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Abstract – In this paper, four wearable UWB anten-
nas are designed to detect and locate tumor cells placed
within a heterogeneous phantom at different positions.
The proposed antenna is operated within the 4.90 GHz to
15.97 GHz bandwidth range. It is fabricated, measured,
and nearly matched between measured and simulated re-
sults. A cavity is formulated to back each antenna within
the proposed detection system for increasing penetration
and gain of propagated electromagnetic waves of the an-
tenna design. The S-parameter of the proposed system
was used to detect and locate a small tumor. The SAR
results show that the absorbed power by the breast phan-
tom tissues satisfies the IEEE standards which confirms
the appropriateness of the proposed antennas for breast
cancer early detection and localization system.

Index Terms – cavity, heterogeneous phantom, specific
absorption rate (SAR), wearable UWB antenna.

I. INTRODUCTION
In December 2020, the International Agency for Re-

search on Cancer (IARC) announced that breast cancer
has overtaken the most diagnosed type of cancer in the
world. In 2021, the World Health Organization (WHO)
declared breast cancer to be the most common type of
cancer globally, accounting for 12% of all new cases
of cancer [1]. Breast cancer arises in the glandular tis-
sue of the breast in ducts (85%) and lobules of (15%)
and is called at this stage “in situ”. This stage (stage 0)
has a low chance of spreading and converting to metas-
tasis. After a while, this stage may progress and strike
surrounding tissues and then spread to nearby lymph
nodes and become a regional metastasis or to other or-
gans in the human body and become distant metastasis
[2]. Tumor size is a strong predictor of long-term mor-

tality [3]. It is recommended to detect breast cancer at or
less than 2 cm [4].

Breast microwave imaging (MI) in literature is split
into microwave breast imaging several techniques and
image reconstruction algorithms [5]. Different methods
for several techniques in breast MWI (breast cancer early
detections) were used. Table 1 shows many early breast
cancer UWB antennas and compares them. The first
method of breast MWI relied on an antenna array. There
are various compositions from antenna arrays are pro-
posed in literature papers, and ranked as hemispherical,
enclosed, and planer arrays [5]. In [6], constructed a
compact, single polarization, flexible UWB antenna ar-
ray, in a configuration identical to that of a bra for breast
cancer detection. In [7], established a compact, single
and dual polarization, flexible UWB antenna array, in a
structure related to that of a bra for breast cancer detec-
tion and significantly better penetration for propagated
electromagnetic waves by utilizing a reflector with the
arrays. In [8], formulated clinical model as a wearable in-
terface for a case consisting of multi-static time-domain
pulsed radar and flexible antenna array inundated in bra.
The clinical model is highly cost-effective and related to
the normal table model. The regular difference for the
data of the reflection coefficient for flexible microstrip
antenna array at 1.5 GHz was used to locate and de-
tect the tumor at thirteen numerous places in the human
breast [9]. The second method of MWI of the breast de-
pended on a single antenna element. These antennas in-
clude Vivaldi antennas, monopole antennas, and bowtie
antennas, in addition to fractal and horn antennas [5].
In [10], a wearable microstrip patch UWB antenna as
a new design had demonstrated to detect early tumors
with enlarged bandwidth from 1.6 GHz to 11.2 GHz. In
[11], a compact flexible single-element UWB antenna
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Table 1: Comparison among early breast cancer detection antennas
Reference Single element

size (mm2)
No. of
elements

εr Substrate
thickness
(mm)

Length of sin-
gle element/λ
(mm)

BW (GHz) ∆f/f0

[6] 18 × 18 16 3.5 0.1 0.250 2 – 5 0.86
[7] 20 × 20 16 3.5 0.1 0.280 2 – 4 0.67
[8] 20 × 20 16 3.5 0.1 0.280 2 – 4 0.67
[9] 58.43 × 26.45 4 2.64 2.2 0.470 1.45 – 1.54 0.06
[10] 70 × 60 2 1.6 1.6 0.740 1.6 – 11.2 1.5
[11] 22 × 20 1 3.5 0.05 0.410 2 – 4 0.67
[12] 25 × 36 1 3.4 0.16 0.730 2 – 4 0.67
In this paper 28 × 20 4 2.9 0.1016 0.830 4.90 – 15.97 1.06

with an inhomogeneous breast phantom was presented
for MWI and tumor early detection. It was operated in
the range of 2 to 4 GHz while having a size of 20 ×
22 mm2. Kapton substrate with a relative permittivity of
3.5 has been used as a substrate. In [12], a compact flex-
ible monopole single-element UWB antenna with an in-
homogeneous breast phantom for breast cancer detection
Kapton polyimide using a CST simulator and MEMS
technology with biological breast tissues. It was operated
in the range of S-Band (2-4 GHz) while having a size of
25 × 36 mm2. All the mentioned researches suffer from
small (single element length/λ ) and low fractional band-
width value of single element antenna.

In this paper, Four UWB wearable antennas and four
cavities are suggested for the breast phantom examina-
tion to detect and locate tumor tissues inside the hu-
man breast. Firstly, the evolution of a single UWB wear-
able antenna is accomplished in four steps and verified.
Secondly, the cavity is utilized around each wearable
antenna for significantly nicer penetration for radiated
electromagnetic waves. Finally, the proposed phantom
with and without tumor tissues is simulated with the pro-
posed detection system which is consisted of four UWB
wearable antennas and a cavity around each antenna. S-
parameters from the single-element antenna are reported
by using CST Microwave Studio 2020 and are compared
with the measured results for the fabricated proposed
antenna by using Vector Network Analyzer (VNA). S11
from the single-element antenna can detect and diagnose
the presence of malignant cells. The tumor position is
identified by other reflection coefficients of all anten-
nas. SAR estimation is also investigated for the proposed
phantom. The proposed detection system indicates that
the two processes of early detection and localization for
tumors 3 mm in size inside a human breast are possible.

II. The PROPOSED ANTENNA DESIGN
A. Antenna element

The antenna design is an important part of the over-
all performance of microwave imaging systems. Breast
microwave imaging systems need to antenna element

which radiates pulses over a wide range of frequen-
cies and operates in the Ultra-Wideband (UWB) that the
Federal Communication Commission (FCC) assigned a
bandwidth of (3.1 to 10.6 GHz) for measurements, com-
munications, and radar [13].

The growth of the proposed antenna configuration is
accomplished in the four stages as illustrated in Fig. 1.
The structure of the octagon antenna element with a
partial ground plane is altered for the desired operating
bandwidth. The structure of the octagon’s antenna ele-
ment is modified from stage 1 to stage 2. The conclusions
of the return loss of the development process are demon-
strated in Fig. 2. The return loss of the designed octagon
antenna element with the partial ground plane in stage 1
is ≤ −10 dB for the frequency range of 8.7897 GHz to
17.11 GHz. In stage 2, the number of partial octagons is
increased in radiating patch to enhance the return loss.
Subsequently, the return loss is accomplished for the fre-
quency range of 8.6159 GHz to 16.599 GHz. In stage 3, a
rectangular shape structure is added to the ground plane.
The resonating behavior of the antenna is altered by this
addition. The result of this improvement is visualized in
the return loss graph in Fig. 2. In this stage the lower
frequency range of the return loss has improved. Then
the modified antenna covered the Ultra-wideband re-
gion from 5.1315 GHz to 16.272 GHz. The rectangular-
shaped structure is replaced with a radial stub in stage 4.
The shape modification considers the like self-similarity
and slots which played an important role to widen the
bandwidth. Now, this replacement shifted the bandwidth
from 5.1315 GHz to 4.9007 GHz at the lower frequency
and from 16.272 GHz to 15.968 GHz at the higher fre-
quency. The optimized size of the proposed antenna is
28 mm × 20 mm. The radiating patch and ground plane
are printed on the substrate. The Ultra-Lam 3850 dielec-
tric constant of 2.9 and thickness of 0.1016 mm is used
as an antenna flexible substrate. The proposed antenna
structure is shown in Figs. 3 (a) and (b). The fabricated
antenna is tested with Vector Network Analyzer (VNA)
for validation purposes in Fig. 3 (c). Table 2 shows the
optimized dimensions of the proposed antenna. Figure 4
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Fig. 1. Evolution stages for designing the proposed an-
tenna.

Fig. 2. The return loss results of the evolution process of
the proposed antenna.

shows the fabricated antenna top and bottom views. The
return loss of the fabricated antenna and its simulated
counterpart is shown in Fig. 5. These results are closely
matched. Variation in the simulation and measurement
results between 8-11 GHz shown below might be due to
fabrication errors and accuracy parameters or to the sol-
dering used in linking the SMA connector to the feedline
of the antenna and the SMA connector effect. Figure 6
shows the 3D radiation pattern of the antenna; the an-
tenna has an omnidirectional radiation pattern. Also, the
beam width (angular width) is 58.8%. Figure 9 shows
the radiation pattern in the x-z plane. Table 3 shows the
comparison among the evolution stages of the proposed
UWB wearable antenna.

B. Effect of antenna bending
The wearable antennas are required to be bent as hu-

man breast shape. To investigate the bending effect on
the proposed wearable UWB antenna, the antenna is bent
around foam cylinders with different radii at 30, 60, 90,
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Fig. 3. (a) The proposed antenna structure. (b) The 

proposed antenna dimension. (c) The measurement 
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Fig. 4. The fabricated antenna (a) top view and (b) back 

view. 
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Fig. 6. The radiation pattern of the proposed antenna 

with metamaterial from the front side and backside. 

 
Fig. 7. The XZ plane of the radiation pattern.
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Fig. 3. (a) The proposed antenna structure. (b) The pro-
posed antenna dimension. (c) The measurement setup.

120, and 180 mm [14, 15]. The 2D antenna representa-
tion as flat and with regards to the bending angles are
depicted in Fig. 8. The return loss results of the different
radii of bending are shown in Fig. 9.

C. Cavity-backed UWB wearable bent antenna
The concept of cavity-backed antenna is creating re-

flectors on all sides of the antenna except the front side of

Table 2: The proposed antenna dimensions
Par. W W1 W2 W3 W4
Dim.
([0-9] mm)

28 27.4 1.5 13 1

Par. W5 W6 L L1 L2
Dim. (mm) 3 19.4 20 19.5 5
Par. L3 L4 L5 L6 θ

Dim. (mm) 4.5 6.5 4.5 2.5 50
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shown in Fig. 10 (a). The top side of the cavity structure
is shown in Fig. 10 (b). Figure 11 shows the return loss
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Fig. 4. The fabricated antenna (a) top view and (b) back
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Fig. 5. The return loss of the fabricated antenna and sim-
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Fig. 6. The radiation pattern of the proposed antenna with
metamaterial from the front side and backside.

Fig. 7. The XZ plane of the radiation pattern.

Fig. 8. The 2D flat antenna and bending around a radius
at 30, 60, 90, 120, and 180 mm.

Fig. 9. The return loss results at different bending radii.

results of bending the antenna with a radius of 90 mm
without a cavity and cavity-backed antenna. Figure 12
shows the 3D radiation pattern of the cavity-backed an-
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Fig. 10. (a) The front side of the cavity structure. (b) The
top side of the cavity structure.

Fig. 11. The return loss of bending antenna without cav-
ity and cavity-backed antenna.

tenna, one noticed that the cavity increases the directivity
of the wearable antenna from 5.852 dBi to 10.65 dBi and
the beam width (angular width) changes from 58.8% to
50.3% at the same frequency 9.4 GHz. The gain changes
from 5.805 dBi to 10.6 dBi. Figure 13 shows the radia-
tion pattern in the x-z plane.

III. THE PROPOSED DETECTION SYSTEM
A. Breast phantom

A heterogeneous phantom is used. It is structured in
a 3-D hemisphere shape. It consists of various layers of
breast tissues (skin, fat, glandular tissues, and tumors).
Figure 14 shows the different layers of the proposed
heterogeneous phantom. Tables 4 and 5 show the di-
mensions of the different layers of the breast and the
electromagnetic parameters (Thickness T , outer radius
Rout (mm), inner radius Rin (mm), Relative permittivity (ε),
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Fig. 12. The radiation pattern of the proposed antenna
with cavity from the front side and backside.

Fig. 13. The XZ plane of the radiation pattern.

conductivity (σ ), Density(ρ), Specific heat capacity (cp),
and Thermal conductivity (k)) respectively [17, 18].

B. Antennas setup
Four antennas are bent around the human breast. An-

tenna 1 and antenna 3 are opposite to each other, antenna
2 and antenna 4 are opposite to each other, each antenna
far distance from the breast skin by 38 mm, and the ra-
dius of the bending of the antenna is equal to 90 mm. The
distance between the cavity and the antenna is 10 mm.
The radius of the bent cavity is 100 mm. Figure 15 shows
the front and top sides positions of the proposed cavities
backed by bent antennas and the breast phantom.

IV. RESULTS AND DISCUSSION
A. Tumor detection

Breast cancer originates in the glandular tissue of
the breast, so we always try to detect and locate the tu-

Fig. 14. Different layers of the proposed heterogeneous
phantom.
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Fat 15 55 40 

Glandula

r 
40 

40 
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Table 5: The electromagnetic parameters of the proposed phantom. 

Tissues Dielectric properties ρ (Kg/m3) cp (J/K/Kg) k (W/K/m) 

ε (F/m) σ (S/m) 

Skin 36 4 1085 3765 0.4 

Fat 9 0.4 1069 2279 0.3 

Glandular 11 − 15 0.4 − 0.5 1050 3600 0.5 

Tumor 50 4 1050 3600 0.5 
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Fig. 15. (a) The front side of the detection system, (b)
The top side of the detection system.

Table 4: Breast different layers of breast dimensions
Tissues T (mm) Rout (mm) Rin (mm)

Skin 5 60 55
Fat 15 55 40
Glandular 40 40 0

mor early within this glandular tissue (stage I), where it
is less likely to spread. Firstly, the proposed system is
operated in the case of healthy breast tissues free of any
tumors and then reports the coupling coefficients of the
four proposed antennas for comparison with the coupling
coefficients in the situation of unhealthy tissue contain-
ing tumors. Next, we split the glandular layer within the
proposed breast into four quadrants: I, II, III, and IV. We
hypothesized a tumor in the first quadrant, simulated the
proposed system, and recorded the results again. After-
ward, the tumor was eliminated from the first quadrant
and immersed in another quadrant, and the system was
simulated and the results were recorded again. The sim-
ulations were performed 4 times for each position of 4
tumor locations: P1 in quarter I, P2 in quarter II, P3 in
quarter III, and P4 in quarter IV. The phantom quadrants
and the positions of tumors are shown in Fig. 16.

The reflection coefficients S11, S22, S33, and S44 for
five cases, healthy breast tissue cases, and the four posi-
tions of the tumor in the unhealthy tissue at 9.34 GHz
are presented in Table 6 and Fig. 17–20, respectively.
Figure 21 shows the coupling between the four adjacent
antennas, where a very low coupling, very good isola-
tion, and good spatial diversity are achieved, where the
coupling coefficients S12 is −47.57 dB at 9.47 GHz, S13
is -48 dB at 8.35 GHz and S14 is−47.32 dB at 9.47 GHz.

In the absence of a tumor case, the coupling coeffi-
cient S11 is equal to S44 and S22 is equal to the coupling
coefficient S33. In the case of a tumor in the first quadrant
(P1), the values of S22 and S44 remain equal to the same
values as it was in the absence of a tumor but the values
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Table 5: The electromagnetic parameters of the proposed phantom

Tissues
Dielectric properties

ρ (Kg/m3) cp (J/K/Kg) k (W/K/m)ε

(F/m)
σ (S/m)

Skin 36 4 1085 3765 0.4
Fat 9 0.4 1069 2279 0.3
Glandular 11−15 0.4−0.5 1050 3600 0.5
Tumor 50 4 1050 3600 0.5

Fig. 16. The phantom splitting and the positions of
tumors.

Table 6: The reflection loss of the five cases
Tumor positions

No
tumor

P1 P2 P3 P4

S11
(dB)

25.5 34.5 25.4 34.7 25.4

S22
(dB)

28.3 28.1 66.4 28.1 61.9

S33
(dB)

28.3 63.6 28 68.5 28

S44
(dB)

25.5 25.4 34.5 25.4 34.3

of S11 and S33 change so that the value of S33 is greater
than the value of S11 and less than 65 dB. In the case of
a tumor in the second quadrant (P2), the values of S11
and S33 remain equal to the same values as it was in the
absence of a tumor but the values of S22 and S44 change
so that the value of S22 is greater than the value of S44
and greater than 65 dB. In the case of a tumor in the third
quadrant (P3), the values of S22 and S44 remain equal to
the same values as it was in the absence of a tumor but

Fig. 17. The reflection coefficients S11 for all cases.

the values of S11 and S33 change so that the value of S33
is greater than the value of S11 and greater than 65 dB. In
the case of a tumor in the fourth quadrant (P4), the values
of S11 and S33 remain equal to the same values as it was
in the absence of a tumor but the values of S22 and S44
change so that the value of S22 is greater than the value
of S44 and less than 65 dB.

The simulations were done at different distances be-
tween the antenna and the cavity at 5, 10, and 15 mm
but the best results were at 10 mm. Many parameters af-
fect that distance as antenna resonance frequency and the
tumor positions.

B. Specific Absorption Rate (SAR) analysis
Faraday’s law states that the magnetic field of the

coil transmits radio frequency energy and generates an
electric field within the tissues of the human body and
the absorbed radio frequency energy is recycled into heat
[19]. Therefore, tissue heating has health effects on pa-
tients as a result of their exposure to radio frequency, and
these effects can be measured and controlled by the so-
called Specific Absorption Rate (SAR) [20]. The Spe-
cific Absorption Rate (SAR) is a measure of the absorp-
tion rate of Radio Frequency (RF) power by biological
tissue while it is exposed to Radio Frequency (RF) en-
ergy. For calculating the SAR value, we need a volume,
its mass has 1 gram or 10 grams and this volume must be
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Fig. 18. The reflection coefficients S22 for all cases.

Fig. 19. The reflection coefficients S33 for all cases.

Fig. 20. The reflection coefficients S44 for all cases.

Fig. 21. The coupling coefficients S12, S13, and S14 for
the proposed detection system.

a cubic shape and contains the peak electric field by the
condition of the IEEE Standard 1528 [21].

The local SAR is the value of SAR at each point
inside the phantom tissues [W/Kg] and it is defined by
Eq.1 [20]:

SARlocal (r,ω) =
σ(r,ω) |E(r,ω)|2

2ρ(r)
. (1)

The average SAR is the integral of the local SAR at
each point on the cube and then divided by the mass of
the cube and it is defined by Eq.2:

SARaverage (r,ω) =
1
v

∫
σ(r,ω) |E(r,ω)|2

2ρ(r)
dr, (2)

where σ(r,ω) is the conductivity of the material of the
phantom [S/m], ρ(r) is the mass density of the tissue
[Kg/m3], E(r,ω) is the electric field [V/m],(r) is the po-
sition vector, and ω is the frequency.

The SAR analysis of the heterogeneous phantom us-
ing the proposed bending antenna system is carried out

Fig. 22. The maximum spatial average SAR value
using 1g.
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by the Biomedical environment of the CST. The spa-
tial average of SAR values of 1 g and 10 g volumet-
ric samples for heterogeneous phantoms are analyzed
at 9.34 GHz frequency. These results (Fig. 22) show
that the maximum spatial average SAR value using 1g
and 10g samples are 0.0563 [W/Kg] and 5.2 × 10−4
[W/Kg]] respectively at 0.5 W at the phantom. These val-
ues are significantly below the maximum limit assigned
by Federal Communications Commission (FCC) in the
United States, which is 1.6[W/Kg] averaged over 1 g vol-
ume, and the standard in Europe, is 2 [W/Kg] averaged
over 10 g volume.

V. CONCLUSION
A configuration and implementation of a UWB

wearable antenna were introduced to detect the
malignant tissues inside the human breast. The UWB
wearable antenna bandwidth extends from 4.90 GHz to
16 GHz. Good agreement was achieved between mea-
sured and simulated results. The proposed cavity-backed
antenna achieved high directivity, high gain, and reason-
able beamwidth. A heterogeneous breast phantom with
a 3mm tumor radius was tested at 9.34 GHz for tumor
detection and localization processes. SAR results were
investigated using 1g and 10g standards and had shown
the appropriateness of the proposed antennas for breast
cancer early detection and localization system.
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