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Abstract – Many scientific and technological applica-
tions make use of strong microwave fields. These are
often realized in conjunction with microwave resonators
that have small geometric features in which such fields
are generated. For example, in magnetic resonance, large
microwave and RF magnetic fields make it possible
to achieve fast control over the measured electron or
nuclear spins in the sample and to detect them with
high sensitivity. The numerical analysis of resonators
with small geometric features can pose a significant
challenge. This paper describes a general method of
analysis and characterization of surface microresonators
in the context of electron spin resonance (ESR) spec-
troscopy and spin-based quantum technology. Our anal-
ysis is based on the Electric Field Integral Equation
(EFIE) and the Poggio-Miller-Chang-Harrington-Wu-
Tsai (PMCHWT) formulation. In particular, we focus
on a class of resonator configurations that possesses
extremely small subwavelength features, which normally
would require an ultra-fine mesh. We present several effi-
cient techniques to numerically model, solve, and ana-
lyze these types of configurations for both normal and
superconducting structures. The validation of these tech-
niques is established both numerically and experimen-
tally by the S11 parameters as well as the provision of
direct mapping of the resonator’s microwave magnetic
field component using a unique electron spin resonance
micro-imaging method.

Index Terms – electric field integral equation, electron
spin resonance, surface resonators.

I. INTRODUCTION
Surface microresonators belong to a subclass of pla-

nar printed resonators [1]. They constitute a key com-
ponent in many scientific and technological applications
ranging from filters [2] and oscillators [3] for analog
and digital communications to building blocks for meta-
materials [4] and including quantum technology [1, 6].
Essentially, this is a result of the richness of resonator

topologies, which can be generated and rendered opti-
mal for various uses. Indeed, recent advances in fabrica-
tion techniques [7] and lower manufacturing costs allow
designing such surface resonator configurations to obtain
the desired microwave (MW) field distribution in a cer-
tain bandwidth (BW).

One of the emerging fields of application of sur-
face resonators is magnetic resonance and specifically
electron spin resonance (ESR) [8]. This method makes
use of such resonators to focus the microwave magnetic
field component on a small region in space [9], thereby
increasing the effectiveness, and especially the sensitiv-
ity, of ESR [10, 11]. The capability to generate specific
MW magnetic field patterns can be useful in a variety
of ESR applications such as the detection and imaging
of defects on the surface and subsurface of semicon-
ductors [12], measurements of paramagnetic monolay-
ers [13], and the inspection of small biological systems
[14]. Many types of ESR surface resonators are often
comprised of a mixed structure of metallic and dielec-
tric parts and characterized by areas with small geomet-
ric features that can range from 0.01 λ to even 10−6 λ ,
where λ is the operating wavelength. In terms of full
Electromagnetic (EM) simulation, this results in an ultra-
fine mesh in and around these areas. Therefore, achiev-
ing an accurate numerical solution presents a difficulty
that in many applications, and especially in ESR, may be
critical. Primarily, this is because the system’s ultimate
performance is determined by the resonator’s properties
such as its filling factor [15]:

η f =

∫
Sample |Ht |2dv∫

Resonator |H|2dv
,

where Ht is the component of the MW magnetic field
that is tangential to B0, the direction of the static field,
and |H| is the modulo of the MW magnetic field. This
means that finding η f requires an accurate solution of
the resonant MW fields all over the resonator, both near
and far from its core.
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Another difficulty originates in the inclusion of a
long (several wavelengths) excitation device (typically
a microstrip line), which further amplifies the need to
address the challenge of having objects with dimen-
sions spanning many orders of magnitude with respect
to λ . Our experience has shown that for these types of
EM problems, leading commercial EM solvers such as
CST or HFSS, which are based on the Finite Difference
Time Domain (FDTD) [16], or Finite Element Method
(FEM) [17], frequently fail to achieve a numerical solu-
tion with the desired degree of accuracy within a reason-
able time frame. Essentially, this is because such a solu-
tion requires a very fine mesh across most of the volume
defined by the boundary box. Numerical solvers based
on Method of Moments (MoM) [18] and Surface Inte-
gral Equation (SIE) [19] methods can solve this obstacle
given that once the surface currents are known, it is pos-
sible to have accurate data throughout the entire space.
Yet, naively employing MoM solvers is not sufficient, in
particular for configurations of surfaceresonators with an
overall size of ∼0.1 λ that have 10−5 λ features whose
numerical solution involves solving a matrix system with
an extremely high condition number (1011–1015).

Here, we present a numerical MoM-SIE solver
based on the Electric Field Integral Equation (EFIE)
[20] and the Poggio-Miller-Chang-Harrington-Wu-Tsai
(PMCHWT) [21, 22] formulation for general compos-
ite structures that have been optimized for EM problems
involving the complex geometries common in the field
of ESR surface resonators. This paper aims to present
our advanced techniques for obtaining an accurate and
efficient numerical solution to these challenging types
of EM problems while providing experimental valida-
tion of the theoretical results. The increased efficiency
with respect to calculation time and memory usage is
revealed when comparing our algorithm to the industry
standard CST frequency domain and integral equation
solvers. This efficiency is attributed to three main fea-
tures of this work: (i) the achievement of reasonable con-
dition numbers by applying proper model discretization,
even for very fine physical features; (ii) the application
of unique procedures for matrix system precondition-
ing; and (iii) the implementation of Impedance Boundary
Conditions (IBC) to represent thin conductors as a sur-
face impedance to exclude ultra-small elements that sig-
nificantly increase the impedance matrix condition num-
ber and to account for lossy realistic structures.

II. 2 EFIE-PMCHWT SURFACE INTEGRAL
EQUATIONS

A. Formulation
The EFIE-PMCHWT formulation applies the EFIE

to open/closed metallic surfaces and the PMCHWT to
dielectric domains [23]. Closed metallic surfaces can

also be treated with the Combined Field Integral Equa-
tion (CFIE) [24] to remove interior resonances. However,
thin conductors are required to be modeled as open sur-
faces, either to make use of Impedance Boundary Con-
ditions (IBC) [25] or because they practically cannot
be modeled as closed surfaces, as explained in Section
3.2. Here, the EFIE-PMCHWT equations are reviewed
with respect to the following EM scattering problem,
illustrated in Fig. 1. Consider a time-harmonic regime
with a time factor e jω t and a primary or incident field
(EInc, HInc) illuminating domains Dc, D1 immersed in an
unbounded background medium D0 whose impedance is
η0. Here, Dc represents a thin conductor modeled as an
open surface Sc with surface impedance Zs. Sc is assumed
to have a radius of curvature that is large compared to the
operating wavelength λ . D1 denotes a dielectric domain
enclosed by a surface S1 with material properties ε1 and
µ1. Let Es and Hs be the secondary microwave fields
generated by J and M representing electric and magnetic
surface currents, respectively. We define integral opera-
tors Ti and Ki associated with region i ∈ [0,1], acting on
vector field F across a surface S, by [20, 24]

Ti(F) = jkln̂×
∫

S

(
I+

∇∇

k2
i

)
Gi

(
r,r′

)
F
(
r′
)

dr′, (1)

ki(F) = n̂×
∫

S
∇Gi

(
r,r′

)
×F

(
r′
)

dr′. (2)

Here, n̂is the surface normal of S,G(r,r′) is the
Green’s function of an infinite homogeneous medium
with wavenumber ki given by:

Gi
(
r,r′

)
=

e− jki|r−r′|

4π |r− r′|
, (3)

and I represents the identity operator.
For conductors with |Zs| << η0, the boundary con-

dition on Sc can be approximated as [25]:
T0 (η0J)+ZSJ× n̂−K0(M) =−n̂×EInc , (4)

and on the surface S1 the boundary conditions read [21]:
1

∑
i=0

ηi

η0
Ti (ηiJ)−

1

∑
i=0
Ki(M) =−n̂×Elnc, (5)

1

∑
i=0

η0

ηi
Ti(M)+

1

∑
i=0
Ki (η0M) =−η0n̂×HInc, (6)

with ηi being the impedance of region i. Equation
(4) represents the EFIE and (5) and (6) represent the
PMCHWT.

B. Discretization
The numerical solution is obtained by transforming

the EFIE-PMCHWT equations (4), (5), and (6) into a
matrix system. First, J and M are approximated in terms
of vector basis functions:

J =
Ne

∑
n=1

anfn, M =
Nm

∑
n=1

bnfn, (7)



681 ACES JOURNAL, Vol. 37, No. 6, June 2022

2 

 

or HFSS, which are based on the Finite Difference Time 

Domain (FDTD) [16], or Finite Element Method (FEM) 

[17], frequently fail to achieve a numerical solution with 

the desired degree of accuracy within a reasonable time 

frame. Essentially, this is because such a solution 

requires a very fine mesh across most of the volume 

defined by the boundary box. Numerical solvers based 

on Method of Moments (MoM) [18] and Surface Integral 

Equation (SIE) [19] methods can solve this obstacle 

given that once the surface currents are known, it is 

possible to have accurate data throughout the entire 

space. Yet, naively employing MoM solvers is not 

sufficient, in particular for configurations of surface 

resonators with an overall size of ∼0.1 λ that have 10
−5 

λ features whose numerical solution involves solving a 

matrix system with an extremely high condition number 

(1011–1015).  

Here, we present a numerical MoM-SIE solver 

based on the Electric Field Integral Equation (EFIE) [20] 

and the Poggio-Miller-Chang-Harrington-Wu-Tsai 

(PMCHWT) [21, 22] formulation for general composite 

structures that have been optimized for EM problems 

involving the complex geometries common in the field 

of ESR surface resonators. This paper aims to present our 

advanced techniques for obtaining an accurate and 

efficient numerical solution to these challenging types of 

EM problems while providing experimental validation 

of the theoretical results. The increased efficiency with 

respect to calculation time and memory usage is revealed 

when comparing our algorithm to the industry standard 

CST frequency domain and integral equation solvers.  

This efficiency is attributed to three main features of this 

work: (i) the achievement of reasonable condition 

numbers by applying proper model discretization, even 

for very fine physical features; (ii) the application of 

unique procedures for matrix system preconditioning; 

and (iii) the implementation of Impedance Boundary 

Conditions (IBC) to represent thin conductors as a 

surface impedance to exclude ultra-small elements that 

significantly increase the impedance matrix condition 

number and to account for lossy realistic structures. 

II. 2 EFIE-PMCHWT SURFACE 

INTEGRAL EQUATIONS 
A. Formulation 

The EFIE-PMCHWT formulation applies the EFIE 

to open/closed metallic surfaces and the PMCHWT to 

dielectric domains [23]. Closed metallic surfaces can 

also be treated with the Combined Field Integral 

Equation (CFIE) [24] to remove interior resonances. 

However, thin conductors are required to be modeled as 

open surfaces, either to make use of Impedance 

Boundary Conditions (IBC) [25] or because they 

practically cannot be modeled as closed surfaces, as 

explained in Section 3.2. Here, the EFIE-PMCHWT 

equations are reviewed with respect to the following EM 

scattering problem, illustrated in Fig. 1. Consider a time-

harmonic regime with a time factor ejωt and a primary or 

incident field (EInc, HInc) illuminating domains Dc, D1 

immersed in an unbounded background medium D0 

whose impedance is η0. Here, Dc represents a thin 

conductor modeled as an open surface Sc with surface 

impedance Zs. Sc is assumed to have a radius of curvature 

that is large compared to the operating wavelength λ. D1 

denotes a dielectric domain enclosed by a surface S1 with 

material properties ϵ1 and μ1. Let Es and Hs be the 

secondary microwave fields generated by J and M 

representing electric and magnetic surface currents, 

respectively. We define integral operators Ti and Ki 

associated with region i ∈ [0,1], acting on vector field F 

across a surface S, by [20, 24] 

 , (1) 

 . (2) 

Here, is the surface normal of S,  is the 

Green’s function of an infinite homogeneous medium 

with wavenumber  given by: 

 , (3) 

 

and represents the identity operator. 

For conductors with |Zs|<<η0, the boundary 

condition on Sc can be approximated as [25]: 

 , (4) 

 
Fig. 1. Scattering by composite conductor and dielectric 

structures. The solid black line corresponds to an open 

surface Sc modeling a thin conductor associated with a 

domain Dc. The dashed line corresponds to a surface S1 

enclosing a dielectric domain D1. 
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Fig. 1. Scattering by composite conductor and dielectric
structures. The solid black line corresponds to an open
surface Sc modeling a thin conductor associated with a
domain Dc. The dashed line corresponds to a surface S1
enclosing a dielectric domain D1.

where fn is the Rao-Wilton-Glisson (RWG) basis func-
tion [20] assigned to the edge en defined as (Fig. 2).

fn(r) =


Ln

2A+
n
(r− v+n ) ,r ∈ T+

n
Ln

2A−
n
(v−n − r) ,r ∈ T−

n .

0, otherwise.
, (8)

Here, A±
n is the area of the triangular patch T±

n ,Ln is
the length of the common edge en, and v+n is the ver-
tex of T±

n . An RWG function domain is displayed in
Fig. 2. The an and bn parameters are associated with Ne
unknown electric and Nm magnetic current amplitudes,
respectively. The values of Ne and Nm are determined
by the number of edges associated with each surface
so that Ne corresponds to both conductor and dielec-
tric surfaces Sc ∪ S1, whereas Nm applies only to Sd =
S1 \ Sc. The latter condition applies only for conduc-
tors with |Zs|<<η0, where the magnetic edges lying in
Sc are removed (note that for their correct removal, the
meshes applied to opposite sides of the interface must be
identical). To discretize the EFIE-PMCHWT equations,
the Galerkin method is applied so that (4), (5), and (6)
are tested using {fm1, em1 ∈ Sc}, {fm2, em2 ∈ S1}, and
{fm3, em3 ∈ Sd}, respectively. This procedure results in
the following matrix equation:

Ne

∑
n=1

(ik0η0Am1,0 +Cm1n)an +
Nm

∑
n=1
Bm1n,0bn =V E

m2
, (9)

Ne

∑
n=1

1

∑
i=0

jkiηiAm2n,ian +
Nm

∑
n=1

1

∑
i=0
Bm2n,ibn =V E

m2
, (10)

Nm

∑
n=1

1

∑
i=0

ji
Am3n,i

ηi
bn −

Ne

∑
n=1

1

∑
i=0
Bm3n,ian =V H

m3
, (11)

Here we define:

Amn,i =
∫

S
fm(r) ·

∫
S

fn
(
r′
)

Gi
(
r,r′

)
dr′dr− (12)

k−2
i

∫
S

∇s · fm(r)
∫

S
∇
′S · fn

(
r′
)

Gi
(
r,r′

)
dr′dr,

Bmn,i =
∫

S
fm(r) ·

∫
S

fn
(
r′
)
×∇

′Gi
(
r,r′

)
dr′dr,

(13)

Cmn = Zs

∫
S

fm(r) · fn(r)dr, (14)

V E
m =

∫
S

fm(r) ·EInc(r)dr, (15)

V H
m =

∫
S

fm(r) ·Hlnc(r)dr. (16)

Hence, the impedance matrix Z is of the form:

Z =

 ZEJ
c ZEM

c
ZEJ

d ZEM
d

ZHJ
d ZHM

d

 , (17)

where the elements of the block matrices are:{
ZEJ

c
}

m∈m1,n=1...Ne
= jk0η0Am1,0 +Cm1n,0, (18){

ZEM
c

}
m∈m1,n=1...Nm

= Bm1n,0, (19){
ZEJ

d
}

m∈m2,n=1...Ne
=

1

∑
i=0

jkiηiAm2n,i, (20)

{
ZEM

d
}

m∈m2,n=1...Nm
=

1

∑
i=0
Bm2n,i, (21)

{
ZHJ

d
}

m∈m3,n=1,...Ne
=

1

∑
i=0

−Bm3n,i, (22)

{
ZHM

d
}

m∈m3,n=1..Nm
=

1

∑
i=0

jki

ηi
Am3n,i. (23)

The evaluation of the double integrals (12) to (16)
is performed using the singularity subtraction technique
with closed-form integral representations [26].

III. SIMULATION OF ESR RESONATOR
CONFIGURATIONS

A. Model
ESR surface resonators typically operate in the

range of 1–100 GHz where their size is, in most cases,
much smaller than the resonant wavelength. Figure 3
shows a typical layout of the “ParPar” (“butterfly” in
Hebrew) surface resonators we have recently developed
[27]. It consists of a thin (50–500 nm) butterfly-shaped
conductor (either normal or superconductor) printed
on a thick (100–500 µm) dielectric substrate whose
width/length is typically 1.2 – 1.6 mm The bridge (at
the center of Fig. 3 (a)) is chosen so that it maxi-
mizes the magnetic field in a particular region of thin
(≤ 200 µm) samples that cover the resonator plane
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Fig. 2. An RWG function fn composed of a pair of 

triangular patches  and common to the nth edge 

en. 

 

 

Fig. 2. An RWG function fn composed of a pair of trian-
gular patches T+n and T−n common to the nth edge en.

(i.e., the substrate’s upper plane). The resonators are
inductively coupled by a microstrip line placed 10 – 300
µm below the substrate’s bottom plane, where critical
(optimal) coupling [28] can be achieved by moving the
resonator in the x-y plane (Fig. 3 (b)). The microwave
configuration composed of a surface resonator and a
microstrip transmission line can be represented by the
equivalent circuit shown in Fig. 4.

B. Boundary conditions
Common ESR surface resonators consist of

extremely thin conductors (including those associated
with the microstrip) whose thickness ts can be smaller
than the penetration depth ∆ for normal conductors
(e.g., copper, silver, etc.) and the London penetration
depth ∆ [29] for superconductors1. As a result, the use
of Impedance Boundary Conditions (IBC) is critical
because modeling the conductors as closed surfaces
might result in ill-conditioned matrix systems, as
explained in detail in the following subsection. The
implementation of IBC is performed using the single
sheet model [30], in which the conductor is modeled as
a single sheet with the appropriate surface impedance
Zs. The value of Zs depends on the type of conductor
(normal or superconductor) used. In the case of normal
conductors, the surface impedance is given by [30]:

Zs =
κ

σ

eκts + ση−κ

ση+κ
e−κts

eκts − ση−κ

ση+κ
e−κts

, (24)

where η is the medium impedance, σ is the complex
conductivity, and κ = (1+j)

√
(ωµσ /

√
2.

1 The term ”superconductors” refers here to materials that exhibit
zero DC conductivity at low temperatures and have finite RF surface
resistance, such as YBCO or Nb, and not to PEC. Moreover, even if
the metals are considered to be PEC at DC, from the physical point
of view, conductors whose thickness is smaller than the corresponding
penetration depth can no longer be treated as perfect electric/magnetic
conductors.
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Fig. 3. ESR microwave configuration. (a) General layout 

of the ParPar surface resonator. The dashed rectangular 

line indicates the bridge whose length and width are BL 

and BW, respectively. The arcs’ radii R and h denote the 

complementary physical characteristics of the ParPar 

resonator. (b) Excitation of ParPar by a microstrip line. 

 
Fig. 4. Equivalent circuit for ESR microwave 

configuration. The microstrip line and surface resonator 

are represented by the elements R0 and R, L, and C, 

respectively. β denotes the inductive coupling 

coefficient. 

 

 

 

 

 

 

 

 

 

Fig. 3. ESR microwave configuration. (a) General lay-
out of the ParPar surface resonator. The dashed rectangu-
lar line indicates the bridge whose length and width are
BL and BW , respectively. The arcs’ radii R and h denote
the complementary physical characteristics of the ParPar
resonator. (b) Excitation of ParPar by a microstrip line.
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Fig. 4. Equivalent circuit for ESR microwave configura-
tion. The microstrip line and surface resonator are repre-
sented by the elements R0 and R, L, and C, respectively.
β denotes the inductive coupling coefficient.

For superconductors, the surface impedance is [30]:

Zs = jωµλL

ets/λL +
η − jωµλL

η + jωµλL
e−t,/λL

ets/λL − η − jωµλL

η + jωµλL
e−ts/λL

. (25)
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The single sheet model can also be applied to either
planar or non-planar surfaces whose radii are much
greater than the operating wavelength.

Note that regardless of the type of conductor used,
the underlying assumption of the boundary impedance
model is that the corresponding penetration depth is not
much greater than the conductor’s thickness [30]. In this
paper, we focus on structures fabricated out of planar
normal conductors, while our latest paper [31] deals with
resonators made of a superconducting material.

C. Impedance matrix preconditioning and inversion
As mentioned in the previous subsection, the use

of IBC alleviates the need for solving ultra-small ele-
ments (compared to the operating wavelength) result-
ing from the inclusion of thin finite conductors. Math-
ematically, the presence of small elements gives rise to
an impedance matrix whose condition number grows as
(kδ a) −2 [32]. Here δ a is the weighted average edge
length of the mesh so that smaller edges are given
more weight. The increase in the condition number
results mainly from the EFIE matrix system becom-
ing severely ill-conditioned with increasing mesh den-
sity and decreasing element size. In cases where direct
solvers cannot be applied (e.g., for large matrix systems),
this eventually leads to slowly- or non-converging iter-
ative solvers, namely a dense discretization breakdown
[33]. In fact, the mesh applied to a specific model is of
importance, and this is especially true for MoM-based
integral equations solvers [34–36]. However, numeri-
cally solving a microwave configuration composed of an
electrically large microstrip line and a small surface res-
onator possessing fine and localized geometric features
still requires solving a large impedance matrix whose
condition number is considerably high (e.g., 108–1014

when solving typical ParPar layouts, as described above).
Furthermore, the resulting MW fields are required to be
very accurate within the sample volume and at least 1
µm spatial resolution is necessary for resolving ultra-
small samples (i.e., with volume ≤ 1 nL). Therefore,
the impedance matrix must be preconditioned properly
to improve its condition number and enable an accurate
solution to the problem.

Theoretically, preconditioning can be based either
on simple algebraic techniques, such as incomplete
LU (ILU) factorization [37, 38] or approximate inverse
preconditioners [39] or on a more physical class of
preconditioners, such as the Calderon Multiplicative
Preconditioner (CMP) [40]. On the one hand, under
quasi-uniform discretization, Calderon identity-based
preconditioners might result in a condition number
whose upper bound can be independent of δ a [41], while
algebraic preconditioners still exhibit a growing condi-
tion number as δ a decreases. On the other hand, CMP

might not be applicable to these types of problems for the
following reasons: first, improving the condition num-
ber in the presence of a non-uniform mesh is not guar-
anteed, given that the CMP-EFIE method still suffers
from an inaccuracy problem at low frequencies asso-
ciated with quasi-static regions [42, 43], and imposing
a uniform mesh is not practical, especially in complex
ESR resonators geometries. Second, employing CMP
for open surfaces is less effective because the condi-
tion number might grow similarly to the EFIE matrix
system [44]. Third, for a matrix system that can be
preconditioned algebraically, applying CMP can be a
time-consuming procedure due to an excess in matrix-
matrix and matrix-vector products. Fourth, CMP might
not be trivially extended for EFIE-PMCHWT formula-
tions, whereas an extra challenge is added by the inclu-
sion of IBC. The latter also applies to other formulations,
such as multiple-traces PMCHWT [45], that can lead to
a well-conditioned impedance matrix in configurations
comprising perfectly conducting objects.

As shown in Section IV.C below, a matrix precon-
ditioned via an incomplete LU factorization can signifi-
cantly improve its condition number. In particular, com-
pared to the left ILU preconditioner, which multiplies the
impedance matrix on the left, the right ILU precondi-
tioner is much more efficient and provides exceptional
iterative solver convergence speed: up to 30 GMRES
iterations to achieve relative residuals < min (10−6, con-
dition number−1) with respect to the unpreconditioned
matrix system. Calculating the residual in this manner
excludes either delayed or premature convergence asso-
ciated with left preconditioners [46]. Typically, for con-
dition numbers > 1011, the left ILU becomes less practi-
cal due to slow convergence and an inaccurate numerical
solution compared to the right ILU. Moreover, the stan-
dard diagonal preconditioner (DP) cannot resolve con-
dition numbers ≥ 108 and results in non-convergence.
Mathematically, solving configurations near resonance
requires a substantial decrease in the matrix’s high con-
dition number, which cannot be achieved by decreasing
the dominance of its diagonal alone. However, the DP
can lower the condition number by 2 – 3 orders of mag-
nitude; therefore, it can be applied prior to the left ILU
preconditioner to enhance convergence.

As for the particular iterative solver to be used,
there are several methods to choose from, including the
generalized minimum residual (GMRES) method pro-
posed by Saad and Schultz [47], the biconjugate gradi-
ent (BiCG) developed by Fletcher [48], the conjugate
gradient squared (CGS) method proposed by Sonneveld
[49], the transpose-free quasiminimal residual method
(TFQMR) by Freund and Nachtigal [50], and van der
Vorst’s gradient stabilized (BiCGSTAB) [51] method.
While they are applicable to our problems, GMRES
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Fig. 5. SEM photos of ParPar2 surface resonators. (a) 

Low magnification. (b) High magnification. 
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results that demonstrate the time efficiency and the 

accuracy of our method to resolve complex ESR 

microwave resonator configurations. In particular, we 

show accurate near-field solutions that were validated 

via a sensitive and unique ESR microimaging setup. 

Three types of ParPar surface resonators were tested: 

ParPar50, ParPar20, and ParPar2, whose bridge sizes 

(BW, BL – see Fig. 3a) are (25 µm, 50 µm), (10 µm, 20 

µm), and (1 µm, 2 µm), respectively. Each of these 

resonators consisted of a 0.5 µm-thin copper 

metallization printed on LaAlO3 or silicon dielectric 

substrates (1.6 mm × 1.6 mm × 0.2 mm) with 

permittivity of ∼24 and ∼11.5, respectively. The arcs’ 

radii R (Fig. 3a) were 380 µm for the LaAlO3 substrate, 

and 560 µm for the silicon substrate. Figs. 5a and 5b 

show the scanning electron microscope (SEM) photos of 

the ParPar2 resonator for illustration purposes. Coupling 

to the resonators was achieved via a 0.46 mm-wide 

microstrip line (RO4003 LoPro Series, Rogers Corp., 

thickness of 0.22 mm) whose end was placed 10 µm, 12 

Fig. 5. SEM photos of ParPar2 surface resonators. (a)
Low magnification. (b) High magnification.

with right ILU preconditioning has provided the fastest
convergence. Accordingly, in this work, we employed
GMRES with residue tolerance of min(10−6, condition
number−1) following ILU factorization performed with
pivoting (ILUP [47]) and drop tolerance of 10−6.

IV. NUMERICAL & EXPERIMENTAL
RESULTS

A. ParPar topology
This section presents numerical and experimental

results that demonstrate the time efficiency and the accu-
racy of our method to resolve complex ESR microwave
resonator configurations. In particular, we show accu-
rate near-field solutions that were validated via a sensi-
tive and unique ESR microimaging setup. Three types
of ParPar surface resonators were tested: ParPar50,
ParPar20, and ParPar2, whose bridge sizes (BW , BL – see
Fig. 3 (a)) are (25 µm, 50 µm), (10 µm, 20 µm), and (1
µm, 2 µm), respectively. Each of these resonators con-
sisted of a 0.5 µm-thin copper metallization printed on
LaAlO3 or silicon dielectric substrates (1.6 mm × 1.6
mm × 0.2 mm) with permittivity of ∼24 and ∼11.5,
respectively. The arcs’ radii R (Fig. 3 (a)) were 380
µm for the LaAlO3 substrate, and 560 µm for the sil-

icon substrate. Figures 5 (a) and 5 (b) show the scan-
ning electron microscope (SEM) photos of the ParPar2
resonator for illustration purposes. Coupling to the res-
onators was achieved via a 0.46 mm-wide microstrip
line (RO4003 LoPro Series, Rogers Corp., thickness of
0.22 mm) whose end was placed 10 µm, 12 µm, and
190 µm below the substrate’s bottom plane for ParPar50,
ParPar20, and ParPar2, respectively. Note that an induc-
tive coupling to ParPar2 is much more challenging, con-
sidering the magnetic flux generated by the millimeter-
scale microstrip line. The comparison between measured
and calculated reflection coefficients S11 is presented in
Figs. 6 and 7; in all cases (Figs. 6 (a) to 6 (c) and 7 (a) to
7 (c)), the resulting maximal relative error between the
measured and calculated S11 is < 2% in the resonance
and < 5% in the 3 dB BW. This fine agreement is defi-
nitely not trivial, in particular for the ParPar2 resonator
whose structure was discretized with an average element
λ /50 in size (minimum edge length δ m of 3×10−5 λ ),
resulting in a MoM matrix condition number of ∼1013.
The calculated resonant magnetic field distributions for
ParPar50, ParPar20, and ParPar2 geometries are pre-
sented in Figs. 8 (a) to 8 (c), respectively. Evidently, in
all cases, the magnetic field is mostly localized in and
around the bridge. The pattern of this mode can be ver-
ified via 2D ESR microimaging [52], considered to be a
very sensitive method to reveal the intensity of the actual
microwave magnetic field. Additional details about the
ESR imaging procedure used in this work are provided in
the Appendix. For example, results of the imaging exper-
iments carried out with ParPar50 and ParPar2 (Fig. 9)
showed that the desired mode is indeed excited in both
cases.

B. Impedance matrix preconditioning
In this section, we demonstrate our method’s capa-

bility to solve the high condition number matrices result-
ing from the discretization of ParPar2 and ParPar20
surface resonators (LaAlO3 substrate). On both struc-
tures, the simulations were repeated for 11 non-uniform
discretizations with an average edge length δ a that
varied from 0.02 λ r to 0.05 λ r,, corresponding to
4016 RWG functions for the largest δ a and 16248 for
the smallest. Here, λ r is the resonant wavelength at
36.3 GHz For all discretizations, the minimum edge
lengths were kept the same—3×10−5 λ r and 3×10−4 λ r
for ParPar2 and ParPar20, respectively. Figure 10 (a)
presents the resulting condition numbers of the EFIE-
PMCHWT matrices for simulated ParPar2 and ParPar20.
Regarding Fig. 10 (a), the minimum condition num-
ber (1012) of the ParPar2 impedance matrix is 2 orders
of magnitude larger than the maximum condition num-
ber of the ParPar20 matrix. These results clearly sug-
gest that discretizations having a lower δ m-to-δ a ratio
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Fig. 6. Measured and calculated reflection coefficient S11 

for LaAlO3 resonators. (a) ParPar50, (b) ParPar20, and 

(c) ParPar2. 
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Fig. 6. Measured and calculated reflection coefficient S11
for LaAlO3 resonators. (a) ParPar50, (b) ParPar20, and
(c) ParPar2.
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Fig. 7. Measured and calculated reflection coefficient 

S11 for silicon resonators. (a) ParPar50, (b) ParPar20, 

and (c) ParPar2. 
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Fig. 8. Calculated normalized magnitude of resonant 

magnetic field distributions 16 µm, 8 µm, and 4 µm 

above the substrate’s upper plane for (a) silicon-

ParPar50, (b) LaAlO3-ParPar20, and (c) LaAlO3-
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Fig. 7. Measured and calculated reflection coefficient S11
for silicon resonators. (a) ParPar50, (b) ParPar20, and (c)
ParPar2.
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Fig. 8. Calculated normalized magnitude of resonant 

magnetic field distributions 16 µm, 8 µm, and 4 µm 

above the substrate’s upper plane for (a) silicon-

ParPar50, (b) LaAlO3-ParPar20, and (c) LaAlO3-

Fig. 8. Calculated normalized magnitude of reso-
nant magnetic field distributions 16 µm, 8 µm, and
4 µm above the substrate’s upper plane for (a)
silicon-ParPar50, (b) LaAlO3-ParPar20, and (c) LaAlO3-
ParPar2, respectively. (d) The corresponding CST results
for LaAlO3-ParPar2.
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Fig. 9. Results of ESR microimaging carried out with (a) 

ParPar50 using a silicon substrate and (b) ParPar2 using 

LaAlO3. Both resonators were covered completely by a 

sample consisting of paramagnetic microcrystals, which 
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the Appendix. 

 

Commented [7]: This should appear directly before 
Figure 8 on the same page 

Fig. 9. Results of ESR microimaging carried out with
(a) ParPar50 using a silicon substrate and (b) ParPar2
using LaAlO3. Both resonators were covered completely
by a sample consisting of paramagnetic microcrystals,
which resulted in a non-uniform (grainy) mode image. A
detailed description of the experiments can be found in
the Appendix.

are significantly more susceptible to higher condition
numbers than more uniform discretizations with smaller
δ a values. In practical terms, this means that extra
mesh refinements of subwavelength regions, which cor-
respond to an excessive presence of smaller elements,
can greatly impair the quality of the numerical solu-
tion. Figure 10 (b) presents the performance of the
diagonal preconditioner (DP) with left and right ILU
ILU applied to resolve the high condition numbers of
the impedance matrix for the aforementioned discretiza-
tions of ParPar2. Applying the right ILU allows for
the convergence of GMRES (relative residual < condi-
tion number−1) on every discretization, while the left
ILU preconditioner becomes less effective for dense
discretizations so that the GMRES residual gradually
increases and surpasses 10−6. Thus, while memory usage
for the left and right ILU were quite similar, the right
ILU typically required < 15 iterations to converge, for all
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examined discretizations, whereas the left ILU resulted
in ≥ 30 iterations and non-convergence (a stagnation of
the GMRES) for condition numbers < 1012, and ≥ 1012,
respectively. Note that using DP alone could not resolve
these high condition numbers, even for the coarsest dis-
cretization. Namely, the iterative solver did not converge
when attempting to solve the diagonally preconditioned
impedance matrix. In practice, we found the tolerance of
10−6 to be unachievable by GMRES, which stagnated
after 300 iterations

Lastly, to illustrate the importance of the right
ILU preconditioner, we attempted to solve the ParPar2
structure for extremely fine discretization—32450 RWG
functions at a resonance of 36.3 GHz While the GMRES
stagnated following 800 iterations using the left ILU,
for the right ILU-preconditioned impedance matrix we
achieved GMRES convergence following 101 iterations.
Therefore, we conclude that the left ILU preconditioner
can be ineffective to solve complex structures near reso-
nance, in particular for very fine discretizations and large
matrices.

C. Comparison with CST
In the last section, our MoM-based solver is

compared with the CST Frequency Domain Solver
(Fsolver) via simulation of the configuration composed
of the LaAlO3-ParPar2 resonator and a microstrip line
described in previous sections. Both solvers were com-
pared regarding simulation time per frequency point
(STPFP) and the number of unknowns (NoU) resolved
for near-field and S11 convergence (i.e., < 0.2% norm
variation), where near-field convergence was tested using
108 grid points within a 1.6 mm × 1.6 mm × 100 µm
sample volume situated above the resonator’s surface.
Figure 8 (d) shows the corresponding CST results depict-
ing the resonant magnetic field distribution (respective to
Fig. 8 (c)). All simulations were carried out on a 3.2 GHz
Intel Xeon 1660 processor. The results are summarized
in Table 1.

It is evident from Table 1 that while our MoM
solver required the same NoU for both S11 and near-
field convergence, the CST Fsolver required almost dou-
ble NoU to converge in the near-field region. More-
over, for CST, an additional manual mesh refinement
was required at the center of the resonator, as it was
not refined properly during the adaptive mesh refine-
ment process. 650774757Note that being an FEM-based
method,the CST

Fsolver divided the geometric model into a large
number of tetrahedra within a predefined bounding
box—a property that results in a very large matrix sys-
tem to solve. In terms of simulation time, both solvers
were comparable regarding STPFP (∼210–270 s) to
achieve S11 convergence. However, the STPFP of the
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initial calculation required for mesh refinement. 
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Fig. 10. Performance of the DP with left and right ILU to
precondition the EFIE-PMCHWT impedance matrix of
ParPar20 and ParPar2. (a) Condition number of ParPar20
and ParPar2 impedance matrices. (b) GMRES residual
following ≤ 30 iterations.

CST Fsolver for nearfield convergence was ∼430 s, due
to the need for a much finer mesh in the sample region.
Furthermore, the total simulation time per frequency
point plus the duration required for the adaptive mesh
refinement process for the Fsolver was typically > 1 hour
due to the time-consuming adaptive mesh refinement
process. Contrastingly, in the case of EFIE-PMCHWT,
the total simulation time and STPFP were equivalent. We
also note that the MoM solver greatly outperformed the
CST Fsolver when applying the right ILU as a precon-
ditioner, whereas a left ILU-preconditioned impedance
matrix resulted in very slow convergence of the iterative
solver—the STPFP was ∼4 times larger than the cor-
responding right ILU preconditioner. The total simula-
tion times calculated for 21 frequency steps in a range of
34–39 GHz were approximately 210 minutes (including
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Table 1: Comparative typical simulation times for the
ParPar2 configuration. The STPFP does not include the
initial calculation required for mesh refinement
EM Solver S11

convergence
Near-field
convergence

NoU STPFP
[s]

NoU STPFP
[s]

CST Fsolver ∼270,000 270 >600,000 431
EFIE-
PMCHWT

4828 210 4828 210

the adaptive mesh process) in CST and 37 minutes in
the EFIE-PMCHWT solver employing the right ILU as
a preconditioner. The relatively short simulation time of
the EFIE-PMCHWT solver is due to the computation of
the singularity extraction, which was executed once for
any given frequency band [26].

Lastly, we also attempted to use CST with the
Integral Equation Solver (Isolver) to solve the ParPar2.
Unfortunately, the results were not correct for the near-
field region. Note that to make a fair comparison, the
Isolver results were obtained with approximately the
same NoU as our MOM solver. However, as explained
in Section 3.3, performing a simulation with a finer
mesh would probably not provide better results because
it would lead to higher condition numbers, which were
already very high owing to the complex geometry and
near-resonance state.

V. CONCLUSION
In this work, we developed an efficient methodol-

ogy using a modified EFIE-PMCHWT formulation with
impedance boundary conditions to solve surface MW
resonators with dimensions and features that span several
orders of magnitude with respect to the operating wave-
length. The new methodology was used to solve three
complex, realistic resonator configurations. The com-
plexity of these configurations arises from a combination
of electrically large structures, such as microstrip lines,
and small surface resonators that have subwavelength
localized geometric features. These types of configu-
rations require dense and non-uniform discretizations,
resulting in an impedance matrix whose condition num-
ber is in the range of 108–1014. On the one hand, we
showed that applying right incomplete LU (ILU) precon-
ditioners can improve dramatically the condition number
and thus allow for a fast iterative solver convergence.
On the other hand, applying left ILU preconditioners
resulted in very slow GMRES convergence, suggesting
that left ILU preconditioning is considerably less effec-
tive than right ILU for this type of problem. We also
showed that the standard diagonal preconditioner (DP)
might be impractical for these types of resonator con-

figurations, leading to a non-converging iterative solver.
We validated our solution via network analyzer measure-
ments and ESR microimaging experiments. Finally, we
showed that for the geometries we tested, the precondi-
tioned EFIE-PMCHWT impedance matrix outperformed
the CST frequency domain solver (Fsolver) in terms of
simulation time because of the ultra-fine mesh required
to achieve near-field convergence in the latter. Moreover,
the CST integral equation solver could not provide accu-
rate results in the near field for the configurations we
tested.
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