is being printed. This
material must then be thoroughly flushed out of the part
before use. For complex or large designs with small unit
cells, this flushing process of removing support material

Fig. 1. Unit cell geometries that have been created for
3D printing of graded index components. (a) UV-curable
polymer cubes with interconnecting rods and (b) planer
unit cell. A indicates the size of the unit cell, which
is much smaller than the free-space wavelength at the
intended operating frequency

may be problematic. Furthermore, the UV curable poly-
mers used in polymer-jetting have significantly higher
loss tangents than thermoplastics [10]. For large designs,
this results in an appreciable reduction in radiation
efficiency. In (b), the authors in [1, 2] overcome these dif-
ficulties by using a planar unit cell, which is printed from
a filament of melted thermoplastic, in a process known
as fused deposition modeling. This technique produces
a cost-effective, low loss, and sturdy design, without the
need for a support material. However, the planar unit
cell is uniaxially anisotropic. This anisotropy has been
recognized by the authors in [1, 2], but its impact on lens
performance has yet to be investigated.

Thus, this work uses 3D finite element simulations
and post-processing to examine the performance impact
of this unit cell anisotropy. A model is created to fit the
field at the focal point, which then enables prediction of
polarization state without further finite element simula-
tion. The outline for the subsequent portion of the paper
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is as follows. Section II discusses the simulation environ-
ment, including an analysis of error. Section III provides
the details of the anisotropy model that is incorporated
into the simulations. Section IV develops the simplify-
ing focal point model and Section V applies this model
to predict polarization loss. Section VI then discusses
the primary results.

II. SIMULATION ENVIRONMENT
The MATLAB partial differential equation (PDE)

toolbox [11] is used to perform 3D finite element anal-
ysis of an anisotropic Luneburg lens illuminated by a
monochromatic uniform plane wave. The toolbox is used
to mesh the computational domain composed of the lens
and free space and solve for the scattered field. Upon
completion, the scattered field is summed with the inci-
dent field to obtain the total field solution [12].

The computational domain is meshed using tetrahe-
dral elements that have a maximum edge length of lmax≤
0.1λ , where λ is the free-space wavelength of the inci-
dent field. The computational domain is bounded by a
sphere of radius rb = rl +0.5λ that is concentric around
the lens of radius rl . A first-order absorbing boundary
condition [12] is used over the bounding spheres sur-
face. Due to the rotational symmetry of the lens about
the z-axis, the direction vector

−→
k of the incident field is

confined to the x, z plane. The sketch in Figure 2 iden-
tifies the geometry of the simulation scenario excluding
the outer spherical boundary, and a summary of simula-
tion parameters is provided in Table 1.

Referring to the solver category in Table 1, lsqr() and
equilibrate() are both core MATLAB functions designed

Fig. 2. Incident plane wave, lens, and focal point.

Table 1: Simulation parameters
Category Parameter Value

Model
Frequency 15 GHz
Plane wave polarization Left hand circular
Domain radius rl +0.5λ

Boundary conditions First-order
absorbing

Mesh
Max. edge length 0.1λ

Nodes per element 4
Growth rate 1.5

Solver
Type lsqr()
Tolerance 0.1×10−3

Matrix conditioning equilibrate()

Table 2: Evaluation of simulation error with isotropic
reference lens

rl ∠Eφ −∠Eθ −90
◦ ∣∣Eφ

∣∣/|Eθ |−1
2.5λ +3.37

◦
+0.011

3.5λ −2.25
◦ −0.017

5.0λ −1.21
◦

+0.001
RMS error 2.44

◦
0.012

to operate on sparse matrices. lsqr() implements the
least squares method to solve the linear matrix equation
Ax = b for x. equilibrate(A) is used to the transform the
linear system into an equivalent system that is very sta-
ble, prior to solution with lsqr(). Although the PDE tool-
box provides solvepde() for this purpose, the underlying
solveStationary() routine is not suitable for large prob-
lems, and in such cases, it is necessary to substitute an
iterative solver such as gmres() or lsqr(). For the prob-
lems in this study, it was found that lsqr() performed the
best. Another PDE toolbox function that is very useful is
createPDEResults(). This utility function packs the solu-
tion x into a structure that is identical to that returned by
solvepde(). Drop-in compatibility is achieved by invok-
ing this function before returning from a custom solver
routine which may itself call either gmres() or lsqr().

Parameters lmax and rb have been chosen after exper-
imentation, with the intent of striking a balance between
solution fidelity and simulation efficiency. This exper-
imentation includes evaluating isotropic reference lens
simulations, which are shown in Table 2.

In this evaluation, three isotropic lenses of varying
radii are illuminated with a left hand circularly polarized
(LCP) plane wave. Given the incident field is LCP, the
phase difference ∠Eφ −∠Eθ at the focal point should
precisely be equal to 90

◦
, and the polarization ratio∣∣Eφ

∣∣/|Eθ | should precisely be equal to 1.0. However,
since rb <∞ and lmax > 0, the observed root mean square
(RMS) error is 2.44

◦
in phase and 0.012 in polarization

ratio.
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Table 3: Evaluation of simulation error with polar illu-
mination of anisotropic lens

rl ∠Eφ −∠Eθ −90◦
∣∣Eφ

∣∣/|Eθ |−1
2.5λ −0.43◦ +0.013
3.5λ +0.94◦ −0.018
5.0λ +1.60◦ −0.026
RMS error 1.10◦ 0.020

A similar evaluation involves illuminating three uni-
axially anisotropic lenses of varying radii, with an LCP
plane wave at a polar angle of θ = 0

◦
. The results of

this test are shown in Table 3. Since the illumination
is parallel to the optic axis of the lens, both Eφ and
Eθ experience equivalent material properties. Ideally
then, the polarization state at the focal point should equal
that of the incident wave, i.e., a +90

◦
phase difference

with a polarization ratio of 1.0 (just as in the isotropic
case). The observed RMS error in this case is 1.10

◦
in

phase and 0.02 in polarization ratio. The observed errors
in both the isotropic and anisotropic tests are deemed
acceptable.

III. MODELING OF LENS ANISOTROPY
The model used herein follows the findings of

researchers in [1, 2] who showed that because of the
additive manufacturing process and choice of cell geom-
etry, the lens exhibits a negative uniaxial anisotropy in
which

εx = εy = εxy ≥ εz. (1)
Moreover, the permittivities along the x- and y-axes

of the lens follow the Luneburg profile exactly. That is,
for any point within the lens at a radial distance r from
the lens center

εxy = 2−
(

r
rl

)2

. (2)

The permittivity of the lens along the z-axis is mod-
eled by the fractional mixing formula

εz = εxy (1−α)+α εMG, (3)
where α is a parameter (the purpose of which is
explained shortly) and εMG represents the effective rel-
ative permittivity determined by the Maxwell Garnett
(MG) mixing rule for spherical inclusions embedded in
a host medium [13]. For a host medium of free space, it
is given by

εMG = 1+3 f
(εi−1)

εi +2− f (εi−1)
. (4)

Here, εi represents the relative permittivity of the
inclusions, and f represents the volume fill fraction of
a unit cell, i.e., the volumetric ratio of material to free
space within the cell. In the context of this work, εi is
the relative permittivity of the dielectric material used
to print the lens, which is taken as pure thermoplastic

Table 4: Comparison of mixing rules to RCWA
Mixing rule RMS difference
Maxwell Garnett 0.064
Bruggeman 0.098
Coherent-potential 0.109

with a εi of 2.60. The authors in [1, 2] determined εz for
the exact unit cell geometry of Figure 1(b) using rigor-
ous coupled wave analysis (RCWA). It is a testament to
the scope of Equation (4) in that it generates results that
closely match their analysis. It is also fortunate since the
alternative is to model the structural geometry of the lens
down to the unit cell. To do so accurately would require
a mesh fine enough to accurately capture its smallest fea-
ture, that being the cell thickness of 0.12 mm [1]. Ulti-
mately, this requires a mesh lmax 160 times smaller and a
memory requirement on the order of 1603 times greater
than that used for the present study. This is not feasible
since for a lens with rl = 2.5λ , this amounts to a memory
requirement of 2.2× 1603 gigabytes or equivalently 8.6
petabytes.

Table 4 compares the MG mixing rule to the Brugge-
man and coherent-potential mixing rules [13] in terms
of fitting the RCWA predictions of εz as reported in
[1, 2]. The table provides the RMS difference between
the respective mixing rule and those results. The MG
mixing rule has the least RMS difference, thus providing
the best fit.

A linear relationship between f and εxy is assumed,
such that

f =
(εxy−1)

(εi−1)
. (5)

Finally, in Equation (3), the parameter α can range
from 0 to 1 and is used to simulate designs that exhibit
lesser degrees of anisotropy. For example, setting α

equal 0 generates a fully isotropic lens design since
εz = εxy, whereas setting α equal 1 generates the high-
est degree of anisotropy producing εz = εMG. The MG
equation with εi = 2.60 is plotted in Figure 3 for four
values of α . The plot highlights the fact that for a chosen
εi, the maximum fill fraction is 0.625 which occurs at the
lens center where εz = 2.0.

IV. MODELING OF POLARIZATION

A. Illumination normal to optic axis
In this subsection, the lens is examined when it is

illuminated with a plane wave normal to the z-axis of the
lens. Referring to Figure 2, θ is therefore 90

◦
and the

incident field is simply directed along the x-axis of the
lens. The incident field is represented as

−→
E

inc
=

[
E inc

θ

E inc
φ

]
=

[
ainc

θ
e jψ inc

θ

ainc
φ

e jψ inc
φ

]
e− jk0x, (6)
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Fig. 3. εz vs. f for different α . Maximum εz occurs at
lens center where f = 0.625.

where ainc
θ

and ainc
φ

are real positive constants,
ψ inc

θ
and ψ inc

φ
are real phase constants, and k0 = 2π/λ .

The illumination is LCP, where ainc
θ

= ainc
φ

, and the phase
difference ψ inc

φ
−ψ inc

θ
= 90

◦
. For a lens of radius rl , the

focal point is located on the surface of the lens, at the
cartesian coordinate (rl ,0,0). To assess the polarization
at the focal point, the radial component of the resultant
field at the focal point is ignored, leaving

−→
E =

[
aθ e jϕθ

aφ e jϕφ

]
, (7)

where aθ and aφ are real positive values, and
ϕθ and ϕφ are real phase terms and are different from
the incident field constants in Equation (6). To describe
the polarization state of the focal point, only the ratio
σ = aφ/aθ and the phase difference δ = ϕφ − ϕθ are
required [15]. To create a simplifying polarization model
of the lens that is independent of the incident field polar-
ization state, the phase imbalance attributed to the lens
itself is distinguished from δ . We refer to this as the
retardance of the lens δ́ , which is defined here as

δ́ = δ − (ψ inc
φ −ψ

inc
θ ). (8)

A similar distinction is required for the polarization
ratio σ . Thus, we define the lens polarization ratio σ́ as
being the polarization ratio measured at the focal point
to σ inc, the polarization ratio of the incident field:

σ́ =
σ

σ inc =
aφ/aθ

ainc
φ
/ainc

θ

. (9)

Both σ́ and
∣∣∣δ́ ∣∣∣ take on maximum values when the

illumination is normal to the optic axis. Under this con-
dition, σ́ is referred to as σ́m, and δ́ is referred to as δ́m.
Note that when the illumination is parallel, the optic axis
σ́ = 1 and δ́ = 0.

Table 5: Polynomial coefficients for δ́m

α p1 p2
1.0 −0.5209 0.0828
0.5 −0.2433 0.0264
0.25 −0.1195 0.01118

In the following two figures, the simulation results
for δ́m and σ́m are plotted using an rl from 0.5λ to 6λ ,
in 0.5λ increments. These results are shown for three
values of the MG fractional anisotropy constant α . This
data is plotted with solid lines and markers. Addition-
ally, polynomial least square fits to δ́m and σ́m are plotted
using dashed curves without markers; this data is com-
paratively smooth and sampled at a much finer resolu-
tion.

The least square fit for δ́m is given by the first-order
polynomial below and plotted with simulation data in
Figure 4:

δ́m = p1 [α]rl + p2 [α] , (10)

where δ́m is specified in radians, rl = rl/λ and is unit-
less, and p1 and p2 are real coefficients given in Table 5.
Note that in Equation (10), the square brackets indicate
that α is being treated as a lookup table index − not a
continuous variable.

σ́m is treated as a function of δ́m, and, as can be
inferred from Figure 4, δ́m < 0

◦
. Moreover, a piecewise

model of σ́m is necessary, expressed herein as

σ́m =

{
σ́a

m, if −180
◦ ≤ δ́m

σ́b
m, otherwise.

(11)

As δ́m is varied from 0
◦

to−180
◦
, it is observed that

aφ increases linearly, whereas aθ increases non-linearly
and settles into a plateau as δ́m approaches −180

◦
. For

−180
◦ ≤ δ́m, the least square fit for σ́m is given by the

Fig. 4. δ́m vs. rl for different α . Dashed lines are model
given by least square fit in Equation (10).
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Table 6: Polynomial coefficients for σ́a
m

q1 q2 q3
0.07122 −0.1148 0.9999

second-order polynomial below, and plotted with simu-
lation data in Figure 5:

σ́
a
m = q1δ́

2
m +q2δ́m +q3, (12)

where q1, q2, and q3 are the real coefficients given in
Table 6.

As δ́m decreases beyond −180
◦
, aφ continues to

increase linearly, whereas aθ is fixed at the plateau value.
Therefore, σ́m is linear in this region and is given by

σ́
b
m = q4δ́m +q5, (13)

where the coefficients q4 and q5 are determined as fol-
lows. To ensure a differentiable, and thus continuous,
piecewise model, the slope of the line defined by Equa-
tion (13) must equal the derivative of Equation (12) at
δ́m =−π . Therefore

q4 =
dσ́a

m

dδ́m

∣∣∣∣
δ́m=−π

=−2q1π +q2. (14)

Now, upon substituting Equation (14) into Equation
(13), setting σ́b

m = σ́a
m and solving for q5 at δ́m = −π

yields

q5 =
(

σ́
a
m−q4δ́m

)∣∣∣
δ́m=−π

= q3−q1π
2. (15)

The piecewise model for σ́m therefore transitions
smoothly between a second-order and a first-order poly-
nomial at δ́m = 180

◦
.

Equation (10) and (11), therefore, predict the extent
to which the incident polarization state is altered when

Fig. 5. σ́m vs. δ́m for different α . Dashed curve is the
model given by least square fit in Equation (12). For
δ́m <−180

◦
, the model transitions smoothly into the lin-

ear relationship given by Equation (13).

the incident wave is normal to the optic axis of the
lens.

B. Illumination at arbitrary polar angle
In this subsection, the impact of the lens anisotropy

is examined as the polar angle θ of the incident field is
swept from 0◦ to 90

◦
in 11.25

◦
increments. The incident

field is therefore defined as
−→
E

inc
=

[
ainc

θ
e jψ inc

θ

ainc
φ

e jψ inc
φ

]
e− jk0(xsin(θ)+zcos(θ)). (16)

In this experiment, three different lens radii are stud-
ied: 2.5λ , 3.5λ , and 5λ . It is observed that δ́ = 0 when
the incident field is parallel to the optic axis, i.e., θ = 0

◦
,

and δ́ = δ́m when the incident field is normal to it, i.e.,
θ = 90

◦
. Moreover, the retardance is approximated

by
δ́ = δ́msin2 (θ) . (17)

The retardance computed directly from the 3D finite
element simulations and the approximation given in
Equation (17) are plotted in Figure 6.

Correspondingly, σ́ = 1 when the incident field is
parallel to the optic axis and σ́ = σ́m when the incident
field is normal to it. After experimenting with several
approximating functions, the following provides the best
fit of σ́ to the simulation data:

σ́ = 1+
(σ́m−1)

(
1− e−(θ/τ)2

)
1− e−(π/2τ)2 . (18)

In the above equation, θ is specified in radians and
τ is a parameter that has been set to 0.6 radians through
experimentation. In Figure 7, both the results computed
from the 3D finite element simulations and the approxi-
mation of Equation (18) are plotted.

Equation (17) and (18), therefore, predict the extent
to which the incident polarization state is altered when

Fig. 6. δ́ vs. θ for different rl . Dashed curves are model
given by Equation (17).
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Fig. 7. σ́ vs. θ for different rl . Dashed curves are model
given by Equation (18).

Fig. 8. Paths on Poincarè sphere for different rl , as θ

is swept from 0◦ to 90◦. Surface of sphere indicates the
PLF. Red dot is LHP marker. Illumination is LCP.

the incident wave arrives at an arbitrary angle relative to
the optic axis of the lens.

V. POLARIZATION LOSS
Other than for the degenerate cases in which either

ainc
θ

= 0 or ainc
φ

= 0, the anisotropy of the lens creates
a mismatch between the incident and focal point polar-
izations. Normally, the receiving antenna has a polariza-
tion matched to that of the incident field. When the lens
alters the incident polarization, the ability of the antenna
to transfer focal power to the load is reduced. A non-
dissipative loss is associated with this inefficiency and is
termed the polarization loss factor (PLF). It is defined as
follows [14]:

PLF = 10log10 (Γ) , (19)
Finally, in Figure 9, the model provides PLF for a

relatively wide range of lens radii with LCP illumination.

Fig. 9. PLFs as rl and θ are varied. Compare with
results on Poincarè sphere. Illumination is LCP.

The loss over most of the image is ≈ 3 dB, indicating a
focal point that is nearly horizontally polarized.
where

Γ = |ρ̂ · ρ̂∗r |
2 = |cos(ψr) |2. (20)

In Equation (20), ρ̂ is the unit polarization vector of
the field at the focal point, ρ̂∗r is the complex conjugate
of the unit polarization vector for the receiving antenna,
and ψr is the angle between the two. Since Equation (7)
can be expressed as

−→
E = aθ e jϕθ

[
1

σe jδ

]
, (21)

then the direction of
−→
E , and therefore ρ̂ , must depend

only on σ and δ . Thus

ρ̂ =
1√

1+σ2

[
1

σe jδ

]
. (22)

To compute the PLF using the focal point polariza-
tion model developed in the previous section, we first
use Equation (17) to compute δ́ and Equation (18) to
compute σ́ . Both values are independent of the inci-
dent field’s polarization; therefore, we use Equation (8)
to solve for δ and Equation (9) to solve for σ . In other
words

δ = δ́ +
(

ψ
inc
φ −ψ

inc
θ

)
, (23)

and
σ = σ́ σ

inc. (24)
An insight into the dependence of the PLF on rl and

θ is obtained by tracing the focal point polarization state
on a Poincarè sphere that is PLF colorized according to
the incident field. This is accomplished efficiently using
the model developed in the previous section along with
Equation (19), (23), and (24). Figure 8 provides such
results for lens radii of 3λ , 6λ , and 50λ , all illumi-
nated with LCP. For each lens, as θ is swept from 0

◦

to 90
◦
, the state moves away from the zero loss LCP
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state. A maximum loss of ≈ 10 dB is observed when
rl = 6λ . For rl = 50λ , the maximum loss drops to ≈ 6
dB, and the state follows a spiraling path toward the lin-
ear horizontally polarized (LHP) state, denoted as a red
dot. Larger lenses produce even tighter spirals around the
LHP state and incur a maximum loss that asymptotically
approaches 3 dB.

VI. CONCLUSION
A uniaxially anisotropic Luneburg lens modifies the

polarization state of an incident wave, thus introducing
a polarization mismatch loss at the focal point. This
mismatch is dependent upon the wave polarization, the
degree of anisotropy, the radius of the lens, and the wave
angle of arrival. For rl � λ , the anisotropy strongly
polarizes the focal point along the horizontal plane. This
mismatch is undesirable in most circumstances, and min-
imizing it requires prediction of the unit cell permittivi-
ties along the x-, y- and z-axes.

We show that curve fitting of 3D finite element sim-
ulations provides an efficient method to model the retar-
dance and polarization ratio of the lens. This model and
knowledge of the incident wave and receiving antenna
polarizations are sufficient to predict the amount of
polarization mismatch loss, enabling the selection of
isotropic unit cell geometries that are suitable for fused
deposition modeling.
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