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Abstract – Crossing an optical waveguide requires a
beam coupling from free space to waveguide at the
entrance plane and another beam coupling from waveg-
uide to free space at the exit plane of the waveguide. The
aim of this paper is to provide a simple rule expressing
the relationship between the involved numbers of free
and guided modes that efficiently rebuild the field at each
end of the waveguide. Using a numerical program built
on Maple software, the rule was determined to be effec-
tive independently of the ratio between the beam spot
size and the waveguide radius.

Index Terms – Electromagnetic field, mode coupling,
optical waveguide.

I. INTRODUCTION
Hollow dielectric optical waveguides are widely

used in optical systems such as resonators [1, 2], opti-
cal transmission and communication systems [3], circu-
lar waveguide filters [4], and, nowadays, in integrated
optics [5].

Many authors have described light propagation in
cylindrical optical waveguides [6–9]. Transverse modes
inside a waveguide can be divided into three families:
transverse electric (TE), transverse magnetic (TM), and
hybrid (EH) modes. Each family constitutes a complete
and orthogonal set for expressing the radially symmetric
electromagnetic field in the waveguide.

Apart from the propagation inside the waveguide,
two check points need to be considered when crossing
a waveguide which are its entrance and exit ports. At the
entrance port, mode coupling occurs from free space to
confined one and vice versa at the exit port. For both ends
of the waveguide, mode coupling has been studied by
considering the ratio between the beam spot size w and
the radius of the waveguide a [10–13].

At the waveguide entrance plane, Smith [10]
described earliest experiments performed by matching

the fundamental mode from a conventional He–Ne laser
into a hollow dielectric waveguide. The incident beam
was focused in such a way that the beam waist w0
occurred at the entrance plane of the dielectric waveg-
uide. It is worth noting that Smith performed transmis-
sion measurement by matching the fundamental free
mode into the fundamental guided mode. For a good
matching, he experimentally found a ratio w0/a = 0.49
which was however considerably different from the the-
oretical ratio w0/a = 0.728 he considered.

Always for the entrance plane and as a function of
w/a, Roullard and Bas [11] gave the fraction of the cou-
pled energy from the free fundamental Gaussian mode
TEM00 into the two first waveguide modes. They men-
tioned that an efficient coupling happens at w/a = 0.502.
This value is different from the value w/a = 0.6435
that maximizes coupling with only the first-order waveg-
uide mode as given by Abrams and Chester [12] and
Tack [13].

At the waveguide exit plane, the useful approach to
release mode coupling is founded on the use of a small
number of free space modes but with a choice of a spe-
cific ratio w/a. Indeed, as mentioned by Guerlach [14],
to minimize the truncation error in expanding the field
emerging from the waveguide, a small value of the ratio
is favored. But a small w results in a large divergence of
the beam field and consequently a large truncation error.
Avoiding this constraint of the w/a ratio choice requires a
considerable number of modes with numerical problem
consequences.

To conclude, either at the entrance or at the exit
plane of the waveguide, mode coupling using a reduced
number of modes is conditioned by the choice of the
appropriate ratio w/a. Working with an arbitrary ratio,
requires a large number of modes that unfortunately
leads to numerical problems. Therefore, the question that
we ask here is about the optimum number of modes
that we should consider for realizing an efficient mode
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coupling regardless of a specific ratio w/a. To reach this
goal, a simple rule is then given in this paper.

II. THEORY AND NUMERICAL RESULTS
Let us consider a hollow dielectric waveguide with a

circular cross section of radius a, a length L, and a com-
plex refractive index ν . Assume that an incident beam is
coming in from the left side as shown in Figure 1.

Crossing an optical waveguide is carried out in
three successive steps which are: mode coupling at the
entrance plane, propagating the derived guided electro-
magnetic field along the length L inside the waveg-
uide, and finally performing mode coupling again at the
exit plane to go back to free space. Figure 2 shows
the sequence of operations undertaken in the waveguide
crossing. This process requires normalized functions for
free space and waveguide modes to be given.

In free space for the case of cylindrical symme-
try, the normalized Laguerre Gauss functions are given
by [15]
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where r, ϕ are the cylindrical coordinates, Ll
m is the gen-

eralized Laguerre polynomials, δ is the Kronecker sym-
bol, j is the complex number such as j2 =−1, and k is
the wave number; R and w are the phase front radius and
the spot size, respectively.

For the waveguide, the normalized hybrid functions
with circular symmetry field are [14, 16]
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where J0 and J1 are the Bessel functions and u1n is the
nth root of the former one.

Mode coupling at each end of the waveguide is
expressed using coupling coefficients Cmn. These coef-
ficients are reached by equalizing the electromagnetic
fields at both sides of the considered waveguide port and
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they are given by [14]

Cmn = 2π

∫ a

0
r TEMm (r) HEn (r)dr. (3)

As shown in Figure 2, mode coupling occurs at
plane 1 using a number of excited guided modes n2 and
at plane 2 using a number of excited free space modes n4.
Simple rules giving the optimum n2 and n4 numbers for
an efficient mode coupling are then the subject of Sec-
tions II-A and II-C.

A. Rule for mode coupling at the waveguide entrance
plane

The field equality E1=E2 inside the waveguide
opening, at the entrance plane, is required for an efficient
mode coupling. At both sides of this plane, the electro-
magnetic field is

E1 (r)=
n1

∑
m=1

am TEMm(r), (4)

for the free space and

E2 (r)=
n2

∑
n=1

Cn EHn(r), (5)

for the waveguide.
The integers n1 and n2 are the number of free

space and waveguide modes, respectively; am represents
the expansion coefficients of the incoming free field,
whereas Cn are the derived expansion coefficients of the
calculated guided field using eqn (3):

Cn= 2π

n1

∑
m=1

am Cmn. (6)

Table 1 gives, for each given number n1 of the used
free space modes, the optimum number n2 of waveguide
modes which allows an efficient mode coupling at the
waveguide entrance plane. This result is achieved for dif-
ferent w/a ratios.

The plot n2 versus n1 is illustrated by the point curve
in Figure 3.

Applying the mathematical fit instructions of Maple
software using the data from Table 1, the appropriate
function n2= f (n1), shown in solid line in Figure 3, is
deduced and the following rule for mode coupling at the
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Table 1: Optimized number n2 of waveguide modes as a
function of the number n1 of the used free space modes

n1 n2
3 7
8 8
11 9
15 9
19 10
25 12
38 13
45 15
60 17
80 19

100 21

coupling at the waveguide entrance plane. This result is 
achieved for different w/a ratios. 
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where the notation ⌊□⌋ is the floor function.
For different n1 and according to this rule, Fig-

ure 4 shows a very good agreement in field superpo-
sition for mode coupling at the entrance plane of the
waveguide.

The results shown in Figure 4 (a)–(c) have been
computed with w/a = 0.91, w/a = 0.8, and w/a = 0.66,
respectively. But we emphasize that for each case, and
thanks to the rule, an efficient mode coupling has been
confirmed for other arbitrary ratios w/a.

B. Propagation inside the waveguide
Attenuation and relative phase shift of the propa-

gating field, over a distance l through the waveguide,
are calculated by multiplying each guided mode by
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Fig. 4. Superposition of transverse intensity patterns at
the waveguide entrance plane with a = 0.6 mm for (a) n1
= 1, (b) n1 = 13, and (c) n1 = 35.

the corresponding element of the following diagonal
matrix [14]:
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where δmn is the Kronecker symbol, k = 2π/λ , u1m is

the mth zero of J0 and vn = [v2+1]/2
[
v2−1

] 1
2 where

ν is the complex refractive index of the waveguide
material.

Figure 5 shows the electrical field intensity in differ-
ent positions inside a cylindrical optical waveguide.

FIG. 5 

 

 

 

 

 

2 cm 3 cm 4 cm 5 cm 6 cm 7 cm 

r/
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Fig. 5. Transverse intensity patterns at different positions
inside an optical waveguide of length L = 7 cm and a =
0.6 mm.

C. Rule for mode coupling at the waveguide exit plane
Here, the set of waveguide modes must be coupled

to a set of free space modes. The field at the left side of
the waveguide exit plane is

E3 (r) =
n3

∑
n=1

CGn EHn(r), (9)

where the integer n3 is the number of the waveg-
uide modes, which is equal to n2 obtained from eqn
(7), and the CGn coefficients are calculated using
eqn (8).

The field at the right side of the waveguide exit
plane is

E4 (r) =
n4

∑
m=1

Cm TEMm(r), (10)

where Cm are defined in eqn (6) and the integer n4 is the
considered number of the TEM modes.

Table 2 shows, for each given number n3 of the used
waveguide modes, the optimum number n4 of free space
modes which allows an efficient mode coupling at the
waveguide exit plane. This result is achieved for different
w/a ratios.

The plot n4 versus n3 is illustrated by the point curve
in Figure 6.

Applying the mathematical fit instructions of Maple
software, using the data from Table 2, the appropri-
ate function n4= f (n3) is deduced and the following
rule for mode coupling at the waveguide exit plane is
obtained:

n4 =
⌊
0.35 n2

3 +1
⌋
. (11)

Table 2: Optimized number n4 of free space modes as a
function of the number n3 of the used waveguide modes

n3 n4
7 16
8 21
9 29

10 36
11 40
12 55
14 70
17 100
19 130
22 175
25 219
30 316
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𝒍𝒍

𝒌𝒌 𝒂𝒂𝟐𝟐
�𝐑𝐑𝐞𝐞 �

𝒗𝒗𝒏𝒏
𝒌𝒌𝒂𝒂�� 

× 𝐞𝐞𝐞𝐞𝐞𝐞 �−
𝒊𝒊
𝟐𝟐 �𝒖𝒖𝟏𝟏𝒎𝒎

𝟐𝟐  − 𝒖𝒖𝟏𝟏𝟏𝟏𝟐𝟐 � �
𝒍𝒍

𝒌𝒌 𝒂𝒂𝟐𝟐��𝟏𝟏 + 𝟐𝟐 𝐈𝐈𝐈𝐈�
𝒗𝒗𝒏𝒏
𝒌𝒌𝒂𝒂���

(8) 

 
where 𝜹𝜹𝒎𝒎𝒏𝒏is the Kronecker symbol, 𝒌𝒌 = 𝟐𝟐𝟐𝟐/𝝀𝝀, 𝒖𝒖𝟏𝟏𝒎𝒎 is 
the mth zero of𝑱𝑱𝟎𝟎 and 𝒗𝒗𝒏𝒏 = [𝒗𝒗𝟐𝟐 + 𝟏𝟏]/𝟐𝟐[𝒗𝒗𝟐𝟐 − 𝟏𝟏]

𝟏𝟏
𝟐𝟐where 

ν is the complex refractive index of the waveguide 
material. 
Figure5 shows the electrical field intensity in different 
positions inside a cylindrical optical waveguide. 

 

Fig. 5. Transverse intensity patterns at different 
positions inside an optical waveguide of length L=7cm 
and a = 0.6 mm. 
 
 
C. Rule for Mode Coupling at the Waveguide Exit 
Plane 

Here, the set of waveguide modes must be coupled 
to a set of free space modes. The field at the left side of 
the waveguide exit plane is 

𝐸𝐸3(𝑟𝑟) = � CG𝑛𝑛EH𝑛𝑛(𝑟𝑟)
𝑛𝑛3

𝑛𝑛=1

                 (9) 

where the integer 𝑛𝑛3 is the number of the waveguide 
modes, which is equal to 𝑛𝑛2obtained from eqn (7), and 
the CG𝑛𝑛  coefficients are calculated using eqn (8). 
 
The field at the right side of the waveguide exit plane is 

𝐸𝐸4(𝑟𝑟) = � 𝐶𝐶𝑚𝑚TEM𝑚𝑚 (𝑟𝑟)
𝑛𝑛4

𝑚𝑚=1

                 (10) 

 
where  𝐶𝐶𝑚𝑚  are defined in eqn (6) and the integer 𝑛𝑛4 is 
the considered the number of the TEM modes. 

 
Table 2 shows, for each given number 𝒏𝒏𝟑𝟑 of the 

used waveguide modes, the optimum number 𝑛𝑛4 of free 
space modes which allows an efficient mode coupling 
at the waveguide exit plane. This result is achieved for 
different w/a ratios. 
Table 2: Optimized number 𝑛𝑛4 of free space modes as a 
function of the number 𝑛𝑛3 of the used waveguide 
modes 
 

 𝒏𝒏𝟑𝟑 𝒏𝒏𝟒𝟒 
7 16 
8 21 
9 29 

10 36 
11 40 
12 55 
14 70 
17 100 
19 130 
22 175 
25 219 
30 316 

 
The plot 𝑛𝑛4 versus 𝑛𝑛3 is illustrated by the point curve in 
Figure 6. 

 

 
Fig.6. Optimized number 𝑛𝑛4 of free space modes as a 
function of the number 𝑛𝑛3 of the used waveguide 
modes. 
 
Applying the mathematical fit instructions of Maple 
software, using the data from Table 2, the appropriate 
function 𝑛𝑛4 = 𝑓𝑓(𝑛𝑛3) is deduced and the following rule 
for mode coupling at the waveguide exit plane is 
obtained: 
 

2 cm 3 cm 4 cm 5 cm 6 cm 7 cm 

r/a 

1 

-1 

Fig. 6. Optimized number n4 of free space modes as a
function of the number n3 of the used waveguide modes.

Figure 7 shows mode coupling according to this rule
for different values of n3.

The results shown in Figure 7 (a)–(c) have been
computed with w/a = 0.58, w/a = 0.5, and w/a = 0.8,
respectively. As mentioned in Section II-A, we con-
firm that for each case, and thanks to the rule, an effi-
cient mode coupling has been verified for other arbitrary
ratios w/a.

It should be noted that at both ports of the waveg-
uide and according to the rule, mode coupling goes suc-
cessfully independent of the ratio w/a for values out-
side the range 0.45 < w/a < 0.73 applied by differ-
ent authors [10–14]. Indeed, the rule works very well
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Fig. 7. Superposition of transverse field distribution at
the waveguide exit plane with a = 0.6 mm for (a) n3 = 7,
(b) n3 = 10, and (c) n3 = 25.

at least in the range 0.3 < w/a < 0.9 which is more
useful.

D. Field beyond the optical waveguide
Propagation through free space beyond the waveg-

uide of the emerged field considered in Figure 7 is shown
in Figure 8.

We underline that beyond the waveguide, propaga-
tion through any optical path, composed by an apertured

Fig 8 
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Fig. 8. Transverse distribution of the field shown in Fig-
ure 7 (b) at (a) z = 15 mm and (b) z = 95 mm beyond the
optical waveguide, respectively, and (c) axial field distri-
bution for the fields shown in Figure 7.

first-order optical system, can be achieved using the
ABCD law and the generalized Gouy phase (GGP) shift
[16–19].

III. CONCLUSION
In this paper, waveguide crossing has been solved

by giving a simple rule for an efficient mode coupling at
both ends of a cylindrical optical waveguide. Using the
optimum number of modes given by the rule, crossing of
the optical waveguide is achieved successfully regardless
of the constraint of the ratio between the beam spot size
and the waveguide radius.
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