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Abstract— An interesting stabilizing variant of
the biconjugateA-orthogonal residual (BiCOR)
method is investigated for solving dense complex
non-Hermitian systems of linear equations arising
from the Galerkin discretization of surface integral
equations in electromagnetics. The novel variant is
naturally based on and inspired by the composite
step strategy employed for the composite step
biconjugate gradient method from the point of view
of pivot-breakdown treatment when the BiCOR
method has erratic convergence behaviors. Besides
reducing the number of spikes in the convergence
history of the norm of the residuals to the
greatest extent, the present composite step BiCOR
method can provide some further practically
desired smoothing behavior towards stabilizing the
numerical performance of the BiCOR method in
the case of irregular convergence.

Index Terms— Krylov subspace methods,
Lanczos biconjugate A-orthonormalization
methods, scattering problems, sparse approximate
inverse preconditioning.

I . INTRODUCTION
Solution of large linear systems is crucial

to many numerical simulations in science and
engineering [1,2]. Many real-world applications
demand an accurate numerical solution of
physical problems arising from fields such
as fluid mechanics, structural engineering,
computational electromagnetics, design and
computer analysis of circuits, power system

networks, and economics models [3]. Take
scattering problems of determining the diffraction
pattern irradiated by an illuminated object
for instance. They include medical imaging,
electromagnetic compatibility, radar cross section
(RCS) calculation of large objects. Krylov
subspace methods, which are considered as one of
the “Top Ten Algorithms of the 20th Century” [4],
are one of the most widespread and extensively
accepted techniques for iterative solution of
today’s large-scale linear systems [5]. The starting
point for this work was the investigation of
the applicability of a new interesting stabilizing
variant of the biconjugateA-orthogonal residual
(BiCOR) method [7] to iterative solution of
non-Hermitian systems of linear equations in
electromagnetism applications.

In recent years, there have been many advances
in Krylov subspace methods for solution of large
linear systems [5]. Different variants of restarted,
augmented, deflated, flexible, nested, and inexact
methods are involved in these new developments.
Various methods differ in the way they extract
information from Krylov spaces [8–10]. Observing
from earlier studies on surface scattering problems,
different Krylov subspace methods have both
advantages and disadvantages [11]. For instance,
the GMRES method is robust but expensive due
to long recurrence in the underlying Arnoldi
procedure. Restarting the GMRES deteriorates
convergence significantly. The BiCGSTAB method
typically requires many more iterations than
the GMRES method, especially on complex
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geometries. QMR-like methods are only slightly
morecompetitive than the BiCGSTAB method, but
less robust than the GMRES method.

A novel Lanczos-type biconjugate A-
orthonormalization procedure has recently
been established to give birth to a new family
of efficient short-recurrence methods for large
real nonsymmetric and complex non-Hermitian
systems of linear equations, named as the Lanczos
biconjugate A-orthonormalization methods
[7]. As observed from numerous numerical
experiments carried out with the Lanczos
biconjugateA-orthonormalization methods, it has
been numerically demonstrated that this family of
solvers shows competitive convergence properties,
is cheap in memory as it is derived from short-term
vector recurrences, is parameter-free and does not
suffer from the restriction to require a symmetric
preconditioner like other methods [12–15].
However, the family of Lanczos biconjugate
A-orthonormalization methods is often faced
with apparently irregular convergence behaviors
appearing as “spikes” in the convergence history
of the norm of the residuals, possibly leading to
substantial build-up of rounding errors and worse
approximate solutions, or possibly even overflow.
Therefore, it is quite necessary to tackle their
irregular convergence properties to obtain more
stabilized variants so as to improve the accuracy
of the desired physical numerical solutions.

Our main attention in this paper is focused
on the demonstration of the straightforward
natural enhancement of the BiCOR method,
which is the basic underlying variant of the
above-mentioned family of Lanczos biconjugate
A-orthonormalization methods. The content of this
paper can be considered as the natural follow-up
to the paper [16]. In particular, we exploit the
composite step strategy taken for the composite
step biconjugate gradient (CSBCG) method
[17,18] from the point of view of pivot-breakdown
treatment when the BiCOR method has erratic
convergence behaviors. The outline of the paper
is organized as follows. In the coming section,
the good performance of the BiCOR algorithm in
electromagnetics will be illustrated numerically
by recalling some introductory comparative

experiments. In Section III, we present the
interesting stabilizing variant–the composite step
BiCOR (CSBiCOR) method with applications on
a set of model problems representative of realistic
RCS calculation to show the improved numerical
performance with respect to the stabilizing effect
of the composite step strategy on the BiCOR
method. Conclusions and perspectives are finally
made with some future research issues.

Throughout the paper, denote the overbar (“–”)
the conjugate complex of a scalar, vector or matrix
and the superscript “T”the transpose of a vector
or matrix. For a non-Hermitian matrixA =
(aij)N×N ∈ C

N×N , the Hermitian conjugate of
A is denoted as

AH ≡ A
T

= (aji)N×N .

The standard Hermitian inner product of two
complex vectorsu, v ∈ C

N is defined as

〈u, v〉 = uHv =

N∑

i=1

uivi.

The nested Krylov subspace of dimensiont
generated byA from v is of the form

Kt(A, v) = span{v, Av, A2v, . . . , At−1v}.

In addition, ei denotes theith column of the
appropriate identity matrix.

II . PRELIMINARY REVIEW FOR
THE BICOR METHOD

First, we briefly recall a version of the Lanczos
biconjugateA-orthonormalization procedure [7] as
in Algorithm 1, which can ideally build up a pair
of biconjugateA-orthonormal bases for the dual
Krylov subspacesKm(A, v1) and Km(AH , w1),
where v1 and w1 are chosen initially to satisfy
certain conditions.

Observe that the above algorithm is possible
to have Lanczos-type breakdown wheneverδj+1

vanishes whileŵj+1 andAv̂j+1 are not equal to
0 ∈ C

N appearing in line 8. In the interest
of counteraction against such breakdowns, we
refer the reader to possible remedies proposed
in earlier studies, such as so-called look-ahead
strategies [19–27] which can enhance stability
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Algorithm 1 Biconjugate A-Orthonormalization
Procedure

1: Choosev1, ω1, such that〈ω1, Av1〉 = 1
2: Setβ1 = δ1 ≡ 0, ω0 = v0 ≡ 0 ∈ C

N

3: for j = 1, 2, . . . do
4: αj = 〈ωj , A (Avj)〉
5: v̂j+1 = Avj − αjvj − βjvj−1

6: ω̂j+1 = AHωj − ᾱjωj − δjωj−1

7: δj+1 = |〈ω̂j+1, Av̂j+1〉|
1

2

8: βj+1 =
〈ω̂j+1, Av̂j+1〉

δj+1

9: vj+1 =
v̂j+1

δj+1

10: ωj+1 =
ω̂j+1

β̄j+1

11: end for

while increasing cost modestly. However, the
analysis of these strategies is outside the scope
of this paper and we shall not pursue that here.
For more details, please refer to [5,10] and
the references therein. In the present paper, we
suppose there is no such Lanczos-type breakdown
encountered during algorithm implementations
because most of our considerations concern the
exploration of the composite step strategy [17,18]
to handle the pivot breakdown occurring in the
BiCOR method for solving non-Hermitian linear
systems in electromagnetics.

Next, some properties of the vectors produced
by Algorithm 1 are reviewed [7] in the following
proposition for the preparation of the theoretical
basis of the composite step method.

Proposition 1: If Algorithm 1 proceedsm
steps, then the right and left Lanczos-type vectors
vj , j = 1, 2, . . . , m and wi, i = 1, 2, . . . , m
form a biconjugate A-orthonormal system in exact
arithmetic, i.e.,

〈ωi, Avj〉 = δi,j , 1 ≤ i, j ≤ m.

Furthermore, denote byVm = [v1, v2, . . . , vm]
andWm = [w1, w2, . . . , wm] the N ×m matrices
and byTm the extended tridiagonal matrix of the
form

Tm =

[
Tm

δm+1e
T
m

]
,

where

Tm =





α1 β2

δ2 α2 β3

... ... ...
δm−1 αm−1 βm

δm αm




,

whose entries are the coefficients generated
during the algorithm implementation, and in
which α1, . . . , αm, β2, . . . , βm are complex while
δ2, . . . , δm are positive. Then with the biconjugate
A-orthonormalization procedure, the following
four relations hold

AVm = VmTm + δm+1vm+1e
T
m, (1)

AHWm = WmTH
m + β̄m+1ωm+1e

T
m, (2)

WH
m AVm = Im, (3)

WH
m A2Vm = Tm. (4)

Given an initial guessx0 to the non-Hermitian
linear systemAx = b associated with the initial
residualr0 = b − Ax0, define a Krylov subspace
Lm ≡ AHspan(Wm) = AHKm(AH , w1), where
Wm is defined in Proposition 1,v1 = r0

||r0||2
and

w1 is chosenarbitrarily such that〈w1, Av1〉 6= 0.
But w1 is often chosen to be equal toAv1

||Av1||22
subjecting to〈w1, Av1〉 = 1. It is worthy noting
that this choice forw1 plays a significant role in
establishing the empirically observed superiority
of the BiCOR method to the BiCR [6] method
as well as to the BCG method [7]. Thus running
Algorithm 1 m steps, we can seek anmth
approximate solutionxm from the affine subspace
x0 +Km(A, v1) of dimensionm, by imposing the
Petrov-Galerkin condition

b−Axm ⊥ Lm,

which can be mathematically written in matrix
formulation as

(AHWm)H(b−Axm) = 0. (5)

Analogously, anmth dual approximationx∗
m

of the corresponding dual systemAHx∗ = b∗ is
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sought from the affine subspacex∗
0 +Km(AH , w1)

of dimensionm by satisfying

b∗ −AHx∗
m ⊥ AKm(A, v1),

which can be mathematically written in matrix
formulation as

(AVm)H(b∗ −AHxm) = 0, (6)

where,x∗
0 is an initial dual approximate solution

andVm is defined in Proposition 1 withv1 = r0

||r0||2
.

Consequently, the BiCOR iteratesx′
js can be

computed by the coming Algorithm 2, which is
just the unpreconditioned BiCOR method with the
preconditionerM there taken as the identity matrix
[7] and has been rewritten with the algorithmic
scheme of the unpreconditioned BCG method as
presented in [10,18].

Algorithm 2 Algorithm BiCOR
1: Computer0 = b−Ax0 for some initial guess

x0.
2: Chooser∗0 = P (A)r0 such that〈r∗0, Ar0〉 6= 0,

whereP (t) is a polynomial int. (For example,
r∗0 = Ar0).

3: Set p0 = r0, p
∗
0 = r∗0, q0 = Ap0, q

∗
0 =

AHp∗0, r̂0 = Ar0, ρ0 = 〈r∗0, r̂0〉.
4: for n = 0, 1, . . . do
5: σn = 〈q∗n, qn〉
6: αn = ρn/σn

7: xn+1 = xn + αnpn

8: rn+1 = rn − αnqn

9: x∗
n+1 = x∗

n + ᾱnp∗n
10: r∗n+1 = r∗n − ᾱnq∗n
11: r̂n+1 = Arn+1

12: ρn+1 =
〈
r∗n+1, r̂n+1

〉

13: if ρn+1 = 0, method fails
14: βn+1 = ρn+1/ρn

15: pn+1 = rn+1 + βn+1pn

16: p∗n+1 = r∗n+1 + β̄n+1p
∗
n

17: qn+1 = r̂n+1 + βn+1qn

18: q∗n+1 = AHp∗n
19: check convergence; continue if necessary
20: end for

Before ending this section, we review some
introductory comparative experiments to see

Table 1: Characteristics of the model problems
Example Description Size Frequency (MHz)

1 Open cylinder 6,268 362
2 Sphere 12,000 535
3 Satellite 1,699 57

the good numerical performance of the BiCOR
algorithm [12]. The set of linear systems
selected for the numerical experiments arise
from RCS calculations of realistic targets. They
are dense complex non-Hermitian. We report
the characteristics of the model problems in
Table 1. Although not very large, the selected
problems are representative of realistic RCS
calculation. Their solution demands considerable
computer resources as it can be seen in the table.
Larger problems require using the multilevel fast
multipole algorithm (MLFMA) [28–31] for the
M-V products to reduce the memory requirement
and effective preconditioners to accelerate the
convergence, and they are out of the scope of
this study. We carried out the M-V product at
each iteration using dense linear algebra packages,
i.e. theZGEMV routine available in the LAPACK
library and we did not use preconditioning. In
addition to the BiCOR method, we considered
the other two evolving variants known as the
conjugateA-orthogonal residual squared (CORS)
method and the biconjugateA-orthogonal residual
stabilized (BiCORSTAB) method, complex
versions of iterative algorithms based on Lanczos
biorthogonalization, such as BiCGSTAB and
QMR, and on Arnoldi orthogonalization, such
as GMRES. In Table 2, we list the complete
set of solvers used in our experiments and their
algorithmic and memory complexity. All the runs
were done on one node of theEntu cluster facility
located at CRS4. Each node features a quad core
Intel CPU at 2.8GHz and 16 GB of physical
RAM. The codes were compiled in Fortran with
the Portland Group Fortran 90 compiler version 9.

In Table 3, we show the number of iterations and
CPU time (in seconds) required by Krylov methods
to reduce the initial residual toO(10−5) starting
from the zero vector. The right-hand side of the
linear system is set up so that the exact solution is
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Table 2: Algorithmic cost and memory expenses
of the implementation of Krylov algorithms that
are used for the experiments. We denote byn the
problem size, byi the iteration number and bym
the restart value in GMRES

Solver Products byA/AH Memory
BiCOR 1/1 matrix+10n

CORS 2/0 matrix+14n

BiCORSTAB 2/0 matrix+13n

GMRES 1/0 matrix+(m+ 3)n
QMR 2/1 matrix+11n

TFQMR 4/0 matrix+10n

BiCGSTAB 2/0 matrix+7n

Table 3: Number of iterations and CPU time (in
seconds) requiredby Krylov methods to reduce the
initial residual toO(10−5); for each example, an
asterisk ”∗” indicates the fastest run

Solver/Example 1 2 3
CORS 601 (253∗) 294 (451∗) 371 (11∗)
BiCOR 785 (334) 338 (525) 431 (15)
BiCORSTAB 941 (614) 423 (1099) 775 (37)
GMRES(50) 2191 (469) 1803 (1397) 871 (17)
QMR 878 (548) 430 (1045) 452 (24)
TFQMR 482 (398) 281 (863) 373 (27)
BiCGSTAB 1065 (444) 680 (1031) 566 (18)

the vector of all ones. We observe the effectiveness
of theBiCOR method, that is the the second fastest
non-Hermitian solver with respect to CPU time on
most selected examples. Its performance is very
close to that of the CORS method and may be an
appropriate choice.

III . INVESTIGATION OF THE
CSBICOR METHOD IN
ELECTROMAGNETICS

Suppose Algorithm 2 runs successfully to step
n, that isσi 6= 0, ρi 6= 0, i = 0, 1, . . . , n− 1. The
BiCOR iterates satisfy the following properties [7].

Proposition 2: Let Rn+1 =
[r0, r1, . . . , rn], R∗

n+1 = [r∗0, r
∗
1, . . . , r

∗
n] and

Pn+1 = [p0, p1, . . . , pn], P ∗
n+1 = [p∗0, p

∗
1, . . . , p

∗
n].

We have

(1) Range(Rn+1) = Range(Pn+1) =
Kn+1(A, r0),

Range(R∗
n+1) = Range(P ∗

n+1) =
Kn+1(A

H , r∗0).

(2) R∗H
n+1ARn+1 is diagonal.

(3) P ∗H
n+1A

2Pn+1 is diagonal.

Similarly to the breakdowns of the BCG method
[18], it is observed from Algorithm 2 that there
also exist two possible kinds of breakdowns for
the BiCOR method:

(1) ρn ≡ 〈r
∗
n, r̂n〉 ≡ 〈r

∗
n, Arn〉 = 0 but r∗n and

Arn are not equal to0 ∈ C
N appearing in line 14;

(2) σn ≡ 〈q∗n, qn〉 ≡
〈
AHp∗n, Apn

〉
= 0

appearing in line 6.
Although the computational formulae for the

quantities where the breakdowns reside are
different between the BiCOR method and the
BCG method, we do not have a better name
for them. Therefore, we still call the two
cases of breakdowns described above as Lanczos
breakdown and pivot breakdown, respectively.

The Lanczos breakdown can be cured using
look-ahead techniques [19–27] as mentioned in
the previous section, but such techniques require a
careful and sophisticated way so as to make them
become necessarily quite complicated to apply.
This aspect of applying look-ahead techniques to
the BiCOR method demands further research.

In this paper, we attempt to resort to the
composite step idea employed for the CSBCG
method [17,18] to handle the pivot breakdown
of the BiCOR method with the assumption that
the underlying biconjugateA-orthonormalization
procedure depicted as in Algorithm 1 does not
breakdown; that is the situation whereσn = 0
while ρn 6= 0.

Suppose Algorithm 2 comes across a situation
where σn = 0 after successful algorithm
implementation up to stepn with the assumption
that ρn 6= 0, which indicates that the updates of
xn+1, rn+1, x∗

n+1, r∗n+1 are not well defined.
Taking the composite step idea, we will avoid
division by σn = 0 via skipping this(n + 1)th
update and exploiting a composite step update to
directly obtain the quantities in step(n + 2) with
scaled versions ofrn+1 and r∗n+1 as well as with
the previous primary search direction vectorpn and
shadow search direction vectorp∗

n
. The following

process for deriving the CSBiCOR method is the
same as that of the derivation of the CSBCG
method [18] except for the different underlying
procedures involved to correspondingly generate
different Krylov subspace bases.
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Analogously, define auxiliary vectorszn+1 ∈
Kn+2(A, r0) andz∗n+1 ∈ Kn+2(A

H , r∗0) as follows

zn+1 = σnrn+1

= σnrn − ρnApn, (7)

z∗n+1 = σ̄nr∗n+1

= σ̄nr∗n − ρ̄nAHp∗
n
, (8)

which are then used to look for the iteratesxn+2 ∈
x0 +Kn+2(A, r0) andx∗

n+2 ∈ x∗
0 +Kn+2(A

H , r∗0)
in step(n + 2) as follows

xn+2 = xn + [pn, zn+1]fn,

x∗
n+2 = x∗

n + [p∗n, z∗n+1]f
∗
n,

where,fn, f∗
n ∈ C

2. Correspondingly, the(n+2)th
primary residualrn+2 ∈ Kn+3(A, r0) and shadow
residual r∗n+2 ∈ Kn+3(A

H , r∗0) are respectively
computed as

rn+2 = rn −A[pn, zn+1]fn, (9)

r∗n+2 = r∗n −AH [p∗n, z∗n+1]f
∗
n. (10)

The biconjugate A-orthogonality condition
between the BiCOR primary residuals and shadow
residuals shown as Property (2) in Proposition 2
requires

〈
[p∗n, z∗n+1], Arn+2

〉
= 0,

〈
[pn, zn+1], A

Hr∗n+2

〉
= 0,

combining with Eqns. (9) and (10) gives rise to the
following two 2×2 systems of linear equations for
respectively solvingfn andf∗

n

[ 〈
AHp∗n, Apn

〉 〈
AHp∗n, Azn+1

〉
〈
AHz∗n+1

, Apn

〉 〈
AHz∗n+1

, Azn+1

〉
] [

f
(1)

n

f
(2)

n

]
=

[
〈p∗n, Arn〉〈
z∗n+1

, Arn

〉
]

, (11)

[ 〈
Apn, AHp∗n

〉 〈
Apn, AHz∗n+1

〉
〈
Azn+1, A

Hp∗n
〉 〈

Azn+1, A
Hz∗n+1

〉
] [

f
∗(1)

n

f
∗(2)

n

]
=

[
〈Apn, r∗n〉
〈Azn+1, r

∗

n〉

]
. (12)

Similarly, the(n+2)th primary search direction
vector pn+2 ∈ Kn+3(A, r0) and shadow search
direction vector p∗n+2 ∈ Kn+3(A

H , r∗0) in a
composite step are computed with the following
form

pn+2 = rn+2 + [pn, zn+1]gn, (13)

p∗n+2 = r∗n+2 + [p∗
n
, z∗n+1]g

∗
n, (14)

where,gn, g∗n ∈ C
2.

The biconjugate A2-orthogonality condition
between the BiCOR primary search direction
vectors and shadow search direction vectors shown
as Property (3) in Proposition 2 requires

〈
[p∗n, z∗n+1], A

2pn+2

〉
= 0,

〈
[pn, zn+1], (A

H)2p∗n+2

〉
= 0,

combining with Eqns. (13) and (14) results in the
following two 2×2 systems of linear equations for
respectively solvinggn andg∗n

[ 〈
AHp∗n, Apn

〉 〈
AHp∗n, Azn+1

〉
〈
AHz∗n+1

, Apn

〉 〈
AHz∗n+1

, Azn+1

〉
] [

g
(1)

n

g
(2)

n

]
=

−

[ 〈
AHp∗n, Arn+2

〉
〈
AHz∗n+1

, Arn+2

〉
]

, (15)

[ 〈
Apn, AHp∗n

〉 〈
Apn, AHz∗n+1

〉
〈
Azn+1, A

Hp∗n
〉 〈

Azn+1, A
Hz∗n+1

〉
] [

g
∗(1)

n

g
∗(2)

n

]
=

−

[ 〈
Apn, AHr∗n+2

〉
〈
Azn+1, A

Hr∗n+2

〉
]

. (16)

Therefore, it could be able to advance
from step n to step (n + 2) to provide
xn+2, rn+2, x∗

n+2, r∗n+2, pn+2, p∗n+2 by solving
the above four2 × 2 linear systems represented
as in Eqns. (11), (12), (15), and (16). With
an appropriate combination of1 × 1 and 2 ×
2 steps, the CSBiCOR method can be simply
obtained with only a minor modification to the
usual implementation of the BiCOR method. The
pseudocode for the preconditioned CSBiCOR with
a left preconditionerB can be represented by
Algorithm 3. For full details on the derivation and
analysis of the CSBiCOR method, please refer to
our recent work [32].
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Algorithm 3 Left preconditioned CSBiCOR
method
1: Computer0 = b−Ax0 for someinitial guessx0.
2: Chooser∗

0
= P (A)r0 such that〈r∗

0
, Ar0〉 6= 0,

whereP (t) is a polynomial int. (For example,r∗
0

=
Ar0). Setp0 = r0, p̃0 = r̃0, q0 = Ap0, q̃0 = AH p̃0.

3: Computeρ0 = 〈r̃0, Ar0〉 .
4: Begin LOOP(n = 0, 1, 2, . . .)
5: σn = 〈q̃n, qn〉
6: sn+1 = σnrn − ρnqn

7: s̃n+1 = σ̄nr̃n − ρ̄nq̃n

8: yn+1 = Asn+1

9: ỹn+1 = AH s̃n+1

10: θn+1 = 〈s̃n+1, yn+1〉
11: ζn+1 = 〈ỹn+1, yn+1〉
12: if 1× 1 stepthen
13: αn = ρn/σn

14: ρn+1 = θn+1/σ2
n

15: βn+1 = ρn+1/ρn

16: xn+1 = xn + αnpn

17: rn+1 = rn − αnqn

18: r̃n+1 = r̃n − ᾱnq̃n

19: pn+1 = sn+1/σn + βn+1pn

20: p̃n+1 = s̃n+1/σ̄n + β̄n+1p̃n

21: qn+1 = yn+1/σn + βn+1qn

22: q̃n+1 = ỹn+1/σ̄n + β̄n+1q̃n

23: n← n + 1
24: else
25: δn = σnζn+1ρ

2
n − θ2

n+1

26: αn = ζn+1ρ
3
n/δn

27: αn+1 = θn+1ρ
2
n/δn

28: xn+2 = xn + αnpn + αn+1sn+1

29: rn+2 = rn − αnqn − αn+1yn+1

30: r̃n+2 = r̃n − ᾱnq̃n − ᾱn+1ỹn+1

31: solveBzn+2 = rn+2

32: solveBH z̃n+2 = r̃n+2

33: ẑn+2 = Azn+2

34: ˆ̃zn+2 = AH z̃n+2

35: ρn+2 =
〈

ˆ̃zn+2, rn+2

〉

36: βn+1 = ρn+2/ρn

37: βn+2 = ρn+2σn/θn+1

38: pn+2 = zn+2 + βn+1pn + βn+2sn+1

39: p̃n+2 = z̃n+2 + β̄n+1p̃n + β̄n+2s̃n+1

40: qn+2 = ẑn+2 + βn+1qn + βn+2yn+1

41: q̃n+2 = ˆ̃zn+2 + β̄n+1q̃n + β̄n+2ỹn+1

42: n← n + 2
43: end if
44: Check convergence; continue if necessary
45: End LOOP

This study illustrates the applicability of the
CSBiCOR methodin electromagnetics to show
its improved numerical behaviors in comparison
with the BiCOR method. The dense linear systems
considered in these experiments arise from RCS
calculation of perfectly conducting objects. They
are generated by applying the method of moments
discretization to the electric field integral equation
for surface scattering problems (see e.g. [33]).
In all the experiments, we use ten discretization
points per wavelength and a physical right-hand
for the linear system. We precondition the linear
systems using a sparse approximate inverse method
based on the minimization of the Frobenius norm.
The preconditioner is computed by minimizing the
Frobenius-norm of the error matrix

min
M∈S

∥∥∥I −MÂ
∥∥∥

F
,

where S is the set of matrices with a given
sparsity pattern. We construct the approximate
inverseM from a sparse approximation̂A of the
dense coefficient matrixA. The sparsity patterns
of Â andM are computed in advance by selecting
a fixed number of the largest entries in each
column of A. Details of the preconditioner are
found in [11]. The stopping criterion for solving
the linear system consists in reducing the initial
residual by six orders of magnitude, starting from
the zero vector. In the experiments reported in [11],
it was shown that this value of the tolerance is
sufficient to enable a correct reconstruction of
the RCS signal for engineering purposes. These
experiments are run in double precision complex
arithmetic in Fortran on a PC equipped with an
Intel(R) Core(TM)2 Duo CPU P8700 running at
2.53GHz, and with 4 GB of RAM.

The stabilizing and robust effect of the
composite step strategy on the BiCOR method can
be observed according to the comparative figures
presented in Table 4 and the convergence histories
depicted in Fig. 1.

IV . CONCLUSIONS

We have presented an investigation of a new
interesting variant of the BiCOR method for
solving dense complex non-Hermitian systems of
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Table 4: Number of iterations and CPU time
requiredby BiCOR and CSBiCOR to reduce the
initial residual by six orders of magnitude on some
dense linear systems from electromagnetics

Problem size CSBiCOR BiCOR
Iter CPU time Iter CPU time

guide 1080 29 0.63 37 0.71
sphere 2430 36 2.97 44 3.46
parallelepipede 2016 32 1.95 41 2.25
cube 1800 53 2.54 67 2.95
paraboloid 1980 39 2.21 49 2.59
satellite 1701 98 4.48 126 5.10

linear equations in electromagnetics. Our approach
is naturally based on and inspired by the composite
step strategy taken for the CSBCG method [17,
18]. The present CSBiCOR method can be both
theoretically and numerically demonstrated to
avoid near pivot breakdowns and compute all
the well-defined BiCOR iterates stably with only
minor modifications with the assumption that
the underlying biconjugateA-orthonormalizaion
procedure does not break down [32]. Besides
reducing the number of spikes in the convergence
history of the norm of the residuals to the greatest
extent, the CSBiCOR method could provide some
further practically desired smoothing behavior
towards stabilizing the behavior of the BiCOR
method when it has erratic convergence behaviors.
Additionally, the CSBiCOR method seems to be
superior to the CSBCG method to some extent
because of the inherited promising advantages
of the empirically observed stability and fast
convergence rate of the BiCOR method over the
BCG method.

Since the BiCOR method is the most basic
variant of the family of Lanczos biconjugateA-
orthonormalization methods, its improvement will
analogously lead to similar improvements for the
CORS and BiCORSTAB methods, which is under
investigation.
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