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Abstract— An interesting stabilizing variant of networks, and economics models [3]. Take
the biconjugate A-orthogonal residual (BiCOR) scattering problems of determining the diffraction
method is investigated for solving dense complexattern irradiated by an illuminated object
non-Hermitian systems of linear equations arisingor instance. They include medical imaging,
from the Galerkin discretization of surface integralelectromagnetic compatibility, radar cross section
equations in electromagnetics. The novel variant i§RCS) calculation of large objects. Krylov
naturally based on and inspired by the compositsubspace methods, which are considered as one of
step strategy employed for the composite stephe “Top Ten Algorithms of the 20th Century” [4],
biconjugate gradient method from the point of vieware one of the most widespread and extensively
of pivot-breakdown treatment when the BiCORaccepted techniques for iterative solution of
method has erratic convergence behaviors. Besidégday’s large-scale linear systems [5]. The starting
reducing the number of spikes in the convergenceoint for this work was the investigation of
history of the norm of the residuals to thethe applicability of a new interesting stabilizing
greatest extent, the present composite step BiCOffariant of the biconjugated-orthogonal residual
method can provide some further practically(BICOR) method [7] to iterative solution of
desired smoothing behavior towards stabilizing thenon-Hermitian systems of linear equations in
numerical performance of the BICOR method inelectromagnetism applications.
the case of irregular convergence. In recent years, there have been many advances
Index Terms— Krylov subspace methods, in Krylov subspace methods for solution of large
Lanczos biconjugate  A-orthonormalization linear systems [5]. lefere_nt variants of rest_arted,
methods, scattering problems, sparse approxima?eugmemed’ o!eflated, erX|bIe, nested, and inexact
inverse preconditioning. mthods are mvolvgd m_these new developments.
Various methods differ in the way they extract
information from Krylov spaces [8—10]. Observing
I. INTRODUCTION from earlier studies on surface scattering problems,
Solution of large linear systems is crucial different Krylov subspace methods have both
to many numerical simulations in science andadvantages and disadvantages [11]. For instance,
engineering [1,2]. Many real-world applicationsthe GMRES method is robust but expensive due
demand an accurate numerical solution ofto long recurrence in the underlying Arnoldi
physical problems arising from fields suchprocedure. Restarting the GMRES deteriorates
as fluid mechanics, structural engineeringconvergence significantly. The BICGSTAB method
computational electromagnetics, design andypically requires many more iterations than
computer analysis of circuits, power systemthe GMRES method, especially on complex
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geometries. QMR-like methods are only slightlyexperiments. In Section Ill, we present the
morecompetitive than the BICGSTAB method, but interesting stabilizing variant—-the composite step
less robust than the GMRES method. BICOR (CSBICOR) method with applications on

A novel Lanczos-type biconjugate A- a set of model problems representative of realistic
orthonormalization  procedure has recentlyRCS calculation to show the improved numerical
been established to give birth to a new familyperformance with respect to the stabilizing effect
of efficient short-recurrence methods for largeof the composite step strategy on the BiCOR
real nonsymmetric and complex non-Hermitianmethod. Conclusions and perspectives are finally
systems of linear equations, named as the LanczdBade with some future research issues.
biconjugate  A-orthonormalization =~ methods ~ Throughout the paper, denote the overbar (“-")
[7]. As observed from numerous numericalthe conjugate complex of a scalar, vector or matrix
experiments carried out with the Lanczosand the superscript “fhe transpose of a vector
biconjugateA-orthonormalization methods, it has or matrix. For a non-Hermitian matrix4 =
been numerically demonstrated that this family of(ai;)nxn € CY*¥, the Hermitian conjugate of
solvers shows competitive convergence propertiesd is denoted as
is cheap in memory as it is derived from short-term A — AT _ (a

. = - (ajZ)NXN'

vector recurrences, is parameter-free and does not
suffer from the restriction to require a symmetricThe standard Hermitian inner product of two
preconditioner like other methods  [12-15]. complex vectors:, v € CV is defined as
However, the family of Lanczos biconjugate N
A-orthonormalization methods is often faced (u,v) ZUHUZZE'W-
with apparently irregular convergence behaviors =1
e e e e Comigence Neohe nesed Know subspace of imensir

) : ! generated byd from v is of the form
substantial build-up of rounding errors and worse
approximate solutions, or possibly even overflow.  K;(A,v) = span{v, Av, Av, ..., A" 10},
Therefore, it is quite necessary to tackle their ” )
irregular converggnce properties to obtain morén add't.'on’.ei dgnotes .thelth column of the
stabilized variants so as to improve the accuracflllolorolor'ate identity matrix.
of the desired physical numerical solutions.

Our main attention in this paper is focused II. PRELIMINARY REVIEW FOR
on the demonstration of the straightforward THE BICOR METHOD
natural enhancement of the BiCOR method, First, we briefly recall a version of the Lanczos
which is the basic underlying variant of the biconjugateA-orthonormalization procedure [7] as
above-mentioned family of Lanczos biconjugateln Algorithm[1, which can ideally build up a pair
A-orthonormalization methods. The content of thisOf biconjugate A-orthonormal bases for the dual
paper can be considered as the natural follow-uffrylov subspacesk,,(A,v1) and (A%, wr),
to the paper [16]. In particular, we exploit the where v; and w; are chosen initially to satisfy
composite step strategy taken for the composit€ertain conditions.
step biconjugate gradient (CSBCG) method Observe that the above algorithm is possible
[17,18] from the point of view of pivot-breakdown to have Lanczos-type breakdown whenever
treatment when the BICOR method has erratiozanishes whilew;,; and Av;,, are not equal to
convergence behaviors. The outline of the paped < CV appearing in line 8. In the interest
is organized as follows. In the coming section,of counteraction against such breakdowns, we
the good performance of the BICOR algorithm inrefer the reader to possible remedies proposed
electromagnetics will be illustrated numerically in earlier studies, such as so-called look-ahead
by recalling some introductory comparative strategies [19-27] which can enhance stability
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Algorithm 1 Biconjugate A-Orthonormalization
Procedure T
1: Choosevy,ws, such that(w;, Avy) =1 [ } ’
2: Setf =61 =0,wp =v9 =0 CV

where

3. for j=1,2,... do ~ _
4 oy = (wy, A(Avy)) o P
5: 1A}j+1 = AUJ' — QU — ﬁjl@;l d2 B3
6: (Ijj_;,_l = Aij — Qjw; — (5jwj_1 Ty = . )
[V ES |<°Pj+1’A?j+1§|§ Sm-1 Om-1 Pm

Wit1, AVj41
8: Bj+1 — % L (5m (7% ]

b1 I whose entries are the coefficients generated
9 Vi1 = 51 during the algorithm implementation, and in

@’;;1 which au, ..., am, Bs, ..., Bm are complex while
100 wj+1 = B da,...,0,, are positive. Then with the biconjugate

7+1 . . .

11: end for A-orthonormalization procedure, the following

four relations hold

while increasing cost modestly. However, the
analysis ofthese strategies is outside the scope Ay, — VinTm + Oms1Umyiel | (1)
of this paper and we shall not pursue that here.

H _ H 2 T
For more details, please refer to [5,10] and AHWm_Wme + Bm1wm1€m, (2)
the references therein. In the present paper, we Wn AV = I, 3)
suppose there is no such Lanczos-type breakdown erf A%V, =T,,. (4)

encountered during algorithm implementations Given an initial guess, to the non-Hermitian
because most of our considerations concern thgnear systemAx = b associated with the initial

exploration of the composite step strategy [17,18}esidualry = b — Az, define a Krylov subspace
to handle the pivot breakdown occurring in thez, = Afspan(,) = AYK,, (A" w,), where
BICOR method for solving non-Hermitian linear 1v,, is defined in Proposition 1, = H:ﬁ and
systems in electromagnetics. wy is chosenarbitrarily such that(w, Av;) # 0
Next, some properties of the vectors producedut w; is often chosen to be equal tﬁ)j‘%ﬁp
by Algorithm[1 are reviewed [7] in the following subjecting to(wy, Avy) = 1. It is worthy notir12g
proposition for the preparation of the theoreticalthat this choice forw, plays a significant role in
basis of the composite step method. establishing the empirically observed superiority
of the BICOR method to the BICR [6] method

Proposition 1: If Algorithm 1 proceedsm, @S Well as to the BCG method [7]. Thus running
steps, then the right and left Lanczos-type vectoréigorithm (1 m steps, we can seek amth

vjj = 1,2,....m and wi,i = 1,2,....m approximate solutior,,, from the affine subspace
form a biconjugate A-orthonormal system in exact?o T Km(A; v1) of dimensionm, by imposing the
arithmetic. i.e. Petrov-Galerkin condition
b— Axpy, L L,
(wi, Avj) = 05,1 < i, j < m. which can be mathematically written in matrix
formulation as

Furthermore, denote by,, = [ful,vg,...,q_;m] (AW, ) H (b — Az = 0, (5)

and W,, = (w1, wa,...,w,]| the N x m matrices

and by, the extended tridiagonal matrix of the Analogously, anmth dual approximationz;,
form of the corresponding dual systed’z* = b* is
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sought from the affine subspaeg+ K,,(A”,w1) Table 1: Characteristics of the model problems

of dimensionm by satisfying Example Description Size  Frequency (MHE)
1 Open cylinder 6,268 362
bt — At 1 AK L (A, v), 2 Sphere 12,000 535
3 Satellite 1,699 57
which can be mathematically written in matrix
formulation as the good numerical performance of the BiCOR
(AV,)H (0" — AHg,) = 0, ©) algorithm [12]. The set of linear systems

selected for the numerical experiments arise
where, z{ is an initial dual approximate solution from RCS calculations of realistic targets. They
andV,, is defined in Propositionlwithlzﬁ. are dense complex non-Hermitian. We report
Consequentlythe BiCOR iteratest’s can be the characteristics of the model problems in
computed by the coming Algorithm/ 2, which is Table 1. Although not very large, the selected
just the unpreconditioned BiCOR method with theproblems are representative of realistic RCS
preconditionetM there taken as the identity matrix calculation. Their solution demands considerable
[7] and has been rewritten with the algorithmiccomputer resources as it can be seen in the table.
scheme of the unpreconditioned BCG method atarger problems require using the multilevel fast

presented in [10,18]. multipole algorithm (MLFMA) [28-31] for the
M-V products to reduce the memory requirement
Algorithm 2 Algorithm BiCOR and effective preconditioners to accelerate the

1: Computery = b — Az, for some initial guess convergence, and they are out of the scope of
To. this study. We carried out the M-V product at

2: Chooserf = P(A)ry such that(rf, Arg) # 0, each iteration using dense linear algebra packages,
whereP(t) is a polynomial int. (For example, i.e. theZGEMWV routine available in the LAPACK

s = Arg). library and we did not use preconditioning. In
3 Setpy = ro,pi = rigo = Apo,q) addition to the BICOR method, we considered
AHps 70 = Arg, po = (rE, o). the other two evolving variants known as the
for n=0,1,... do conjugate A-orthogonal residual squared (CORS)

method and the biconjugaté-orthogonal residual
stabilized (BIiCORSTAB) method, complex
versions of iterative algorithms based on Lanczos
biorthogonalization, such as BICGSTAB and
QMR, and on Arnoldi orthogonalization, such
as GMRES. In Table 2, we list the complete
11 Fop1 = Arpi set of solvers used in our experiments and their
120 ppyr = (Fh g, Pag) algorithmic and memory complexity. All the_ runs
13: if ppt1 =0, method fails were done on one node of tiitu cluster facility

14 Bot1 = pos1/pn located at CRS4. Each node features a quad core
15:  Pot1 = Tni1 + BnsiPn Intel CPU at 2.8GHz and 16 GB of physical
16: Py =15+ Bl RAM. The codes were compiled in _Fortran.with
170 o1 = i1 + Bus1Gn the Portland Group Fortran 90 compiler version 9.
18 g = Allpr

19: check convergence; continue if necessary
20: end for

on = (qp, In)

Op = pn/Un

Tpt+l = Tp + QnPp

Tn+1l = T'n — Qndn
* ok = %

xn—&—l =Ty + AnPyp,

10: 7y =T — Quqy,

XN aA

In Tabld 3, we show the number of iterations and
CPU time (in seconds) required by Krylov methods
to reduce the initial residual t®(10~°) starting

Before ending this section, we review somefrom the zero vector. The right-hand side of the
introductory comparative experiments to seelinear system is set up so that the exact solution is
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Table 2: Algorithmic cost and memory expenses Similarly to the breakdowns of the BCG method
of the implementation of Krylov algorithms that [18], it is observed from Algorithm 2 that there
are used for the experiments. We denotenbthe also exist two possible kinds of breakdowns for
problem size, byi the iteration number and by,  the BiICOR method:

the restart value in GMRES Q) pn = (ri,7n) = (v, Ar,) = 0 but 7% and
Solver Products byA/A™ Memory Ar,, are not equal t@® € CV appearing in line 14;
BICOR 1 matrix+10n ) o — (AH A B
CORS 2/0 matrix+14n (2) On = _<qnv‘Jn> = < Pn> pn> =0
BICORSTAB 2/0 matrix+13n appearing in line 6.
GMRES 10 matrix+(m+ 3)n Although the computational formulae for the
QMR 2/1 matrix+11n titi h th b kd id
TFOMR /0 matriss 10 quantities where the breakdowns reside are
BICGSTAB 2/0 matrix+7n different between the BICOR method and the

BCG method, we do not have a better name
for them. Therefore, we still call the two
cases of breakdowns described above as Lanczos
breakdown and pivot breakdown, respectively.
Solver_ 1 > 3 The Lanczos t_)reakdown can be cure_d using
e e E ©53) 294 @5T) 371 (i) look-ahead techniques [19-27] as mentioned in
BICOR 785 (334) 338 (525) 431 (15) the previous section, but such techniques require a
BiCORSTAB 941 (614)  423(1099) 775 (37) careful and sophisticated way so as to make them

GMRES(50) | 2191 (469) 1803 (1397) 871 (17) pecome necessarily quite complicated to apply.
QMR 878 (548) 430 (1045) 452 (24

TFQMR 482 (398)  281(863) 373 (27) | Nis aspect of applying look-ahead techniques to
BiCGSTAB 1065 (444) 680 (1031) 566 (18) the BICOR method demands further research.

the vector of all ones. We observe the effectiveness In this paper, we attempt to resort to the
of the BICOR method, that is the the second fastesomposite step idea employed for the CSBCG
non-Hermitian solver with respect to CPU time onmethod [17,18] to handle the pivot breakdown
most selected examples. Its performance is ver§f the BICOR method with the assumption that
close to that of the CORS method and may be athe underlying biconjugated-orthonormalization

Table 3: Number of iterations and CPU time (in
seconds) requiredy Krylov methods to reduce the

initial residual toO(10~?); for each example, an

asterisk *” indicates the fastest run

appropriate choice. procedure depicted as in Algorithm 1 does not
breakdown; that is the situation whetg, = 0
while p,, # 0.
. Clil\é\glzg-or::?l\p/ﬂl_il'PHNO%Fll-\lr HE Suppose Algorithm 2 comes across a situation
ELECTROMAGNETICS where o0, = 0 after successful algorithm

_ implementation up to step with the assumption
Supp_ose Algorithm 2 runs successfully to steppat pn # 0, which indicates that the updates of
n, thatiso; #0, p; 70, 0=0,1,....n—1.The . = =g+  are not well defined.
BiCOR iterates satisfy the following properties [7]-Taking the composite step idea, we will avoid

Proposition 2: Let R,i1 = division by o, = 0 via skipping this(n + 1)th
7Oy T1yeee,T R = |rj,rr, .. .,rk] an update and exploiting a composite step update to
05 ) yInly n+1 0>"1» y''n d d d I iti [ d
Poy1 = [po,p1,---,pnl, Piy = [p6,p},-..,pp).  directly obtain the quantities in stef + 2) with
We have scaled versions of,, ;1 andr;,; as well as with
(1) Range(Rny1) = Range(Poy) = the previous primgry s_earch direction veqbgrgnd
Kpi1(A, 7o) shadow search direction vectpf. The following
}%ang;e(R* ) =  Range(Pr,,) ~ Process for deriving the CSBICOR method is the
Ko (A7 72). S il same as that of the derivation of the CSBCG

I o method [18] except for the different underlying
(2) R, 51 ARy is diagonal, procedures involved to correspondingly generate
(3) P AP, is diagonal. different Krylov subspace bases.
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Analogously, define auxiliary vectors,.; €
Kni2(A,m0) andz? | € Kny2(AH, ry) as follows

Zn+1 = OnTp+1
= OnTn — PnAPm (7)
* S
Zn+1 OnTpi1
_ _ . H
= Unr;; - pnA j:,’ (8)

which are then used to look for the iterates, » €
20+ Kny2(A,r0) andz} o € af+ Kppo (A7, ry)
in step(n + 2) as follows

In + [pna Zn+1]fn7

Tryo = Tpt+ [Pn 2l fos
where,f,,, f € C2. Correspondingly, thén+2)th
primary residualr, o € K, 13(A, o) and shadow

residual ., € K,13(A",rf) are respectively
computed as

Tn+2

Tn42 = Tn — A[pm Zn—i—l]fm (9)
7’:;+2 =Tp = Al [prs 2nt1) - (10)
The biconjugate A-orthogonality condition

between the BiCOR primary residuals and shadow
residuals shown as Property (2) in Proposition 2

requires

<[p;(;, Z;;—i-l]v Arn+2> = 0,
<[pn7 Zn+1], AHT:L+2> - 07

combining with Egns/ (9) and (10) gives rise to the

following two 2 x 2 systems of linear equations for
respectively solvingf,, and f,:

[ (Afpr,, Apy) (AHpr Azpiq)
<AHZ’:<L+17Ap'IL> <AHZ,:+17AZ”+1>

(prs Arn)

[<Z;+1»Arn> , D
[<Apn,AHp;;> <ApmAHz:z+l>] i
<Azn+17AHPZ> <Azn+1vAHZ:L+1> f;(g)

<Apn,7“;:>

[ 12
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Similarly, the (n+ 2)th primary search direction
vector p, 12 € K,+3(A,79) and shadow search
direction vectorp’_ , € K,13(A%.rg) in a
composite step are computed with the following
form

Pn+2 = T'n+2 + [p’m Zn+1]gn7 (13)

p;kz—f—Q = 7“;;-5-2 + [p:t, Z:;—l—l]g:w (14)

where,g,,, gi € C.

The biconjugate A%-orthogonality condition
between the BICOR primary search direction
vectors and shadow search direction vectors shown

as Property (3) in Proposition 2 requires
<[p;7 Z:L+1]7 A2pn+2> 0,
<[pnv Zn+1]’ (AH)2p;kz+2> = 0

combining with Eqns./ (13) and (14) results in the
following two 2 x 2 systems of linear equations for

respectively solvingy, andg;;
1]

1
o

(2)

{ <<AHPZ, Apn)  (AMp, Aznyn)
gn

AHZ;*H_l, Apn> <AH2’;;+1, Azpi1

Sl
(Azni1, AHpE)  (Azyys, AHZE ) e

LAt ] e
Therefore, it could be able to advance

from step n to step (n + 2) to provide
Tnt2; Tnt2, Tpios Thyos Pnt2s Ppyo DY SOlVING
the above four2 x 2 linear systems represented
as in Eqns. [(11), (12),] (15), and (16). With
an appropriate combination of x 1 and 2 x

2 steps, the CSBICOR method can be simply
obtained with only a minor modification to the
usual implementation of the BICOR method. The
pseudocode for the preconditioned CSBICOR with
a left preconditionerB can be represented by
Algorithm 3. For full details on the derivation and
analysis of the CSBICOR method, please refer to
our recent work [32].
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This study illustrates the applicability of the

Algtohritgm 3 Left preconditioned CSBICOR cgBicOR methodin electromagnetics to show
metho

1: Computery = b — Axq for someinitial guessxy.
2. Choosery = P(A)rg such that(rg, Arg) # 0,
whereP(t) is a polynomial int. (For exampler] =
Arg). Setpg = 1o, po = 7o, g0 = Apo, Go = A¥ po.
3: Computepy = (7o, Argp) .
4: Begin LOOP(n =10,1,2,...)
5 o, = <(jn7 Qn>
6: Sn4+1 = OnTn — Pnln
7 gn-&-l = a'nfn - ﬁnqn
8: Yn41 = A577,+1
9 Gng1 = A5,
10: 9n+1 = <§n+17yn+1>
110 Gpy1 = <gn+1ayn+l>
12: if 1 x 1 stepthen
13: Qp = pn/an
140 ppy1 = €n+1/03
15:  But1 = Pnt1/Pn
16: Tp41 = Tp + QpPn
17 Tn+1l = Tn — Qndn
18: T~n+1 = 7:n - an,(jn
19:  put1 = Sn+1/0n + Bny1Pn
200 Ppi1 = 8ny1/0n + Bntibn
2L An+1 = yn+1/an + @n+1Qn
220 Gni1 = Unt1/0n + BnyiGn
23 n+«n—+1
24: else
25 0, = 0nlag1pt — 02,4
26: Qp = <n+1p§7,/5’ﬂ
27: g1 = 9n+1p%/(5n
28: Tp42 = Tp + QpPn + Cpp1Sn41
29: Tn4+2 = Tn — Qpdn — Onp1Yn+1
30: /Fn+2 =Ty — O_fann - O_fn+1gn+1
31:  solve Bzpio = rpio
32: solveBfz, 5 =7, 0
33: %n_,_g = A2n+2
34: 2n+2 = AH2n+2
35: Pn+2 = 2n+2; Tn+2>
360 Bui1 = pur2/Pn
37 But2 = pnt20n/Ont1
38: DPn+2 = Zn+2 + @n—&-lpn + @n—i—?sn—i-l
39: ﬁn-&-Q = 2n+2 + ﬁn—&-lﬁn + ﬂn+2§n+1
400 gnt2 = Zny2 + Bnt1gn + BatoYni1
41 qn+2 = 5n+2 + ﬁnJrl(jn + ﬁn+2gn+1
42: n—n-+4+2
43: end if
44: Check convergence; continue if necessary
45: End LOOP

its improved numerical behaviors in comparison
with the BICOR method. The dense linear systems
considered in these experiments arise from RCS
calculation of perfectly conducting objects. They
are generated by applying the method of moments
discretization to the electric field integral equation
for surface scattering problems (see e.g. [33]).
In all the experiments, we use ten discretization
points per wavelength and a physical right-hand
for the linear system. We precondition the linear
systems using a sparse approximate inverse method
based on the minimization of the Frobenius norm.
The preconditioner is computed by minimizing the
Frobenius-norm of the error matrix

min HI — MEH ,

MeS F
where S is the set of matrices with a given
sparsity pattern. We construct the approximate
inverse M from a sparse approximatioﬁ of the
dense coefficient matrixl. The sparsity patterns
of A andM are computed in advance by selecting
a fixed number of the largest entries in each
column of A. Details of the preconditioner are
found in [11]. The stopping criterion for solving
the linear system consists in reducing the initial
residual by six orders of magnitude, starting from
the zero vector. In the experiments reported in [11],
it was shown that this value of the tolerance is
sufficient to enable a correct reconstruction of
the RCS signal for engineering purposes. These
experiments are run in double precision complex
arithmetic in Fortran on a PC equipped with an
Intel(R) Core(TM)2 Duo CPU P8700 running at
2.53GHz, and with 4 GB of RAM.

The stabilizing and robust effect of the
composite step strategy on the BiCOR method can
be observed according to the comparative figures
presented in Table 4 and the convergence histories
depicted in Figl 1.

IV. CONCLUSIONS

We have presented an investigation of a new
interesting variant of the BICOR method for
solving dense complex non-Hermitian systems of



119

ACES JOURNAL, VOL. 27, NO. 2, FEBRUARY 2012

Table 4:  Number of iterations and CPU time This research is supported by NSFC (60973015,
requiredby BIiCOR and CSBICOR to reduce the 61170311, 11126103), Sichuan Province Sci.
initial residual by six orders of magnitude on some& Tech. Research Project (2011JY0002), the

dense linear systems from electromagnetics Fundamental Research Funds for the Central
Problem size CSBIiCOR BiCOR Universities.
Iter | CPU time | Iter | CPU time
guide 1080 | 29 0.63 37 0.71
sphere 2430 | 36 2.97 44 3.46 REFERENCES
parallelepipede| 2016 | 32 1.95 41 2.25
cube 1800 | 53 2.54 67 2.95
paraboloid 1980 | 39 2.21 49 2.59 [1] W. M. Coughran, Jr. and R. W. Freund, “Recent
satellite 1701 | 98 4.48 126 5.10 Advances in Krylov Subspace Solvers for Linear

linear equations in electromagnetics. Our approach
is naturally based on and inspired by the composite
step strategy taken for the CSBCG method [17,
18]. The present CSBICOR method can be both
theoretically and numerically demonstrated to [2
avoid near pivot breakdowns and compute all
the well-defined BiCOR iterates stably with only
minor modifications with the assumption that 3
the underlying biconjugated-orthonormalizaion
procedure does not break down [32]. Besides
reducing the number of spikes in the convergence4]
history of the norm of the residuals to the greatest
extent, the CSBICOR method could provide some
further practically desired smoothing behavior [5]
towards stabilizing the behavior of the BICOR
method when it has erratic convergence behaviors.
Additionally, the CSBICOR method seems to be 6]
superior to the CSBCG method to some extent
because of the inherited promising advantages
of the empirically observed stability and fast
convergence rate of the BICOR method over the[7]
BCG method.

Since the BICOR method is the most basic
variant of the family of Lanczos biconjugaté-
orthonormalization methods, its improvement will
analogously lead to similar improvements for the
CORS and BICORSTAB methods, which is under
investigation.

(8]
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