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Abstract ─ While metamaterial aperture imaging systems 

do not require mechanical scanning equipment or complex 

components by employing a spatially variant radiation field, 

they require large amount of data and many computations. 

In this paper, we deduce the contribution of the resonator 

to the radiation fields of the metamaterial aperture. We 

propose a fast range decoupling algorithm that can   

improve the data processing speed and obtain real-time 

images of far-field scenes. The algorithm decomposes the 

scene into numerous range cells, drastically reduces the 

range of interest, and reconstructs the scene in parallel. 
Simulation results show that computational cost is   

significantly decreased and image quality is maintained. 

 

Index Terms ─  millimeter-wave imaging, metamaterial 

apertures, compressed sensing, decoupling  
 

I. INTRODUCTION 
Millimeter-wave imaging techniques can provide 

high-quality imagery with nonionizing radiation and are 

promising in a variety of applications, such as medical 

diagnosis [1], bio-imaging [2], security screening [3]  

and through-the-wall imaging [4],[5]. Conventional  
millimeter-wave imaging systems usually rely on    

mechanical equipment to scan a static aperture. Phased 

arrays can generate different imaging models without 

mechanical scanning, yet they need many phase shifts, 

attenuators and other components which results in    

increased cost and size. In recent research, frequency-  

diverse aperture imaging has been shown to be a possible 

solution to the above problems. By generating a group of 

different spatial radiation fields that change rapidly with 

frequency, the frequency-diverse aperture antenna can 

encode the scene information. Many frequency-diverse 
antenna architectures have been demonstrated, such as 

metamaterial apertures [6]-[11], cavity apertures [12]-

[14], and dynamic metasurface apertures [15]-[18]. 

Compared with dynamic metasurface apertures and  

cavity apertures, metamaterial apertures have the    

advantages of simple structure and low cost. 

Although simple and inexpensive, metamaterial  

apertures also have flaws. First, a metamaterial aperture 

antenna is not easy to design, especially for millimeter 

wave imaging applications. The radiation patterns change 

with respect to frequency, and cannot be predicted in an 

exact way. Since Hunt et al. [6] first used waveguide-fed 

metamaterial apertures that consist of complementary 

electric-field-coupled (cELC) elements in imaging   
experiments, many studies have focused on new structures 

of metamaterial apertures. To obtain a uniform excitation, 

Guy [10] designed a sparse aperture in which they removed 

elements randomly. Na [19] designed apertures with cELC 

and complementary Jerusalem cross (CJC) units to raise 

radiation efficiency. In [20], Zhao designed a bunching 

metamaterial antenna that could generate frequency-  

diverse bunching random radiation pattern. In these   

literatures, cELC elements and other units were     

distributed randomly, and entire designs relied on the 

full-wave electromagnetic simulation. Some traditional 

modeling methods could also be used for metamaterial 
aperture modeling and designing, such as fast multipole 

method (FMM) [21], series expansion method [22], and  

boundary element method (BEM) method [23]. Recently 

years, some new technics have been developed in   

electromagnetic modeling. In [24], a full-wave finite-  

element-based method was introduced. Feng [25] used 

combined neural networks for parametric modeling of 

electromagnetic (EM) behavior of microwave components. 

Calik [26] proposed a fully-connected regression model 

based on Bayesian optimization for frequency selective 

surfaces. These methods could be considered in the design 
of the metamaterial apertures antenna. Second, in the 

metamaterial aperture imaging model, discretization of 

the whole imaging zone will inevitably result in the  
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particularly high dimensionality of the measurement  

matrix and the huge computational cost in further imaging 

processing. In order to get real-time images, reducing the 

scale of the inverse problem is necessary. A feasible  

approach is to constrain the imaging volume and thus  
decrease the corresponding number of discretization 

voxels. It is mentioned in [27] that the Microsoft Kinect 

sensor working at infrared wavelength can potentially be 

used for reducing reconstruction volume, whereas this 

approach would be problematic if the targets span across 

many far different range bins. To enhance the capability 

of the system, multi-GPU parallel processing architectures 

were studied in [28]. In traditional SAR imaging, there 

is coupling between the range dimension and azimuth  

dimension. The range-Doppler (RD) algorithm [29]  

decomposes the coupling two-dimensional scene focusing 

problem into two one-dimensional focusing problems, 
which is also the most popular decoupling method. In [30], 

a range decoupling method was applied in metamaterial 

aperture imaging to reduce the dimensionality of the 

measurement matrix and accelerate computation, but the 

running time still could not be neglected. 

In this work, we deduce the contribution of the cELC 

resonator to the radiation fields of the metamaterial   

aperture, and propose a fast range decoupling method  

for metamaterial aperture-based imaging systems. The   

algorithm allows the scene to be decomposed into a set 

of range cells, the range of interest to be drastically   
reduced according to the IFFT results, and the scene to 

be reconstructed in a parallel way. Compared with the 

conventional approach, the proposed algorithm requires 

less computational cost and running time, and produces 

real-time images. Multiple simulations verify the     

effectiveness of the proposed algorithm. 

The rest of this paper is structured as follow. In Sec-

tion II, we briefly introduce the general forward met-

amaterial imaging model. Section III deduces the contri-

bution of the cELC resonator to the radiation fields of the 

metamaterial aperture, and discusses the character of the 

measurement matrix. Section IV devotes the derivation 
fast range decoupling approach. In section V, we present 

the imaging simulation to demonstrate the effectiveness 

of the proposed method. Conclusions are presented in 

Section VI. 

 

II. MATHEMATICAL IMAGING MODEL 
The mathematical model of the metamaterial aperture 

forward imaging system will be introduced in this   

section. As shown in Fig. 1, a dielectric-filled parallel-
plate waveguide is employed as the transmitter. An array 

of subwavelength cELC elements with different physical 

geometries are randomly distributed on the upper plane 

of the waveguide. Different subsets of elements are   

excited with changing frequency. Backscatters from the 

objects in the scenes are received by an open-ended 

waveguide probe, which is on the antenna plane and 

close to the transmitter plane. The vector ( , ,0)x y=r  

represents the points on the metamaterial aperture    

antenna, which is on the reference plane, and the vector 

( , , )x y z   =r  indicates the points in the imaging scene. 

 

 
 

Fig. 1. Panel to probe imaging system. 

 

Suppose ( )txT r   is the antenna impulse response. 

The field in the reference plane could also be illustrated 

by this response. According the Helmholtz equation, the 

field in the imaging scene can be given as: 

 
2

0
scene

( ) ( ) ( )dTXU T G
z


 =

r r r ,r r , (1) 

where  

 
0exp( )

( )
4

jk
G



− −
 =

 −

r r
r ,r

r r
, (2) 

is Green’s function, which describes the solution for  

impulse response from a source in free space. Taking   

z as the propagation axis, ( )/ ( , )z G   r r   represents 

the scalar field propagator from the location r on the     

reference plane to the location r  on a parallel plane in 

imaging scene [30]. 0k   is the wavenumber, given as 

0 2 /k f c= , where f denotes the spatial frequency and 

c denotes the speed of light. 

Assuming that the incident radiation field irradiates 

the scene target and the target scatters the incident  

electromagnetic wave. ( )SU r  is used to represent the 

target scattering field, and the total field of the imaging 

scene can be obtained as follows: 

 ( ) ( ) ( )To oTX SU U U  = +r r r . (3) 

The wave equation in the case of uniform medium 

scattering is expressed as: 

 
2 2( ) ( ) ( ) 0To ToU k U   + =r r r , (4) 

where 

 0 0( ) ( ) [1 ( )]k k n k n  = = +r r r , (5) 

is the refractive index of the scattering medium, and 
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1/2

0 0( ) [ ( ) ( ) / ]n      =r r r . 

Considering that the incident radiation field 

( )oTXU r  must satisfy the Helmholtz equation, it can be 

obtained: 

 2 2

0( ) ( ) 0oTX oTXU k U  + =r r . (6) 

Substituting (5) and (6) into (4), the target scattering field 

( )SU r  can be written as: 

 
2 2 2 2

0 0( ) ( ) ( ( ) ) ( )S S ToU k U k k U    + = − −r r r r . (7) 

It should be noted that there is a nonlinear relationship 

between the scattering field and the target scatter function. 

Without any approximate treatment of the scattering 

field, the upper differential equation cannot be solved. In 

this section, the first order Born approximation assumption 

is used to ignore the second-order terms [31]. Then, the 

Helmholtz equation could be represented as: 

 2 2

0( ) ( ) ( ) ( )S S ToU k U U    + = −r r r r , (8) 

where  

 0( ) 2 ( )k n  =r r , (9) 

donates the reflectivity of scene target.  

Treating the scene as the radiation source, the 

source-field propagation Green’s function is used to 

solve the above equation. In this case, the scattering field 

at the transmit aperture (reference plane) ( )SU r   is  

represented as: 

 
3( ) ( ) ( ) ( )dS To

V
U G , U    = −r r r r r r . (10) 

Considering the effect of weak perturbation from the 

scattered field on the total field ( )ToU r , we can rewrite 

(10) as:  

 
3

0( ) ( ) ( ) ( )dS TX
V

U G , U    = −r r r r r r . (11) 

Revisiting (2), we obtain the relationship between 

the derivative of Green's function ( )/ ( , )z G   r r  and 

the Green's function G yield itself [32]: 

 
1

( ) cos( , )( ) ( )0G , jk G ,
z


 = −


P

P

r r z r r r
r

, (12) 

where cos( , )
P

z r  denotes the cosine of the angle between 

z and P
r   joining r to r  . Assuming that the field of 

view (FOV) is narrow, we can simplify the above equation 

as: 

 0G jk G
z





. (13) 

Therefore, the scattering field at the transmit aperture 

( )SU r  can be represented as: 

 
3

0

1
( ) ( ) ( ) ( )dS oTX

V
U U G ,

jk z



    = −

r r r r r r . (14) 

Assume that the receiving probe antenna is located 
at the same plane as the transmitting metamaterial    

aperture antenna, and the pulse response is ( )rxT r . Since  

the scattering field on the receiving aperture is known, 

the measured value g of the receiving probe antenna can 

be calculated as [33]: 

 
2( )rx S

S
g T U d=  r r . (15) 

Substituting (12) and (14) into (15), g can be rewritten 

as: 

 
3( ) ( ) ( )oTX oRX

V
g U U d  =  r r r r , (16) 

where ( )oRXU r   represents the field produced by the  

receiving probe antenna at location r.  

Considering that the metamaterial aperture antenna 

can generate frequency-diverse random radiation fields 

to detect the scene, a set of measurement echo vectors 

indexed by frequency can be calculated as: 

 
3( ) ( , ) ( , ) ( )oTX oRX

V
f U f U f d  = g r r r r . (17) 

Assuming the reflectivity of objects in scene is  

isotropic, since the imaging resolution is limited by the 

antenna aperture, the scene can be decomposed to 3D 

discrete voxels and encoded by a finite number of    

frequency diverse models. Then (17) can be rewritten as 

a finite-dimensional matrix equation: 

 = +g Hσ n ,  (18) 

where g denotes the 1M   measurement vector, n is an 
1M   noise vector, σ  is the 1N   scatting coefficient 

vector across N pixies of the imaging scene, and H   

denotes the M N  measurement matrix, which is the 

dot product of the incident and scatted fields. The above 

equation clearly describes the receiving and processing 

of scattering electromagnetic waves in the scene.  

In order to get a unique linear solution for the   

scatting information σ  in the scene, the rank of H must 

equal the dimension of σ . In another word, M N= . 

However, in the application of imaging scenarios, the 

rank of H is much less than the dimension of scatting 

coefficient σ . According the compress sensing theory, 

the underdetermined scenes could be reconstructed by 

solving the optimization problem: 

 
2

2 1
arg min = − +est est estσ g Hσ σ , (19) 

where   is the regularization parameter. 

Numerous algorithms exist for solving this      

optimization problem, such as greedy algorithm, convex 

optimization algorithm and Bayesian algorithm. Here we 

use the orthogonal matching pursuit (OMP) algorithm, 

which is a classic greedy algorithm, to solve this problem. 

The ensemble measurement matrix is used directly during 

this processing, which is called brute force method. 

Since M N , the brute force method needs amount of 

computational cost and relative long running time. In  

order to get new algorithms which could accelerate the 

calculation, we will analysis the measurement matrix in 

following section. 
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III. APERTURE MODEL AND        

MEASUREMENT MATRIX CHARACTER 
For the frequency-diverse metamaterial aperture 

employed in our imaging system, the field pattern T  

consists of a relatively random set of nulls and lobes that 

change with frequency. At a given angle, the magnitudes 

and phase of the field vary irregularly over the bandwidth. 

The frequency diverse radiation field of the metamaterial 

aperture is generated by an array of cELC elements with 

various resonance frequencies. Generally, a cELC element 

can be modelled as a polarizable radiation magnetic dipole. 

The polarization of it can be described according to the 

Lorentzian dispersion: 

 
2

2 2

0

( )
F

j


 

  
= −

− +
, (20) 

where 2 f =   is the angular frequency, 
0   is the 

angular resonance frequency of the resonator, 

0 / 2Q =  is the damping factor, and F is proportional 

to the oscillator strength and coupling, which is assumed 

to be 1. The dipole moment of the dipole at location r

can be calculated as: 

 ( , ) ( , ) ( , )GU   = m r r r , (21) 

where ( , )GU r  is the local guided field. Assuming that  

these dipoles are all y-polarized, the radiation pattern  

of location r  from a dipole at location r can be      

approximated as: 

 0 0

0( , ) ( , ) exp( )sin
4

Z k
U jk R

R
  


  −


r ,r m r , (22) 

where R  is the distance between r  and r, 0Z   is the 

impedance of free space, and   is the angle between r  

and ( )m r . Compared with the standard approximation 

for the far-field radiation of a dipole, we ignore all 

higher-order terms that vary as 21/ R   or 31/ R  . The 

total transmit field at location r   in the scene can be   

calculated by superposing radiation fields from all    

dipoles in the aperture: 

 ( , ) ( , ) ( , , )oTX oTXU f U U   = =r
r r r r . (23) 

The above deduction shows that by sweeping    

frequency  , the polarizability and local guided field of 

each dipole are changed, and then the dipole moment is 

modified. Moreover, the radiation fields of the resonator 

and entire array are affected. Hence the radiation fields 

of the metamaterial aperture change with respect to  . 

   serves as a parameter to index the measurement 

modes. 

In the derivation of Section II, H is the dot product 

of transmitting fields in the scene of the transmitting 

metamaterial aperture antenna and the receiving probe. 

In the far field, the distance from the metamaterial    

aperture antenna to location r  and the distance from 

the receiving probe to location r  can be approximately 

equal. The relevant term 1  −r r  in the Green’s function 

could be ignored. The transmitting field on r  in the 

scene can be written as: 

 0( )
jk R

oTXU Te
− =r , (24) 

where R is the distance between the center of the   

transmitting aperture and position r  in the scene, and 

T denotes the radiation field of the metamaterial aperture 

panel. 

For convenient analysis, we ignore the radiation  

pattern from the open waveguide probe, and treat it as an 

omnidirectional receiving probe. The product of incident 

and scattering fields at position r   in the scene    

(corresponding range R), can be expressed as: 

 02 4 /j k R j R c

R e e − −= = f
h t t , (25) 

where t and f denote the radiation field pattern and    

the variational frequency, respectively. 4 /j R ce − f   is the 

propagation factor and is a linear phase term related to R. 
It is obvious that hR is a column entry of measurement 

matrix H, and H can be expressed as: 

 
H = TG(r ,r,f)

. 
(26) 

Hence a row entry of H is the product of the      

radiation field pattern T and appropriate Green’s function. 

When the frequency changes, a distinct spatial radiation 

pattern T is generated by the metamaterial aperture and 
a new row entry of H is obtained. 

For a given metamaterial aperture antenna, the   

frequency sampling interval f  needs to be determined. 

However, when we choose f , it is important to note 

that the maximum unambiguous range (MUR), represented 

by 2c f , is closely related to image quality, and f  

directly influences the frequency points. After determining 

f , the limited frequency bandwidth (named subband) 

B  has to be ascertained. By the IFFT process for the 

radiation field within a proper B , we could get a sequence 

with a sinc-like magnitude distribution. Then, the   

limited frequency bandwidth B   can be ascertained  

experimentally. 
 

Table 1: Antenna parameters 

Bandwidth 18.5~25GHz 

Frequency sampling interval 8.125MHz 

Field of view -70°~70° 

Azimuth sampling interval 0.5° 

Panel length 0.4m 

Dimension of T 801×281 
 

Here we employed measured radiation field data   

of the antenna from [6]. The parameters of antenna are 
listed in Table 1. The prototype is a 1D leaky waveguide, 

formed by patterning the top conductor of a standard  

microstrip line with cELC elements. This antenna could 

GAO, PENG, WANG, GUO, DING: FAST RANGE DECOUPLING ALGORITHM FOR REAL-TIME IMAGING 956



explore 2D (range and azimuth) sparse scenes. 

We randomly select an azimuth angle within the 

field of view. For the radiation fields t at this angle within 

the subband B
, the results of IFFT operation are shown 

in Fig. 2 (a). The magnitudes take the form of a sinc-like 

distribution. Recalling (20), the measurement vector hR 

is the product of the radiation fields t and the propagation 

factor. This propagation factor, as a linear phase term  

related to R, corresponds to the shift of the sequence in the 

time domain, according to the frequency-shift property 

of the IFFT. The results of IFFT with respect to hR, which 

is calculated from t, are also shown in Fig. 2 (a). We can 
find that the IFFT results of hR shift to the right compared 

to that of radiation field t. The shift units represent range 

R corresponding to hR. This behavior would still exist if 

the IFFT is performed over entire bandwidth, as shown 

in Fig. 2 (b).  
 

 
  (a) 

 
  (b) 

 

Fig. 2. IFFT results of radiation fields t and the    

measurement vector hR. 
 

Considering that the echo data measured by the   

receiving antenna are the product of hR and reflectivity 

of scatters, if we perform IFFT with respect to echo data 

g, the frequency-shift property still exists. Hence, we can 

deduce the approximate ROI according to the shift units 

of maxima and the range resolution corresponding to 

B
. Since the resolution is inversely proportional to the 

bandwidth, if we perform IFFT with respect to g over the 

entire working bandwidth, the detailed range position  

of scatters could be obtained, and the ROI would be   

reduced. This behavior will be verified in the simulation 

of a later section. 

The above analysis focuses on arbitrarily chosen  

azimuth angle radiation fields within B
. Now, we use 

a sliding window that has the same size as B
 to carry 

out IFFT operation on the entire bandwidth, while the 

shift length is one frequency point. The results of the 
sliding-windowed IFFT are shown in Fig. 3. It is obvious 

that the position of maxima barely moves. Hence the Sinc-

like distributions remain on entire band. Considering that 

the azimuth angle is randomly chosen, this behavior is 

also suitable for the ensemble azimuth field, which is the 

foundation for the further deduction of our algorithm. 

 

 
 (a) 

 
 (b) 

 

Fig. 3. Sliding-windowed IFFT results of (a) the azimuth 

fields, and (b) measurement vector over the entire    

frequency band. 
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In the above discussion, the targets contained in the 

imaging space are concentrated at the relatively close 

range bins. Then the reflectivity coefficients of the voxels 

outside the ROI are equal to 0. The measured echo   

data g are purely the product of constrained H and σ  

corresponding to the ROI. If we apply IFFT with respect 

to g, the ROI can be obtained, and then σ   can be    

retrieved with the constrained H. However, if the targets 

contained in the imaging space span some far different 

range bins, this method will be intractable rapidly. This 

issue will be discussed in follow section. 

 
IV. FAST RANGE DECOUPLING        

ALGORITHM 
Let σ  denote all reflection coefficients contained 

in the imaging scene, and 1P

 g  denote P receiving 

measurements of the whole scene within subband B , 

which contains P frequency points. For an extracted 
range area R1, the corresponding measurement matrix is 

1RH ; then, the relative received frequency measurement 

can be represented as =
1 1 1R R Rg H σ , which constitutes 

a portion of g . The IFFT results with respect to 
1Rg  

can be expressed as matrix equation 

 P=
1Rψ D g , (27) 

where ψ  denotes the IFFT return and PD  is the inverse 

discrete Fourier transform matrix, which can be written 

as: 

 

1 2 1

2 4 2( 1)

1 2( 1) ( 1)( 1)

1 1 1 1

1
1

1

1

P

P P P

P

p P P P

P P P P

P P P

W W W

W W W
P

W W W

−

−

− − − −

 
 
 
 =
 
 
 
 

D , (28) 

where exp( 2 / )pW j P=  . Since =
1 1 1R R Rg H σ  , ψ  

can be written as: 

 
1

2

P P

P

 
 
 = =
 
 
 

1 1

1

R R R

h

h
ψ D H σ D σ

h

. (29) 

Processing IFFT with respect to g on all frequency points, 

we get the detailed range index of objects, and the   

corresponding area R2, where 2 1R R  . Since all the 

received waves corresponding to R1 are scattered by the 

objects in R2, 
1Rg  can be expressed as: 

 
2 2

= =
1 1 1R R R R Rg H σ H σ   (30) 

and ψ  can be written as: 

 
2 2 2

2

P P P

P

 
 
 = = =
 
 
 

1 1

1

R R R R R

h

h
ψ D H σ D H σ D σ

h

. (31) 

For the case in Fig. 3, the corresponding maximum 

can be expressed as: 

 
24 4( 1)

max

1
1 P

P P

P

W W
P

 −

 
 
  =    
 
 

2

1

R

h

h
σ

h

. (32) 

Henceforth, the maximum 
max  can be considered as a 

new measurement   . The inner product between the 

Fourier coefficient and original measurement matrix 

2RH , denoted by φ, is the new sensing vector. 

In the above derivation, the measurement vector 
1Rg  

turns to a single measurement max , and the measurement 

matrix 
1RH  turns to a sensor vector φ. We get a new 

measurement equation: 

 ψ =Φσ . (33) 

The new measurement matrix is still underdetermined, 

so we can get reflection coefficients σ  by solving an 

optimization problem: 

 
2

2 1
arg min = − +est est estσ Ψ Φσ σ . (34) 

Comparing (34) with (19), the dimension of the new 

measurement matrix Φ  is much less than the dimension 

of H  . If we use same algorithm, such as OMP, (34) 
would require less computational cost and running time. 

If the targets are located in far more range cells in 

the scene, we can obtain multiple equations, and the 

above reconstruction can be performed in parallel. 

Our proposed fast range decoupling algorithm can 

be summarized as follows: 

Step 1. Initialize the received frequency measurements 

g and radiation field T.  

Step 2. Confirm sub-bandwidth B   from T, and 

record the index of maximum column of the IFFT return.  

Step 3. Process g with sliding-window IFFT to   

ascertain the range region R1 that contains targets by the 

index of maxima. And record the corresponding new 

measurementsΨ . 

Step 4. Perform IFFT with respect to g and confirm 

the range location R2 of targets according to the peak  

index of results. 

Step 5. Build the new measurement matrix Φ  

with respect to R2, and get new measurement equation

2RΨ =Φσ . 

Step 6. Reconstruct 
2Rσ  from the measurement  
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equation and rebuild the ensemble σ .  
 

V. SIMULATIONS AND ANALYSIS 
In this section, the imaging capabilities of the proposed 

fast range decoupling algorithm are demonstrated.   

Radiation field data of the measured antenna are employed 

in multiple imaging simulations. The parameter of antenna 

is listed in Table 1. 

The azimuth resolution and range resolution can be 

obtained from: 

 
eff

          
2BW

c

a r

c

L


 = = , (35) 

where 
c  is the wavelength of the center frequency and 

effL  denotes the effective size of the aperture. For the  

antenna we used in the simulation, the azimuth resolution 

is 1.7 , and the range resolution is 2.3 cm.  

The imaging scene is discretized into a dense grid 

with range and azimuth dimensions, and the scattering 

coefficient of the targets obeys (0,1)  . All the    

simulations are processed in the MATLAB environment 

and on a computer with an Intel Xeon CPU and 6 GB 

RAM. 

The results of sliding-window IFFT processing with 

randomly chosen azimuth field data are shown in Fig. 

4(b). The length of window P is set as 16 experimentally, 

as well as the number of frequencies.  

The first imaging scene has three scatters located  

in the same range but different azimuth angles. The 

measurement vector g can be calculated according to 

equation (18). Then we perform g with sliding-window 
IFFT, as shown in Fig. 4 (b). The length of the      

window is P, and the corresponding subband width is 

B ( 1)P f = −  . The range resolution of results is given 

by Δ/ 2BR c =  . The maximum column of results  

corresponds to the new measurement vector Ψ  .    

According to the index of maxima, the range of interest 

is [4.34, 5.54] m. The IFFT results with respect to g are 

shown in Fig. 4 (c). We can reduce ROI to [4.48, 4.52] 

m, and reconstruction areas are limited to a very narrow 

band. Then, we update the measurement matrix Φ  by 

using the inner product of the corresponding Fourier  

coefficients and constrained measurement matrix ROIH .  

Since the updated measurement matrix Φ   is   

still underdetermined, we need a compress sensing       

reconstruction algorithm to solve the modified equation. 

Here, the orthogonal matching pursuit algorithm is   

employed to retrieve the scene. The reconstructed    

reflectivity coefficients of R2
σ  are shown in Fig. 4 (d). 

It is obvious that all three scatters are preserved clearly. 

Moreover, to compare the performance of the proposed 

method with that of existing algorithms, we reconstruct 

the scene with the algorithm in [30], as shown in Fig. 4 

(e), and the brute force method, which uses the ensemble 

measurement matrix directly, as shown in Fig. 4 (f). We 

can see that in both images, all three scatters are well  

estimated. However, the consumed times in Fig. 4 (d), (e) 

and (f) are 0.35 s, 2.7 s and 9.4 s, respectively. Hence the 

acceleration ratio of the proposed fast range decoupling 
algorithm is calculated to be 26.8, while that of the    

algorithm in [30] is 3.5. 

 

 
  (a)                  (b) 

 
(c)                  (d) 

 
(e)                  (f) 

 

Fig. 4. 2D scene imaging results with 3 point-like   

scatters. (a) True scene with 3 scatters located in the 

range of approximately 4.5 m. (b) Result of slight-  

windowed IFFT with respect to g with a window length 

of 16. (c) Results of IFFT operation with respect to g 

with all frequency points. (d) Images obtained with  

proposed method. (e) Images obtained with method of 

[30]. (h) Image obtained by ensemble H corresponding 
to [2,8] m.  

 

For the problem of that targets located in far more 

range cells in scenes, the scale of the measurement matrix 

would increase rapidly. It is seen from Fig. 5 (a) that  

targets lie in the range of around 4.5 and 6.9 m from the 

antenna panel, and the entire range area is [2,8] m. The 

result of the sliding-windowed IFFT to the received data 

g is plotted in Fig. 5 (b). We can see from Fig. 5 (b) that 

the targets are well separated in two different range cells. 

Fig. 5 (c) shows the IFFT results to g with all frequency 
points, and the size of the ROI could be slumped. Then the 

modified measurement equation corresponding to each 

ROI could be built and the reconstruction results are 

shown in Fig. 5 (d) and Fig. 5 (e). We can observe that the 

scatters at different locations are estimated accurately. 

ACES JOURNAL, Vol. 36, No. 8, August 2021959



Similarly, we reconstruct the scene with the algorithm in 

[30], as shown in Fig. 5 (f) and Fig. 5 (g), and the brute 

force method, as shown in Fig. 5 (h). The consumed 

times in Figs. 5 (d)-(h) are 0.32 s, 0.26 s, 3.76 s, 3.70 s 

and 9.61 s, respectively. Since the reconstruction could 
be processed in parallel, the acceleration ratio of the  

proposed method can be calculated to be 30, while that 

of the algorithm in [30] is 2.6. The imaging efficiency is 

enhanced obviously. 
 

 
  (a)                  (b) 

 
(c)                  (d) 

 
(e)                  (f) 

 
(g)                  (h) 

 

Fig. 5. 2D scene imaging results with scatters located at 

different range positions. (a) True scene with 4 point-like 

scatters located in the range of approximately 4.5 m and 

6.9 m. (b) Result of slight-windowed IFFT with respect to 

g with a window length of 16. (c) Result of IFFT operation 

with respect of g. (d), (e) Images obtained with the   

proposed method. (f), (g) Images obtained with the 

method of [30]. (h) Is an image obtained by ensemble  

H corresponding to [2,8] m.  
 

Let us analyze the computational complexity of  
the proposed algorithm. The reconstructed approach  

employed in this paper is the OMP algorithm, whose 

computational complexity is ( )O LMN  [34],[35]. L is 

the number of iterations, M is the number of frequency 

points, and N is the number of unknown voxels in the ROI. 

It should be noted that L M N . The computational 

cost of the proposed algorithm is mainly from step 3 to 

step 6 of the summarization. Assuming that the length  

of the sliding window is m, then the scene could be   

decomposed to m range cells. In step 3, the cost of  

IFFT operations is ( log( ))O m m . K denotes the number 

of IFFT operation, given by 1K M m= − + . Then, the 

total computation cost is ( log( ))O Km m . In step 4, the  

computational cost is ( log( ))O M M  . Define n as the  

R1 to R2 ratio. The computational cost of calculating 

measurement matrix Φ   is log( )  =
N

K m m
mn

 

log( )
KN

m
n

 in step 5. In step 6, since the different range 

cells could be processed in parallel, the computational 

cost is ( )O LKN mn . Therefore, the total computational 

cost of the proposed algorithm is: 

( log( ) log( ) log( ) )
N N

O Km m M m K m LK
n mn

+ + + . (36) 

Although the computational complexities of both 

the proposed algorithm and the brute force method are 

( )O N  , the memory requirements of our approach for 

calculating and storing the measurement matrix are   

decreased sharply. The cost reduction benefits from the 

sharp drop of the ROI and the parallel processing of  

partitioned range cells. Furthermore, considering the 

high dimensionality feature of imaging information, the 

total computational costs are lowered significantly.  

 

VI. CONCLUSIONS 
In this paper, we propose a fast range decoupling  

algorithm that can reconstruct the partitioned range area 

in real-time. This proposed algorithm has a lower   

computational cost and a higher imaging efficiency, due to 

the ROI reduction and the parallel way of reconstructing 

the scene. Moreover, the method could produce real-time 

images of far-field scenes. Further research will concentrate 

on improving the algorithm in practical applications. 
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