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Abstract – For 5G sub-6 GHz outdoor applications, a
highly isolated two-port rectangular dielectric resonator
antenna (RDRA) with UWB MIMO is presented in
this research. For isolation enhancement purposes at the
lower frequency band (2.27 GHz-2.62 GHz), a longitudi-
nal slot is inserted at the ground plane. For isolation en-
hancement at the higher frequency band (3.9 GHz-5.73
GHz), an edged hole is inserted in the RDRA. Investi-
gations are conducted on the impacts of slotted ground
as well as edged hole radius on isolation. The orthogonal
feeding scheme of UWB MIMO RDRA considering both
edged hole and slotted ground plane effects are investi-
gated. For the edged hole MIMO RDRA with a slotted
ground plane, isolation is better than -24.7 dB at a higher
frequency band and is better than -15.5 dB at a lower fre-
quency band. This isolation improvement is explained
by the surface current density distribution. The use of
an edged hole RDRA and an aperture-coupled orthogo-
nal feeding allows UWB bandwidth and good efficiency
performances on the 5G operating bands. To justify the
MIMO performance, the envelope correlation coefficient
(ECC) and diversity gain (DG) are applied.

Index Terms – 5G, co-polarization, cross-polarization,
DG, DRA, ECC, MIMO antenna, UWB.

I. INTRODUCTION
The primary requirements of wireless 5G commu-

nication networks are extremely high data rates, im-
proved spectral efficiency, lower latency, and high qual-
ity of service (QoS) [1–3]. The millimeter wave frequen-
cies (more than 24 GHz) are used for interior coverage,
whereas the 5G sub-6 GHz channels are used for out-
door applications [4]. According to the most recent edi-
tion of the 3GPP technical standard (TS 38.101), the sub-
6 GHz bands for 5G communications are divided into
new radio bands such as n46 (5.150- 5.925), n47 (5.855-
5.925), n53 (2.483.5-2.495), n77 (3.3 GHz-4.2 GHz),
and n79 (4.4 GHz-5 GHz) [5]. The multiple input, multi-
ple output (MIMO) antenna system takes into account
many antenna elements on a single substrate, which
worsens the isolation properties. Low isolation (below 10

dB) between antenna components with constrained spac-
ing is therefore extremely difficult [6]. There have been
many different isolation techniques used, but it has been
found that decoupling networks [7–9], parasitic meth-
ods [10–12], flawed ground structures [13–15], neutral-
ization lines [16–18], metamaterials [19–20], the self-
isolated antenna [21], and orthogonal polarization [22]
all resulted in better isolation. Although some of the
previously suggested antennas had certain shortcomings,
overall, they had a positive influence on MIMO antenna
isolation. For instance, a decoupling network-used an-
tenna [7] suffered from an increase in envelope correla-
tion coefficient (ECC) from 0.01 and 0.19 to 0.12 and
0.29, respectively, with and without the use of a dual-
band decoupling network. Frequency shifting from 5.8
GHz to 5.5 GHz was a problem for parasitic approaches
[11] when electromagnetic band gap (EBG) structures
were present. Due to H-shaped defected ground struc-
tures (DGS), DGS [14] only experienced little radiation
profile distortion. Wider lower-frequency bandwidth as
opposed to upper-frequency bandwidth was a problem
for neutralization lines [18]. The susceptibility of res-
onators to the horizontal movement was a problem for
metamaterials [19]. Hence, a mutual coupling decrease
was not seen. Narrow bandwidth was a problem for
orthogonal polarization and self-isolated antenna tech-
niques [21, 22].

With isolation greater than -24.7 dB at higher
frequency bandwidth (3.9 GHz to 5.73 GHz) and iso-
lation better than -15.5 dB at lower frequency band-
width (2.27 GHz to 2.62 GHz), a high isolated dual-
port ultra-wideband (UWB) MIMO rectangular dielec-
tric resonator antenna (RDRA) is suggested in this re-
search. This is accomplished by using an orthogonal
feeding system, an edged hole at the RDRA, and a lon-
gitudinal slot at the ground. An investigation is done into
how orthogonal feeding and the effects of edged hole ra-
dius and slotted ground affect isolation. A microstrip-
matched stub feed is utilized for impedance matching.
An etched Z-shape aperture at the ground plane connects
a dielectric resonator to a feed stub. Calculated ECC and
DG both fall within the permitted range. The suggested
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MIMO antenna is a candidate for sub-6 GHz outdoor
5G applications since the measured -6 dB operating fre-
quency bandwidth is adequate for the n46, n47, n53, n77,
n78, and n79 5G frequency bands.

The proposed edged hole MIMO RDRA with a slot-
ted ground plane achieves -15.53 dB and -24.7 dB at
lower and higher frequency bands, respectively. That is
achieved without using DGS or EBG structures, or para-
sitic methods that may cause radiation distortion or fre-
quency shift. Also, ECC is kept lower than 0.01 all over
the operating lower and higher bandwidths. The pro-
posed edged hole MIMO RDRA with a slotted ground
plane has wider upper-frequency bandwidth as compared
to lower-frequency bandwidth.

II. RDRA’s ORTHOGONAL FEEDING
METHOD

This section introduces the RDRA both without and
with the slotted ground plane. The perspective view, top
view, and bottom view of the MIMO RDRA are dis-
played in Fig. 1. It uses a low-cost FR4 substrate with
a 1.6 mm thickness, a dielectric constant εr of 4.65, and
a loss tangent tan(δ ) of 0.02. On the substrate’s top sur-
face, two Z-slots and two 50 Ω matching stubs are etched
into the ground plane. On the top surface of the sub-
strate, two rectangular-shaped dielectric resonators made
of alumina are positioned. The RDRA’s T E111 mode
presence is based on [23–25]. The DRA with the dimen-
sion’s width w, length l, and height h emits magnetic
dipole radiation. The following formulas can be used to
calculate the resonant frequency:

fo =
c

2π
√

εr

√
k2

x + k2
y + k2

z (1)

kx = π/l,kz = π/2h (2)

w =
2
ky

tanh
(

kyo

ky

)
,kyo =

√
k2

x + k2
z , (3)

where c represents the vacuum-bound speed of light.
You may get the resonance frequency fo by knowing the
length l and height h and solving for ky and w. The com-
puted resonance frequency of a DRA with identical di-
mensions of length and breadth of 25 mm and various
heights h values is shown in Table 1.

Table 1: The resonant frequency of various height levels
of RDRA

hhh (mm) 10 15 20 25
fff ooo(GHz) 3.23 2.71 2.22 2.39

A dielectric cube with a 25 mm edge length is em-
ployed as a starting point. The suggested MIMO RDRA
is modeled, simulated, and optimized using the CST
electromagnetic solver taking into account the feeding

scheme impact; the MIMO RDRA optimized dimen-
sions are shown in Table 2. The resonance frequency for
an RDRA with equal dimensions of 21.5 mm in width,
length, and height is discovered to be 2.39 GHz. With-
out taking into account the impact of the feeding mech-
anism, the predicted resonant frequency is discovered to
be 2.99 GHz. Figure 1 depicts the isolation between the
two ports of the MIMO RDRA aerial. It is noted that at
the lower operating bandwidth (2.25 GHz to 2.52 GHz),
the isolation between the two ports is maintained be-
low -9.5 dB, while at the higher operating frequency
bandwidth, it is maintained below -16 dB. (3.6 GHz to
5.7 GHz).

Table 2: MIMO RDRA dimensions (mm)
LLLDDDRRRAAA SSS111HHH SSS222HHH SSS333HHH SSS111VVV
21.5 18.9 17.9 7.9 9.25
SSS222VVV LLLSSS wwwSSS HHHDDDRRRAAA LLL111 SSSlllooottt

11.25 80 40 15.24 11
LLL222 SSSlllooottt LLL333 SSSlllooottt www111 SSSlllooottt www222 SSSlllooottt LLL333 FFFeeeeeeddd

5 11 6 6.3 13
LLL222 FFFeeeeeeddd LLL111 FFFeeeeeeddd www111 FFFeeeeeeddd www222 FFFeeeeeeddd SSS444HHH

6 7 2.7 2.7 17.3
LLLsss111 LLLsss222
38 38

For the lower frequency band isolation enhance-
ment, a longitudinal slot at the ground is inserted. The
obtained isolation is better than -13.2 dB, while the
higher frequency band is better than -17 dB, as shown
in Fig. 1 (g). The rectangular slot is etched and centered
at the ground plane with dimensions of 40 mm width and
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Fig. 1. The suggested MIMO RDRA, (a) perspective 

view, (b) top view, (c) side view, (d) bottom view, (e) 

S-parameters, (f) bottom view of the MIMO RDRA 

with the slotted ground plane, and (g) S-parameters of 

the MIMO RDRA with the slotted ground plane.  
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Fig. 1. The suggested MIMO RDRA, (a) perspective 

view, (b) top view, (c) side view, (d) bottom view, (e) 

S-parameters, (f) bottom view of the MIMO RDRA 

with the slotted ground plane, and (g) S-parameters of 

the MIMO RDRA with the slotted ground plane.  
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Fig. 1. The suggested MIMO RDRA, (a) perspective 

view, (b) top view, (c) side view, (d) bottom view, (e) 

S-parameters, (f) bottom view of the MIMO RDRA 

with the slotted ground plane, and (g) S-parameters of 

the MIMO RDRA with the slotted ground plane.  
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Fig. 1. The suggested MIMO RDRA, (a) perspective 

view, (b) top view, (c) side view, (d) bottom view, (e) 

S-parameters, (f) bottom view of the MIMO RDRA 

with the slotted ground plane, and (g) S-parameters of 

the MIMO RDRA with the slotted ground plane.  
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Fig. 1. The suggested MIMO RDRA, (a) perspective 

view, (b) top view, (c) side view, (d) bottom view, (e) 

S-parameters, (f) bottom view of the MIMO RDRA 

with the slotted ground plane, and (g) S-parameters of 

the MIMO RDRA with the slotted ground plane.  
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Fig. 1. The suggested MIMO RDRA: (a) perspective
view, (b) top view, (c) side view, (d) bottom view, (e) S-
parameters, (f) bottom view of the MIMO RDRA with
the slotted ground plane, and (g) S-parameters of the
MIMO RDRA with the slotted ground plane.

8.1 mm length. Its position is tuned using the CST simu-
lator and is shown in Fig. 1 (f). Table 2 shows the dimen-
sions of the bottom view of the slotted ground plane.

III. AN EDGED HOLE RDRA
ORTHOGONAL FEEDING TECHNIQUE

This section introduces the edged hole RDRA both
without and with the slotted ground plane. An edged
hole of 4 mm radius is created at the RDRA edge, as
illustrated in Figs. 2 (a) and (b) to improve isolation at
the higher frequency band. At a higher frequency range,
in Fig. 2 (c), more isolation is achieved. In compar-
ison to -9.5 and -19.6 dB, with the same orthogonal
feeding but without an edged hole and slotted ground
plane, the isolation is retained below -10.5 dB and -22.3
dB at the lower and higher working bands, respectively.
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Fig. 2. The edged hole MIMO RDRA (a) perspective 

view, (b) top view, and (c) S-parameters. 
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Fig. 3. MIMO edged hole RDRA (a) 𝑆21,  (b) 𝑆11 as 

the hole radius varies, and (c) S-parameters with the 

slotted ground plane. 

 

A. Distribution of surface current 

The surface current density distribution at 2.48 GHz 

(lower frequency band) and 4.2 GHz (higher frequency 

band) for both MIMO RDRA without slotted ground and 

MIMO edged hole RDRA with the slotted ground plane, 

where port 1 is excited, is shown in Fig. 4 to examine the 

isolation properties of the MIMO RDRA antennas. It has 

been noted from Fig. 4 (a) that the coupling current 

among MIMO components is quite weak in the case of 

only left MIMO RDRA excitation. The difference 

between the surface current density near the left RDRA 

and near the right RDRA, seen in Fig. 4 (a), is also higher 

than the difference between the surface current density 

near the left RDRA and near the right RDRA, shown in 

Fig. 4 (b). So, both surface current distribution 

characteristics back up the conclusion that the suggested 

orthogonal MIMO RDRA's self-isolation with an edged 

hole structure is superior to that of the proposed 

orthogonal MIMO RDRA without an edged hole 

structure. That explains the isolation improvement that is 
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Fig. 2. The edged hole MIMO RDRA (a) perspective 

view, (b) top view, and (c) S-parameters. 
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Fig. 3. MIMO edged hole RDRA (a) 𝑆21,  (b) 𝑆11 as 

the hole radius varies, and (c) S-parameters with the 

slotted ground plane. 
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among MIMO components is quite weak in the case of 
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Fig. 2. The edged hole MIMO RDRA (a) perspective 

view, (b) top view, and (c) S-parameters. 
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Fig. 3. MIMO edged hole RDRA (a) 𝑆21,  (b) 𝑆11 as 

the hole radius varies, and (c) S-parameters with the 

slotted ground plane. 
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and near the right RDRA, seen in Fig. 4 (a), is also higher 
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structure. That explains the isolation improvement that is 
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Fig. 2. The edged hole MIMO RDRA: (a) perspective
view, (b) top view, and (c) S-parameters.



ABOUELNAGA, ABDALLAH: EDGE HOLE EFFECT ON ISOLATION OF UWB MIMO RDRA FOR 5G OUTDOOR APPLICATIONS 506

The impact of hole radius on isolation is seen in
Fig. 3 (a). For the lower frequency range, the isolation is
maintained below -9.6 dB at a hole radius of 1 mm and
below -10.96 dB at a hole radius of 5 mm. Moreover, the

with slotted 
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Fig. 2. The edged hole MIMO RDRA (a) perspective 

view, (b) top view, and (c) S-parameters. 
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Fig. 3. MIMO edged hole RDRA (a) 𝑆21,  (b) 𝑆11 as 

the hole radius varies, and (c) S-parameters with the 

slotted ground plane. 
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band) for both MIMO RDRA without slotted ground and 

MIMO edged hole RDRA with the slotted ground plane, 

where port 1 is excited, is shown in Fig. 4 to examine the 

isolation properties of the MIMO RDRA antennas. It has 

been noted from Fig. 4 (a) that the coupling current 

among MIMO components is quite weak in the case of 

only left MIMO RDRA excitation. The difference 

between the surface current density near the left RDRA 

and near the right RDRA, seen in Fig. 4 (a), is also higher 
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Fig. 2. The edged hole MIMO RDRA (a) perspective 

view, (b) top view, and (c) S-parameters. 
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Fig. 3. MIMO edged hole RDRA (a) 𝑆21,  (b) 𝑆11 as 

the hole radius varies, and (c) S-parameters with the 

slotted ground plane. 
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band) for both MIMO RDRA without slotted ground and 

MIMO edged hole RDRA with the slotted ground plane, 

where port 1 is excited, is shown in Fig. 4 to examine the 

isolation properties of the MIMO RDRA antennas. It has 

been noted from Fig. 4 (a) that the coupling current 

among MIMO components is quite weak in the case of 

only left MIMO RDRA excitation. The difference 

between the surface current density near the left RDRA 

and near the right RDRA, seen in Fig. 4 (a), is also higher 

than the difference between the surface current density 

near the left RDRA and near the right RDRA, shown in 

Fig. 4 (b). So, both surface current distribution 

characteristics back up the conclusion that the suggested 

orthogonal MIMO RDRA's self-isolation with an edged 

hole structure is superior to that of the proposed 

orthogonal MIMO RDRA without an edged hole 

structure. That explains the isolation improvement that is 

(b)

with slotted 
ground 

   

 
(a) 

 
(b) 

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

-20

-6

S
-P

a
ra

m
e
te

rs
 (

d
B

)

Frequency (GHz)

 S11 o  S12 o  S22 o

 
(c) 
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view, (b) top view, and (c) S-parameters. 
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Fig. 3. MIMO edged hole RDRA: (a) S21, (b) S11 as the
hole radius varies, and (c) S-parameters with the slotted
ground plane.

isolation is maintained below -16.5 dB at a 1 mm hole
radius and below -23.5 dB at a 5 mm hole radius at the
higher frequency spectrum. At a hole radius of 1 mm,
the lower bandwidth changes from 2.29 GHz-2.51 GHz
to 2.36 GHz-59 GHz. According to Fig. 3 (b), the higher
bandwidth changes from 3.62 GHz to 5.66 GHz at a 1
mm hole radius to 3.69 GHz to 5.74 GHz at a 5 mm
hole radius.

To achieve better isolation at the lower frequency
band, the slotted ground plane is used. The same dimen-
sions and position as Fig. 2 (f) are considered. The isola-
tion of the higher bandwidth is kept below -24.7 dB and
the lower bandwidth is kept below -15.53 dB, Fig. 3 (d).
Table 3 shows the lower and the higher bandwidths along
with the obtained isolation for the four previous MIMO
RDRA configurations. The lower frequency band shifts
from 2.25 GHz-2.52 GHz to 2.27 GHz-2.62 GHz and
isolation shifts from -9.5 dB to -15.53 dB for the RDRA
without the slotted ground plane and the edged hole
RDRA with the slotted ground plane, respectively. Also,
the higher frequency band shifts from 3.6 GHz-5.7 GHz
to 3.9 GHz-5.73 GHz, and isolation shifts from -16 dB to
-24.7 dB for the RDRA without the slotted ground plane
and the edged hole RDRA with the slotted ground plane,
respectively.

Table 3: The bandwidths and the isolations of the four
MIMO RDRA configurations

Antenna BW (GHz) Min
Isolation

(dB)

RDRA without slotted ground 2.25-2.52 -9.5
3.6-5.7 -16

RDRA with slotted ground 2.22-2.5 -13.2
3.58-5.67 -17

Edged RDRA without slotted ground 2.33-2.56 -10.5
3.68-5.7 -22.3

Edged RDRA with slotted ground 2.27-2.62 -15.53
3.9-5.73 -24.7

A. Distribution of surface current
The surface current density distribution at 2.48 GHz

(lower frequency band) and 4.2 GHz (higher frequency
band) for both MIMO RDRA without slotted ground and
MIMO edged hole RDRA with the slotted ground plane,
where port 1 is excited, is shown in Fig. 4 to examine
the isolation properties of the MIMO RDRA antennas. It
has been noted from Fig. 4 (a) that the coupling current
among MIMO components is quite weak in the case of
only left MIMO RDRA excitation. The difference be-
tween the surface current density near the left RDRA
and near the right RDRA, seen in Fig. 4 (a), is also
higher than the difference between the surface current
density near the left RDRA and near the right RDRA,
shown in Fig. 4 (b). So, both surface current distribution
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characteristics back up the conclusion that the suggested
orthogonal MIMO RDRA’s self-isolation with an edged
hole structure is superior to that of the proposed orthogo-
nal MIMO RDRA without an edged hole structure. That
explains the isolation improvement that is gained when
orthogonal MIMO RDRA with an edged hole structure
is applied. The same outcomes have been seen when just
right MIMO RDRA excitation is used, as illustrated in
Fig. 4 (c) and (d).
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frequencies. Both MIMO-edged hole RDRA with and 

without slotted ground structures can receive signals in 

both directions. 
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(a) E-plane Co and cross-polarization dB (V/m) at 
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(b) H-plane Co and cross-polarization dB (A/m) at 

2.39 GHz. 

 

Fig. 5. MIMO RDRA antenna's simulated radiation 

pattern (without the edged hole and slotted ground). 
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(b) H-plane Co and cross-polarization dB (A/m) at 

2.39 GHz. 

 

Fig. 5. MIMO RDRA antenna's simulated radiation 

pattern (without the edged hole and slotted ground). 
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(b) H-plane Co and cross-polarization dB (A/m) at 

2.39 GHz. 

 

Fig. 5. MIMO RDRA antenna's simulated radiation 

pattern (without the edged hole and slotted ground). 
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(a) E-plane Co and cross-polarization dB (V/m) at 

2.4 GHz. 
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(a) E-plane Co and cross-polarization dB (V/m) at 

2.39 GHz. 

0

30

60

90

120

150

180

210

240

270

300

330

-80

-70

-60

-50

-40

-30

-20

-80

-70

-60

-50

-40

-30

-20

 Co polarization

 Cross polarization

 
(b) H-plane Co and cross-polarization dB (A/m) at 

2.39 GHz. 

 

Fig. 5. MIMO RDRA antenna's simulated radiation 

pattern (without the edged hole and slotted ground). 
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(a) E-plane Co and cross-polarization dB (V/m) at 

2.4 GHz. 

(d)

Fig. 4. Surface current distribution of MIMO RDRA: (a)
with edged hole and slotted ground at 2.4 GHz, (b) with-
out the edged hole and slotted ground at 2.4 GHz, (c)
with edged hole and slotted ground at 4.2 GHz, and (d)
without the edged hole and slotted ground at 4.2 GHz.
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gained when orthogonal MIMO RDRA with an edged 

hole structure is applied. The same outcomes have been 

seen when just right MIMO RDRA excitation is used, as 

illustrated in Fig. 4 (c) and (d). 
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(a) E-plane Co and cross-polarization dB (V/m) at 

2.39 GHz. 
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(b) H-plane Co and cross-polarization dB (A/m) at 

2.39 GHz. 

 

Fig. 5. MIMO RDRA antenna's simulated radiation 

pattern (without the edged hole and slotted ground). 
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(a) E-plane Co and cross-polarization dB (V/m) at 

2.4 GHz. 
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gained when orthogonal MIMO RDRA with an edged 

hole structure is applied. The same outcomes have been 

seen when just right MIMO RDRA excitation is used, as 

illustrated in Fig. 4 (c) and (d). 
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(a) E-plane Co and cross-polarization dB (V/m) at 

2.39 GHz. 
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(b) H-plane Co and cross-polarization dB (A/m) at 

2.39 GHz. 

 

Fig. 5. MIMO RDRA antenna's simulated radiation 

pattern (without the edged hole and slotted ground). 
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(a) E-plane Co and cross-polarization dB (V/m) at 

2.4 GHz. 

(b)

Fig. 5. MIMO RDRA antenna’s simulated radiation pat-
tern (without the edged hole and slotted ground): (a) E-
plane Co and cross-polarization dB (V/m) at 2.39 GHz,
and (b) H-plane Co and cross-polarization dB (A/m) at
2.39 GHz.
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gained when orthogonal MIMO RDRA with an edged 

hole structure is applied. The same outcomes have been 

seen when just right MIMO RDRA excitation is used, as 

illustrated in Fig. 4 (c) and (d). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4. Surface current distribution of MIMO RDRA 

(a) with edged hole and slotted ground at 2.4 GHz, (b) 

without the edged hole and slotted ground at 2.4 GHz, 

(c) with edged hole and slotted ground at 4.2 GHz, 

and (d) without the edged hole and slotted ground at 

4.2 GHz. 

 

B. Co-polarized and cross-polarized radiation 

pattern 

Resonance frequencies at 2.39 GHz, 3.84 GHz, 4.65 

GHz, and 5.27 GHz are provided by the MIMO RDRA 

without an edged hole and slotted ground. Figure 5 

shows that the proposed antenna's E-plane and H-plane 

radiation patterns are directional at a frequency of 2.39 

GHz. (the same performance at other resonant 

frequencies). Moreover, Figure 6 shows the predicted 

radiation pattern for the MIMO-edged hole RDRA with 

the slotted ground. With its slotted ground and MIMO-

edged holes, the RDRA offers resonance frequencies of 

2.4 GHz, 3.95 GHz, 4.78 GHz, and 5.34 GHz. Co-

polarization and cross-polarization are only displayed 

for the left MIMO-edged hole RDRA at 2.4 GHz. The 

radiation patterns show that the proposed antenna's E- 

and H-planes are directional at these resonance 

frequencies. Both MIMO-edged hole RDRA with and 

without slotted ground structures can receive signals in 

both directions. 
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(a) E-plane Co and cross-polarization dB (V/m) at 

2.39 GHz. 
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(b) H-plane Co and cross-polarization dB (A/m) at 

2.39 GHz. 

 

Fig. 5. MIMO RDRA antenna's simulated radiation 

pattern (without the edged hole and slotted ground). 
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(a) E-plane Co and cross-polarization dB (V/m) at 

2.4 GHz. 
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(b) H-plane Co and cross-polarization dB (A/m) at 

2.4 GHz. 

 

Fig. 6. MIMO RDRA antenna's simulated radiation 

pattern (with edged hole and with slot). 

 

In Fig. 7 (a) and (b), respectively, the simulated gain and 

radiation efficiency of MIMO RDRA with slotted 

ground and MIMO edged hole RDRA without slotted 

ground are shown. The radiation efficiency for MIMO 

RDRA without slotted ground is better than 84% for the 

lower operating frequency bandwidth (2.25 GHz to 2.55 

GHz) and higher than 75% for the higher operating 

frequency bandwidth (3.6 GHz to 5.7 GHz). Radiation 

efficiency is better than 85% for MIMO-edged hole 

RDRA with the slotted ground for the lower operating 

frequency bandwidth (2.27 GHz to 2.62 GHz) and higher 

than 76% for the higher operating frequency bandwidth 

(3.9 GHz to 5.73 GHz). The gain for MIMO RDRA 

without slotted ground is higher than 4.7 dB for the lower 

operating frequency bandwidth (2.25 GHz to 2.55 GHz) 

and higher than 3.6 dB for the larger operating frequency 

bandwidth (3.6 GHz to 5.7 GHz). The gain is larger than 

4.5 dB for MIMO-edged hole RDRA with the slotted 

ground for the lower operating frequency bandwidth 

(2.27 GHz to 2.62 GHz) and greater than 4 dB for the 

higher operating frequency bandwidth (3.9 GHz to 5.73 

GHz).  
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Fig. 7. Gain and radiation efficiency of MIMO RDRA 

(a) without and (b) with an edged hole and slotted 

ground. 

 

C. Performance of diversity 

By computing the diversity performance parameters 

(ECC, DG), the performance of the orthogonal MIMO 

RDRA with and without edged holes 

is presented. Equation (4) is used to calculate the ECC 

based on the S-parameters calculation [25]. 

 

𝐸𝐶𝐶 =
|𝑆𝑛𝑛

∗ 𝑆𝑛𝑚+𝑆𝑚𝑛
∗ 𝑆𝑚𝑚|2

((1−(|𝑆𝑛𝑛|2+|𝑆𝑚𝑛|2))(1−(|𝑆𝑚𝑚|2+|𝑆𝑛𝑚|2)))
            (4) 

 

According to the International Telecommunication 

Union (ITU) standard, the ECC value should be smaller 

than 0.5 to provide optimal MIMO aerial performance. 

Throughout the whole operational lower and higher 

frequency bands, the correlation values for the MIMO 

RDRA without slotted ground and the edged hole RDRA 

with slotted ground are less than 0.04 and 0.02, 

respectively, making it a viable MIMO antenna for the 

authorized bands. Equation (5) is used to determine 

diversity gain [26]. Close to 10 is the acknowledged 

diversity gain value. Based on Fig. 8, it can be shown 

that for both the lower and higher operating frequency 

bands, MIMO RDRA without ground slot and MIMO 

edged hole RDRA with grounded slot both exhibit a 

diversity gain of almost 10. 

 

𝐷𝐺 = 10√1 − |0.99𝐸𝐶𝐶|2                                        (5) 

 

(b)

Fig. 6. MIMO RDRA antenna’s simulated radiation pat-
tern (with edged hole and with slot): (a) E-plane Co
and cross-polarization dB (V/m) at 2.4 GHz, and (b) H-
plane Co and cross-polarization dB (A/m) at 2.4 GHz.

3.95 GHz, 4.78 GHz, and 5.34 GHz. Co-polarization and
cross-polarization are only displayed for the left MIMO-
edged hole RDRA at 2.4 GHz. The radiation patterns
show that the proposed antenna’s E- and H-planes are
directional at these resonance frequencies. Both MIMO-
edged hole RDRA with and without slotted ground struc-
tures can receive signals in both directions.

In Figs. 7 (a) and (b), respectively, the simulated
gain and radiation efficiency of MIMO RDRA with slot-
ted ground and MIMO edged hole RDRA without slotted
ground are shown. The radiation efficiency for MIMO
RDRA without slotted ground is better than 84% for the
lower operating frequency bandwidth (2.25 GHz to 2.55
GHz) and higher than 75% for the higher operating fre-
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(b) H-plane Co and cross-polarization dB (A/m) at 

2.4 GHz. 

 

Fig. 6. MIMO RDRA antenna's simulated radiation 

pattern (with edged hole and with slot). 

 

In Fig. 7 (a) and (b), respectively, the simulated gain and 

radiation efficiency of MIMO RDRA with slotted 

ground and MIMO edged hole RDRA without slotted 

ground are shown. The radiation efficiency for MIMO 

RDRA without slotted ground is better than 84% for the 

lower operating frequency bandwidth (2.25 GHz to 2.55 

GHz) and higher than 75% for the higher operating 

frequency bandwidth (3.6 GHz to 5.7 GHz). Radiation 

efficiency is better than 85% for MIMO-edged hole 

RDRA with the slotted ground for the lower operating 
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(3.9 GHz to 5.73 GHz). The gain for MIMO RDRA 

without slotted ground is higher than 4.7 dB for the lower 
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and higher than 3.6 dB for the larger operating frequency 

bandwidth (3.6 GHz to 5.7 GHz). The gain is larger than 

4.5 dB for MIMO-edged hole RDRA with the slotted 

ground for the lower operating frequency bandwidth 

(2.27 GHz to 2.62 GHz) and greater than 4 dB for the 

higher operating frequency bandwidth (3.9 GHz to 5.73 

GHz).  
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Fig. 7. Gain and radiation efficiency of MIMO RDRA 

(a) without and (b) with an edged hole and slotted 

ground. 

 

C. Performance of diversity 

By computing the diversity performance parameters 

(ECC, DG), the performance of the orthogonal MIMO 

RDRA with and without edged holes 

is presented. Equation (4) is used to calculate the ECC 

based on the S-parameters calculation [25]. 
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Throughout the whole operational lower and higher 
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respectively, making it a viable MIMO antenna for the 

authorized bands. Equation (5) is used to determine 
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diversity gain value. Based on Fig. 8, it can be shown 

that for both the lower and higher operating frequency 
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edged hole RDRA with grounded slot both exhibit a 
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(b) H-plane Co and cross-polarization dB (A/m) at 

2.4 GHz. 

 

Fig. 6. MIMO RDRA antenna's simulated radiation 

pattern (with edged hole and with slot). 

 

In Fig. 7 (a) and (b), respectively, the simulated gain and 

radiation efficiency of MIMO RDRA with slotted 

ground and MIMO edged hole RDRA without slotted 

ground are shown. The radiation efficiency for MIMO 

RDRA without slotted ground is better than 84% for the 

lower operating frequency bandwidth (2.25 GHz to 2.55 

GHz) and higher than 75% for the higher operating 

frequency bandwidth (3.6 GHz to 5.7 GHz). Radiation 

efficiency is better than 85% for MIMO-edged hole 

RDRA with the slotted ground for the lower operating 

frequency bandwidth (2.27 GHz to 2.62 GHz) and higher 

than 76% for the higher operating frequency bandwidth 

(3.9 GHz to 5.73 GHz). The gain for MIMO RDRA 

without slotted ground is higher than 4.7 dB for the lower 

operating frequency bandwidth (2.25 GHz to 2.55 GHz) 

and higher than 3.6 dB for the larger operating frequency 

bandwidth (3.6 GHz to 5.7 GHz). The gain is larger than 

4.5 dB for MIMO-edged hole RDRA with the slotted 

ground for the lower operating frequency bandwidth 

(2.27 GHz to 2.62 GHz) and greater than 4 dB for the 

higher operating frequency bandwidth (3.9 GHz to 5.73 

GHz).  
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Fig. 7. Gain and radiation efficiency of MIMO RDRA 

(a) without and (b) with an edged hole and slotted 

ground. 

 

C. Performance of diversity 

By computing the diversity performance parameters 

(ECC, DG), the performance of the orthogonal MIMO 

RDRA with and without edged holes 

is presented. Equation (4) is used to calculate the ECC 
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Throughout the whole operational lower and higher 
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RDRA without slotted ground and the edged hole RDRA 

with slotted ground are less than 0.04 and 0.02, 

respectively, making it a viable MIMO antenna for the 

authorized bands. Equation (5) is used to determine 

diversity gain [26]. Close to 10 is the acknowledged 

diversity gain value. Based on Fig. 8, it can be shown 

that for both the lower and higher operating frequency 

bands, MIMO RDRA without ground slot and MIMO 

edged hole RDRA with grounded slot both exhibit a 

diversity gain of almost 10. 
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(b)

Fig. 7. Gain and radiation efficiency of MIMO RDRA:
(a) without, and (b) with an edged hole and slotted
ground.

quency bandwidth (3.6 GHz to 5.7 GHz). Radiation effi-
ciency is better than 85% for MIMO-edged hole RDRA
with the slotted ground for the lower operating frequency
bandwidth (2.27 GHz to 2.62 GHz) and higher than 76%
for the higher operating frequency bandwidth (3.9 GHz
to 5.73 GHz). The gain for MIMO RDRA without slot-
ted ground is higher than 4.7 dB for the lower operating
frequency bandwidth (2.25 GHz to 2.55 GHz) and higher
than 3.6 dB for the larger operating frequency bandwidth
(3.6 GHz to 5.7 GHz). The gain is larger than 4.5 dB for
MIMO-edged hole RDRA with the slotted ground for the
lower operating frequency bandwidth (2.27 GHz to 2.62
GHz) and greater than 4 dB for the higher operating fre-
quency bandwidth (3.9 GHz to 5.73 GHz).

C. Performance of diversity
By computing the diversity performance parameters

(ECC, DG), the performance of the orthogonal MIMO
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RDRA with and without edged holes is presented. Equa-
tion (4) is used to calculate the ECC based on the S-
parameters calculation [25].

ECC=
|S∗nnSnm+S∗mnSmm|2((

1−( |Snn|2+|Smn|2
))(

1− (|Smm|2+|Snm|2))
) .

(4)
According to the International Telecommunication

Union (ITU) standard, the ECC value should be smaller
than 0.5 to provide optimal MIMO aerial performance.
Throughout the whole operational lower and higher fre-
quency bands, the correlation values for the MIMO
RDRA without slotted ground and the edged hole RDRA
with slotted ground are less than 0.04 and 0.02, respec-
tively, making it a viable MIMO antenna for the autho-
rized bands. Equation (5) is used to determine diver-
sity gain [26]. Close to 10 is the acknowledged diver-
sity gain value. Based on Fig. 8, it can be shown that
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Fig. 8. ECC and DG versus frequency plot of MIMO 

RDRA (a) without the slotted ground and (b) with the 

edged hole and slotted ground. 

 

Table 4 shows a comparison of the proposed edged 

hole MIMO RDRA with a slotted ground plane 

considering bandwidth, isolation, ECC, and diversity 

gain. 

 

Table 4: Comparison of the proposed edged hole 

MIMO RDRA with the previous MIMO structure 

Antenna -6 dB 
BW 

(GHz) 

Min 
Isolation 

(dB) 

Max 
ECC 

Min 
DG 

Edged 
RDRA 

with slotted 
ground 

2.27-
2.62 

15.53 0.01 10 

3.9-5.73 24.7 0.002 10 

[1] 3.38–
3.78 

26 0.04 - 

4.95–
5.58 

25 0.06 - 

[4] 3.3-5 19 0.018 - 

[8] 1.6-3.6 14 0.21 10 

[15] 2.5-6 13 0.025 9.8 

 

IV. PROTOTYPE OF ANTENNA 
An orthogonal MIMO RDRA (without an edged hole) 

antenna is selected to be manufactured and tested for 

verification, as shown in Fig. 9. Fig. 9 (a) and (b) show 

images of the manufactured rectangular MIMO antenna. 

Fig. 9 (c) also displays a picture of the 

experimental setup. For experimental validation, a Rohde 

& Schwarz ZVP 20 Vector Network Analyzer is 

employed. Figure 10 displays the predicted and observed 

scattering characteristics for the suggested orthogonal 

MIMO-RDRA (without edged hole). The findings of the 

measured and simulated S-parameters coincide rather 

well. The relevant difference results from manufacturing 

flaws, soldering effects, glue effects, and an alignment 

issue with both the feeding system and RDRA. The 

RDRA block is just an alumina layer that is stacked one to 

another using glue. Compared to its simulated 

counterpart's lower frequency -6 dB bandwidth of 2.25 

GHz to 2.52 GHz, the measured lower -6 dB frequency 

bandwidth is enlarged from 2.54 GHz to 2.79 GHz. In 

contrast to its simulated equivalent, which has a high-

frequency -6 dB bandwidth of 3.6 GHz to 5.7 GHz, the 

measured -6 dB high-frequency bandwidth is expanded to 

3.77 GHz to 6 GHz. 

 
 

(a) (b) 

 
(c) 

Fig. 9. Fabricated rectangular MIMO RDRA 

prototype (without edged hole) (a) top view (b) 

bottom view (c) experimental setup  
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Fig. 10 Simulated and measured S-parameters of 

MIMO RDRA (without edged hole). 
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Fig. 8. ECC and DG versus frequency plot of MIMO 

RDRA (a) without the slotted ground and (b) with the 

edged hole and slotted ground. 
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hole MIMO RDRA with a slotted ground plane 

considering bandwidth, isolation, ECC, and diversity 

gain. 
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& Schwarz ZVP 20 Vector Network Analyzer is 
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scattering characteristics for the suggested orthogonal 
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well. The relevant difference results from manufacturing 
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issue with both the feeding system and RDRA. The 
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another using glue. Compared to its simulated 
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Fig. 10 Simulated and measured S-parameters of 

MIMO RDRA (without edged hole). 

(b)

Fig. 8. ECC and DG versus frequency plot of MIMO
RDRA: (a) without the slotted ground, and (b) with the
edged hole and slotted ground.

for both the lower and higher operating frequency bands,
MIMO RDRA without ground slot and MIMO edged
hole RDRA with grounded slot both exhibit a diversity
gain of almost 10.

DG= 10
√

1−|0.99ECC|2. (5)
Table 4 shows a comparison of the proposed

edged hole MIMO RDRA with a slotted ground plane
considering bandwidth, isolation, ECC, and diversity
gain.

Table 4: Comparison of the proposed edged hole MIMO
RDRA with the previous MIMO structure

Antenna
−6 dB

BW
(GHz)

Min
Isolation
(dB)

Max
ECC

Min
DG

Edged
RDRA

2.27−
2.62 15.53 0.01 10

with slotted
ground 3.9−5.73 24.7 0.002 10

[1] 3.38− 26 0.04 -
3.78

4.95− 25 0.06 -
[4] 5.58
[8] 3.3−5 19 0.018 -

[15] 2.6−3.6 14 0.21 10

IV. PROTOTYPE OF ANTENNA
An orthogonal MIMO RDRA (without an edged

hole) antenna is selected to be manufactured and tested
for verification, as shown in Fig. 9. Figures 9 (a) and
(b) show images of the manufactured rectangular MIMO
antenna. Figure 9 (c) also displays a picture of the ex-
perimental setup. For experimental validation, a Rohde
& Schwarz ZVP 20 Vector Network Analyzer is em-
ployed. Figure 10 displays the predicted and observed
scattering characteristics for the suggested orthogonal
MIMO-RDRA (without edged hole). The findings of the
measured and simulated S-parameters coincide rather
well. The relevant difference results from manufacturing
flaws, soldering effects, glue effects, and an alignment is-
sue with both the feeding system and RDRA. The RDRA
block is just an alumina layer that is stacked one to an-
other using glue. Compared to its simulated counterpart’s
lower frequency -6 dB bandwidth of 2.25 GHz to 2.52
GHz, the measured lower -6 dB frequency bandwidth is
enlarged from 2.54 GHz to 2.79 GHz. In contrast to its
simulated equivalent, which has a high-frequency -6 dB
bandwidth of 3.6 GHz to 5.7 GHz, the measured -6 dB
high-frequency bandwidth is expanded to 3.77 GHz to
6 GHz.
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Fig. 8. ECC and DG versus frequency plot of MIMO 

RDRA (a) without the slotted ground and (b) with the 

edged hole and slotted ground. 
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bottom view (c) experimental setup  
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Fig. 10 Simulated and measured S-parameters of 

MIMO RDRA (without edged hole). 

Fig. 9. Fabricated rectangular MIMO RDRA prototype
(without edged hole): (a) top view, (b) bottom view, and
(c) experimental setup.

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

1

2

3

4

5

6

7

8

9

10

11

12
 DG

 ECC

Frequency (GHz)

D
G

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

 E
C

C

 
(a) 

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

1

2

3

4

5

6

7

8

9

10

11

12
 DG

 ECC

Frequency (GHz)

D
G

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

E
C

C

 
(b) 

Fig. 8. ECC and DG versus frequency plot of MIMO 

RDRA (a) without the slotted ground and (b) with the 

edged hole and slotted ground. 
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Fig. 10 Simulated and measured S-parameters of 

MIMO RDRA (without edged hole). 

Fig. 10. Simulated and measured S-parameters of MIMO
RDRA (without edged hole).

V. CONCLUSION
In this paper, MIMO RDRA with and without a slot-

ted ground plane and MIMO edged hole RDRA with and
without a slotted ground plane are investigated for an or-
thogonal feeding scheme. For isolation enhancement at
the lower frequency band, the slotted ground plane was
used, while the isolation enhancement at the higher fre-
quency was achieved by using the edged hole RDRA.

Without a slotted ground plane, the MIMO RDRA
featured two -6 dB impedance bandwidths, a lower oper-
ating frequency band (between 2.25 and 2.52 GHz), and
a higher operating frequency band (3.6 GHz to 5.7 GHz).
A lower operating frequency bandwidth (2.27 GHz to
2.62 GHz) and a larger operating frequency bandwidth
were available for the MIMO edged hole RDRA with

the slotted ground plane (3.9 GHz to 5.73 GHz). It was
looked into how hole radius affected everything. Struc-
tures using MIMO RDRA have a minimum efficiency of
75%. The suggested MIMO RDRA antennas were ex-
cellent candidates for outdoor 5G applications due to the
diversity of 10 throughout the working frequency bands.
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