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Abstract – The nonstandard finite-difference time-
domain (NS-FDTD) method is a powerful tool for solv-
ing Maxwell’s equations in their differential form on
orthogonal grids. Nonetheless, to precisely treat arbitrar-
ily shaped objects, very fine lattices should be employed,
which often lead to unduly computational requirements.
Evidently, such an issue hinders the applicability of the
technique in realistic problems. For its alleviation, a new
path integral (PI) representation model, equivalent to the
NS-FDTD concept, is introduced. The proposed model
uses a pair of basic and complementary path integrals
for the H-nodes. To guarantee the same accuracy and
stability as the NS-FDTD method, the two path inte-
grals are combined via optimization parameters, derived
from the corresponding NS-FDTD formulae. Since in the
PI model, E-field computations on the complementary
path are not necessary, the complexity is greatly reduced.
Numerical results from various real-world problems
prove that the proposed method improves notably the
efficiency of the NS-FDTD scheme, even on coarse
orthogonal meshes.

Index Terms – Computational electromagnetics, finite-
difference time-domain methods, integral equations,
radar cross section.

I. INTRODUCTION
Since its initial advent, the nonstandard finite-

difference time-domain (NS-FDTD) method remains a
very accurate scheme for electromagnetic field problems
[1–15]. Indeed, its accuracy is 104 times higher than
that of the FDTD technique [1–4], in the case of coarse
grids. Thus, the NS-FDTD method can be suitable for
the electromagnetic design and analysis of electrically
large structures with various dielectric materials, such as

aircraft. Explicitly, the dimensions of a typical aircraft
are approximately 500λ -1800λ , where λ is the radar
wavelength. Since the wavelength error of the FDTD
method, along the axial direction, is 7λ -25λ [16–19],
it is apparent that such designs are very demanding. On
the other hand, the error of the NS-FDTD algorithm is
zero [1–4]. Despite this advantage, however, the method
is established in differential form and applied to discrete
points on orthogonal grids. Thus, its modeling accuracy
degrades in the case of real objects with curved surfaces
not aligned to the grid axes [16–19].

To overcome these shortcomings, the simplest way
is the use of very fine grids, yet at the expense of large
overheads. To this aim, a contour-path (CP) model based
on the integral form of Maxwell’s equations has been
presented [16], [17], [20], [21]. As the path integral (PI)
scheme, stemming from the Stokes theorem, can han-
dle arbitrary shapes, it can be a potential candidate for
such problems, even with coarse lattices. In this con-
text, 2D and 3D PI models have been developed for the
NS-FDTD method [22], [23]. Nevertheless, these mod-
els are complex for practical applications as they require
E-node computations for both the complementary and
basic paths. Moreover, the numerical stability condition
[16], [19] of the prior PI model has not been elaborately
derived. The optimization parameters for the PI calcula-
tions are approximate values, derived from the numerical
dispersion equation. Thus, the efficiency of this PI model
could be questionable in some scenarios, e.g., long-term
stability and compatibility with the NS-FDTD method in
real-world configurations.

In this paper, a new PI form, equivalent to the NS-
FDTD formulation in two (2D) and three dimensions
(3D), is developed. To achieve a high accuracy with
the same isotropy and stability level as the NS-FDTD
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method, both the basic and complementary path inte-
grals for the H-node calculations on square grids are
enhanced. Unlike previous PI models [22], [23], the
proposed one does not need the E-field calculation on
the complementary path. The two PIs are combined by
new optimization parameters, analytically derived from
an equivalency requirement with the NS-FDTD formu-
lae. So, an advanced PI representation model is derived,
which can be promptly employed with the NS-FDTD
technique. Numerical validations reveal that the featured
model drastically extends the applicability of the NS-
FDTD algorithm for curved objects on orthogonal grids,
attaining high levels of accuracy and convergence.

II. 2D PATH INTEGRAL FORM
A. Formulation

Let us consider a PI model on a square lattice that
offers the best accuracy for the NS-FDTD method. In
the FDTD scheme, a typical propagation error arises
along the 0o and 45o directions [16]. For this reason, we
adopt two distinct integral paths - the basic and the 45o-
rotated complementary one - that can mutually cancel
their errors, as shown in Fig. 1. For the Hz component,
the integral form of Maxwell’s equations is given by

µ
∂

∂ t

∫
S

H ·dS =−
∫

C
E ·dl ⇒ µ

∂ H̄z(x,y)
∂ t

∆
2

=− [Ey(x+δ ,y)−Ex(x,y+δ )

−Ey(x−δ ,y)+Ex(x,y−δ )]∆,

(1a)

for the basic path with δ ≡ ∆/2, and

µ
∂ H̃z(x,y)

∂ t
2∆

2

=−
[
Ẽy(x+δ ,y+δ )− Ẽx(x−δ ,y+δ )

−Ẽy(x−δ ,y−δ )+ Ẽx(x+δ ,y−δ )
]√

2∆,

(1b)

for the complementary path. To guarantee the desired
isotropy, the ∂Hz/∂ t terms, obtained from the integral
forms of (1a) and (1b), are combined as

∂Hz(x,y)
∂ t

= β
2D
0

∂ H̄z(x,y)
∂ t

+(1−β
2D
0 )

∂ H̃z(x,y)
∂ t

, (2)

 
 

Fig. 1. (a) Basic and (b) complementary (red arrows) 

integral path on a square grid for the new 2D PI model.  
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where 2D

0  is a 2D optimization parameter, to be derived 
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Note that in (1)-(3), the cell width  and temporal 

derivatives f/t are substituted with sk() = 2sin(k/2)/k 

and (f 
t+Δt – f t)/sω(Δt), respectively, where k is the wave 

number,  the angular frequency, Δt the time increment, 

and s(t) = 2sin(t/2)/[1]-[3]. A similar analysis 

holds for the Ex case, as well. Moreover, the yE  

component on the complementary path in (1b), is derived 
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while an analogous set for the Ex and xE  components can 

be equivalently acquired. Also, in (4), ex,y are the unit 

vectors on the basic path and ( ) / 2x y e e  the unit 

vector on the complementary path. Therefore, for the Hz 

component, in (2), we obtain 
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where β 2D
0 is a 2D optimization parameter, to be derived

below, that can finely tune the resulting explicit expres-
sions to the same accuracy as those of the NS-FDTD
method. Next, the Ey component, on the basic path, in
(1a), is calculated as

ε
∂

∂ t

∫
S

E ·dS =
∫

C
H ·dl

⇒ ε
∂Ez(x+δ ,y)

∂ t
=

Hz(x,y)−Hz(x+∆,y)
∆

, (3a)

Et+∆t/2
y (x+δ ,y) = Et−∆t/2

y (x+δ ,y)

+
sω(∆t)
εsk(∆)

[
Ht

z(x,y)−Ht
z(x+∆,y)

]
.

(3b)

Note that in (1)-(3), the cell width ∆ and tem-
poral derivatives ∂ f/∂ t are substituted with sk(∆) =
2sin(k∆/2)/k and

(
f t+∆t − f t

)
/sω(∆t), respectively,

where k is the wave number, ω the angular frequency, ∆t
the time increment, and sω(∆t) = 2sin(ω∆t/2)/ω [1–3].
A similar analysis holds for the Ex case, as well. More-
over, the Ẽy component on the complementary path in
(1b), is derived by its existing value on the basic path as
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{
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}
·
−ex + ey√

2
,

(4)
while an analogous set for the Ex and Ẽx components can
be equivalently acquired. Also, in (3), ex,y are the unit
vectors on the basic path and (−ex + ey)/

√
2 the unit

vector on the complementary path. Therefore, for the Hz
component, in (3), we obtain
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, (5)

which is the formula for the Hz node of our PI model. It
is stressed that the use of the interpolated Ẽy value, from
(3), in the PI scheme is different from the 2D PI model
of [22], due to the complementary path integral.

B. Derivation of the β 2D
0 parameter

To obtain the optimal β 2D
0 parameter, we compare

the PI form of (3) and the NS-FDTD formula with the
operators [1–3]

d(0)
x = α0d(1)

x +(1−α0)d(2)
x , (6a)

d(1)
x f (x,y) = f (x+δ ,y)− f (x−δ ,y), (6b)
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d(2)
x f (x,y) = [ f (x+δ ,y−∆)− f (x−δ ,y−∆)

+ f (x+δ ,y+∆)− f (x−δ ,y+∆)]/2, (6c)

with analogous forms holding for the d(∗)
y ones. Note

that, herein, we focus on the ∂ xEy terms to acquire a sim-
ple argument. Hence, and after some calculus in (3), one
may reach to
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Comparing β 2D
0 and α0 from [1–3], we find that

1+β 2D
0

2
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1+ γ0

2
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2
3
− (k∆)2

90
. (8)

Therefore, it is proven that (5) can be equated with
the 2D NS-FDTD formula through β 2D

0 given in (8). This
implies that the wave propagation characteristics, accu-
racy, and stability of the new PI model are the same as
those of the NS-FDTD method [1–3], [7], [13].

III. 3D PATH INTEGRAL FORM
A. Formulation

For the improvement of the 2D PI model, shown in
Fig. 1, we must eliminate the propagation error due to
angular dependence. To this objective, six square inte-
gral paths are devised; i.e., the basic and complementary
paths are mutually rotated 45o (around the z-axis) at the z
± ∆ planes, as in Fig. 2. Using basic and complementary
paths in Fig. 2, our PI forms for the Hz component are
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(9a)

for the basic path, and

µ
∂ H̃z(x,y,z)

∂ t
2∆

2

=−
[
Ẽy(x+δ ,y+δ ,z)− Ẽx(x−δ ,y+δ ,z)

−Ẽy(x−δ ,y−δ ,z)+ Ẽx(x+δ ,y−δ ,z)
]√

2∆,
(9b)

for the complementary paths at the z and z ± ∆ planes.
To attain the desired isotropy, we combine the integral
forms of (9a) and (9b) as

∂Hz(x,y,z)
∂ t = β1

[
β0

∂ H̄z(x,y,z)
∂ t +(1−β0)

∂ H̃z(x,y,z)
∂ t

]
+ 1−β1

2

[
β2

∂ H̄z(x,y,z+∆)
∂ t +(1−β2)

∂ H̃z(x,y,z+∆)
∂ t

+β2
∂ H̄z(x,y,z−∆)

∂ t +(1−β2)
∂ H̃z(x,y,z−∆)

∂ t

] , (10)

B. Derivation of the 
2D

0  parameter 

To obtain the optimal 
2D

0  parameter, we compare 

the PI form of (2) and the NS-FDTD formula with the 

operators [1]-[3] 
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with analogous forms holding for the (*)

yd  ones. Note 

that, herein, we focus on the ∂xEy terms to acquire a 

simple argument. Hence, and after some calculus in (2), 
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Comparing 
2D

0  and α0 from [1]-[3], we find that 

       

2D 2
2D0 0

0 0 0

1 1 2 ( )

2 2 3 90

k 
  

  
      . (8) 

Therefore, it is proven that (5) can be equated with the 

2D NS-FDTD formula through 
2D

0  given in (8). This 

implies that the wave propagation characteristics, 

accuracy, and stability of the new PI model are the same 

as those of the NS-FDTD method [1]-[3], [7], [13]. 

 

III. 3D PATH INTEGRAL FORM 
 

A. Formulation 

For the improvement of the 2D PI model, shown in 

Fig. 1, we must eliminate the propagation error due to 

angular dependence. To this objective, six square integral 

paths are devised; i.e., the basic and complementary paths 

are mutually rotated 45o (around the z-axis) at the z ± Δ 

planes, as in Fig. 2. Using basic and complementary paths 

in Fig. 2, our PI forms for the Hz component are 
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for the basic path, and 

 
 

Fig. 2. Basic and complementary integral paths for the 

calculation of the Hz component on a 3D square grid. Six 

paths are used at the z and z ± Δ planes, while in the two 

figures on the right, Hz(z) is, actually, Hz(x, y, z) and Ηz(z 

± Δ) is Ηz(x, y, z ± Δ). 
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for the complementary paths at the z and z ± Δ planes. To 

attain the desired isotropy, we combine the integral forms 

of (9a) and (9b) as 
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where β0,1 are the optimization parameters for an isotropic 

wave propagation. Basically, (10) denotes our 3D PI 

model. Then, the Ey component in (9a) becomes 

 





2
( , , )

d d

( , , ) ( , , )

( , , ) ( , , )

y

S C

z z

x x

E x y z

t t

H x y z H x y z

H x y z H x y z


 

   

 
    

 

   

      

 E S H l

,  (11a) 

  

/ 2 /2( , , ) ( , , )

( )
( , , ) ( , , )

( )

( , , ) ( , , )

t t t t

y y

t t

z z

k

t t

x x

E x y z E x y z

s t
H x y z H x y z

s

H x y z H x y z



 



   

   


   

       . (11b) 

As with the 2D PI formula, is replaced with to sk() 

and f/t with (f 

t+Δt–f 

t)/sω(Δt),according to the NS-

Fig. 2. Basic and complementary integral paths for the
calculation of the Hz component on a 3D square grid.
Six paths are used at the z and z ± ∆ planes, while in the
two figures on the right, Hz(z) is, actually, Hz(x, y, z) and
Hz(z ± ∆) is Hz(x, y, z ± ∆).

where β 0,1 are the optimization parameters for an
isotropic wave propagation. Basically, (9) denotes our
3D PI model. Then, the Ey component in (9a) becomes

ε
∂

∂ t

∫
S

E ·dS =
∫

C
H ·dl ⇒ ε

∂Ey(x+δ ,y,z)
∂ t

∆
2

= [Hz(x,y,z)−Hz(x+∆,y,z)

+Hx(x+δ ,y,z+δ )−Hx(x+δ ,y,z−δ )]∆,

(11a)

Et+∆t/2
y (x+δ ,y,z) = Et−∆t/2

y (x+δ ,y,z)

+
sω(∆t)
εsk(∆)

[
Ht

z(x,y,z)−Ht
z(x+∆,y,z)

+Ht
x(x+δ ,y,z+δ )−Ht

x(x+δ ,y,z−δ )
]
.

(11b)

As with the 2D PI formula, ∆ is replaced with to
sk(∆) and ∂ f/∂ t with

(
f t+∆t − f t

)
/sω(∆t), according

to the NS-FDTD concept. A similar procedure can also
be performed for the Ex component. In this context, the
interpolated Ẽx,y quantities in (9b) are derived from

Ẽx(x−δ ,y+δ ,z)

= {[Ex(x−∆,y+δ ,y,z)+Ex(x,y+δ ,z)]ex

+[Ey(x−δ ,y,z)+Ey(x−δ ,y+∆,z)]ey
}
·

ex + ey

2
√

2
,

(12a)
Ẽy(x+δ ,y+δ ,z)

= {[Ex(x,y+δ ,y,z)+Ex(x+∆,y+δ ,z)]ex

+[Ey(x+δ ,y,z)+Ey(x+δ ,y+∆,z)]ey
}
·
−ex + ey

2
√

2
.

(12b)
Therefore, the final path integral expression for the

Hz component is given by (13) (see top of the next page).
Note that the process of (9)-(13) can be analogously
applied to the extraction of the Hx,y components.
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Ht+∆t
z (x,y,z) = Ht

z(x,y,z)

− β1sω (∆t)
µsk(∆)

{
β0

[
Et+∆t/2

y (x+δ ,y,z)−Et+∆t/2
x (x,y+δ ,z)−Et+∆t/2

y (x−δ ,y,z)+Et+∆t/2
x (x,y−δ ,z)

]
+

1−β0√
2

[
Ẽt+∆t/2

y (x+δ ,y+δ ,z)− Ẽt+∆t/2
x (x−δ ,y+δ ,z)− Ẽt+∆t/2

y (x−δ ,y−δ ,z)+ Ẽt+∆t/2
x (x+δ ,y−δ ,z)

]}
− (1−β1)sω (∆t)

2µsk(∆)

{
β2

[
Et+∆t/2

y (x+δ ,y,z+∆)−Et+∆t/2
x (x,y+δ ,z+∆)−Et+∆t/2

y (x−δ ,y,z+∆)+Et+∆t/2
x (x,y−δ ,z+∆)

]
+

1−β2√
2

[
Ẽt+∆t/2

y (x+δ ,y+δ ,z+∆)− Ẽt+∆t/2
x (x−δ ,y+δ ,z+∆)− Ẽt+∆t/2

y (x−δ ,y−δ ,z+∆)+ Ẽt+∆t/2
x (x−δ ,y−δ ,z+∆)

]}
− (1−β1)sω (∆t)

2µsk(∆)

{
β2

[
Et+∆t/2

y (x+δ ,y,z−∆)−Et+∆t/2
x (x,y+δ ,z−∆)−Et+∆t/2

y (x−δ ,y,z−∆)+Et+∆t/2
x (x,y−δ ,z−∆)

]
+

1−β2√
2

[
Ẽt+∆t/2

y (x+δ ,y+δ ,z−∆)− Ẽt+∆t/2
x (x−δ ,y+δ ,z−∆)− Ẽt+∆t/2

y (x−δ ,y−δ ,z−∆)+ Ẽt+∆t/2
x (x−δ ,y−δ ,z−∆)

]}
.

(13)

− µ∆
∂Hz(x,y,z)

∂ t

∣∣∣∣
∂x

=
β1 (1+β0)

2
[Ey(x+δ ,y,z)−Ey(x−δ ,y,z)]

+
(1−β1)(1−β2)

8
[Ey(x+δ ,y+∆,z+∆)−Ey(x−δ ,y+∆,z+∆)+Ey(x+δ ,y−∆,z+∆)−Ey(x−δ ,y−∆,z+∆)

+Ey(x+δ ,y+∆,z−∆)−Ey(x−δ ,y+∆,z−∆)+Ey(x+δ ,y−∆,z−∆)−Ey(x−δ ,y−∆,z−∆)]

+
β1 (1−β0)

4
[Ey(x+δ ,y+∆,z)−Ey(x−δ ,y+∆,z)+Ey(x+δ ,y−∆,z)−Ey(x−δ ,y−∆,z)]

+
(1−β1)(1+β2)

4
[Ey(x+δ ,y,z+∆)−Ey(x−δ ,y,z+∆)+Ey(x+δ ,y,z−∆)−Ey(x−δ ,y,z−∆)] .

(15)

B. Derivation of the β0, β1, and β2 parameters
Let us decompose the temporal derivative on the

left-hand side of (10) into a ∂x and a ∂y term, for a
simple argument, in order to derive the β 0,1,2 parame-
ters; i.e.,

∂Hz(x,y,z)
∂ t

=
∂Hz(x,y,z)

∂ t

∣∣∣∣
∂x
+

∂Hz(x,y,z)
∂ t

∣∣∣∣
∂y
. (14)

Then, the ∂x part of (14) is derived via (15) (see top
of this page). Comparing (15) with the 3D NS-FDTD
operators

d(0)
x = α1d(1)

x +α2d(2)
x +α3d(3)

x , (16)
and by means of Appendix A and [1–3], [13], we obtain
the following coefficient relations

β1 (1+β0) = 2α1, (17a)
(1−β1)(1−β2) = 2α2, (17b)

β1 (1−β0) = (1−β1)(1+β2) = α3. (17c)
If the system of equations (17a)-(17c) is solved by

means of the α1 + α2 + α3 =1 constraint, the new opti-
mization parameters β 0,1,2 can be extracted as

(17a) & (17c) : β1 = α1 +0.5α3, (18a)
(18a) & (17b) : β2 =(0.5α3−α2)/(0.5α3+α2), (18b)
(18a) & (17c) : β0 = (α1−0.5α3)/(α1+0.5α3). (18c)

In this manner, the featured PI formula, given in
(13), becomes fully equivalent to the corresponding 3D
NS-FDTD expression, through the optimization param-
eters of (18a)-(18c), on cubic grids. Consequently, the
wave propagation characteristics along with the numeri-
cal accuracy and stability of the developed PI model, in

a homogeneous space discretized into cubic cells, are the
same as those of the 3D NS-FDTD method.

IV. NUMERICAL RESULTS
In this section, we modify and extend our PI model

to successfully treat curved structures. Then, it is veri-
fied whether it can be utilized as the CP technique of
the FDTD method. Also, by combining this PI model
with the NS-FDTD concept, we prove the superior per-
formance of the former in realistic applications. So it is
shown that the novel PI scheme significantly enhances
the efficiency of the NS-FDTD algorithm for arbitrary
object shapes, without opting for unduly fine lattices.

A. Analysis of 2D applications
The featured PI scheme is, firstly, applied to the

radar cross section (RCS) analysis of a perfect electric
conductor (PEC) circular cylinder with a radius of λ /2.
The modification of the PI model near the cylinder is
shown in Fig. 3. In particular, the integral area for the
computation of the Hz component is enclosed by two
paths, i.e., the SB and the SC, except for the PEC cylin-
der region. Note that the treatment of the path integrals
is based on the typical FDTD principles [16]. So, the PI
form for the basic path in Fig. 3 (a) can be written as

µ
∂

∂ t

∫
S

H ·dS =−
∫

C
E ·dl ⇒ µ

∂ H̄z(x,y)
∂ t

S′B∆
2

= Ex(x,y+δ )∆−Ey(x+δ ,y)∆

+Ey(x−δ ,y)ly∆−Ex(x,y−δ )lx∆,

(19)
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Fig. 3. Modified (a) basic and (b) complementary path 

for the proposed PI model. Dashed lines indicate the 

position of the pair paths, and PEC areas are shown in 

light blue. The integral path and the area for the 

calculation of the Hz component are shown in the right-

hand side figures (except the PEC region).  
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Fig. 4. RCS variation versus the observation angle θ for 

diverse grid sizes Δ. The PEC cylinder is modeled via 

the staircase FDTD method, and Δt = T/15, T/85, T/145, 

T/170 are the temporal increments that correspond to Δ 

= λ/10, λ/60, λ/100, λ/120, respectively. 
 

 
 

Fig. 5. RCS variation for the 2D PEC cylinder, computed 

via the proposed PI model and the staircase NS-FDTD 

method only (without PI treatment). The incidence angle 

of the TE plane wave is θinc = 0o and Δ = λ/10, with λ = 1 

m. The reference solution is obtained in terms of the 

staircase FDTD technique with Δ = λ/120.  

 

where
2/B BS S    and , path length /x yl l  . Similarly, we 

can derive the PI expression for the complementary path 

by means of SC, as depicted in Fig. 3 (b). It is mentioned 

that during the evaluation of (19), Δ must be replaced with 

sk() = 2sin(kt/2)/k. Furthermore, due to the lack of Hz 

nodes in the PEC area, there are some Ex,y and ,x yE  

components that can not be computed via (3b) and (4). 

In such a case, these quantities are derived through the 

extrapolation/projection of already calculated E-field 

values on the nearest-neighbor nodes. The remaining E- 

and H-field components are acquired in terms of (3)-(5). 

Regarding the reference solution of our problem, we 

examine several FDTD simulations of the PEC cylinder, 

as illustrated in Fig. 4. Since convergence is attained for 

Δ = λ/100 ～ λ/120, we select the Δ = λ/120 grid  
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Fig. 3. Modified (a) basic and (b) complementary path 

for the proposed PI model. Dashed lines indicate the 

position of the pair paths, and PEC areas are shown in 

light blue. The integral path and the area for the 

calculation of the Hz component are shown in the right-

hand side figures (except the PEC region).  
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Fig. 3. Modified (a) basic and (b) complementary path
for the proposed PI model. Dashed lines indicate the
position of the pair paths, and PEC areas are shown in
light blue. The integral path and the area for the calcu-
lation of the Hz component are shown in the right-hand
side figures (except the PEC region).

where S′B = SB/∆2 and lx,y = lpath length /∆. Similarly, we
can derive the PI expression for the complementary path
by means of SC, as depicted in Fig. 3 (b). It is mentioned
that during the evaluation of (19), ∆ must be replaced
with sk(∆) = 2sin(k∆/2)/k. Furthermore, due to the lack
of Hz nodes in the PEC area, there are some Exy and
Ẽx,y components that can not be computed via (3b) and
(4). In such a case, these quantities are derived through
the extrapolation/projection of already calculated E-field
values on the nearest-neighbor nodes. The remaining E-
and H-field components are acquired in terms of (3)-(5).

Regarding the reference solution of our problem, we
examine several FDTD simulations of the PEC cylinder,
as illustrated in Fig. 4. Since convergence is attained for
∆ = λ/100 and λ /120, we select the ∆ = λ /120 grid res-
olution with ∆t = T/170, for T = 2π/ω , as our reference.
The structure is illuminated by a TE incident plane, with
an incidence angle of θ inc = 0o, and all scattered waves
are obtained by the TF/SF formulation [16–18] applied
in the NS-FDTD region. Moreover, our domain is dis-
cretized into cells of ∆ = λ /10 (λ = 1 m) for the basic
path and ∆ = λ /7 for the complementary path, while sta-
bility is guaranteed with a ∆t = T/15. The PI area has
a size of 14∆×14∆ (including the cylinder surface) and
is surrounded by a 500∆×500∆ NS-FDTD as well as a
20∆-thick perfectly matched layer (PML) [16–18].

 
(a) 

 
(b) 

 

Fig. 3. Modified (a) basic and (b) complementary path 

for the proposed PI model. Dashed lines indicate the 

position of the pair paths, and PEC areas are shown in 

light blue. The integral path and the area for the 

calculation of the Hz component are shown in the right-

hand side figures (except the PEC region).  

 

IV. NUMERICAL RESULTS 
In this section, we modify and extend our PI model 

to successfully treat curved structures. Then, it is verified 

whether it can be utilized as the CP technique of the 

FDTD method. Also, by combining this PI model with 

the NS-FDTD concept, we prove the superior 

performance of the former in realistic applications. So it 

is shown that the novel PI scheme significantly enhances 

the efficiency of the NS-FDTD algorithm for arbitrary 

object shapes, without opting for unduly fine lattices.  

 

A. Analysis of 2D applications 

The featured PI scheme is, firstly, applied to the 

radar cross section (RCS) analysis of a perfect electric 

conductor (PEC) circular cylinder with a radius of λ/2. 

The modification of the PI model near the cylinder is 

shown in Fig. 3. In particular, the integral area for the 

computation of the Hz component is enclosed by two 

paths, i.e., the SB and the SC, except for the PEC cylinder 

region. Note that the treatment of the path integrals is 

based on the typical FDTD principles [16]. So, the PI 

form for the basic path in Fig. 3 (a) can be written as 

  

2( , )
d d

( , ) ( , )

( , ) ( , )

z

B
S C

x y

y y x x

H x y
S

t t

E x y E x y

E x y l E x y l

 

 

 


     

 

     

     

 H S E l

, (19) 

 
 

Fig. 4. RCS variation versus the observation angle θ for 

diverse grid sizes Δ. The PEC cylinder is modeled via 

the staircase FDTD method, and Δt = T/15, T/85, T/145, 

T/170 are the temporal increments that correspond to Δ 

= λ/10, λ/60, λ/100, λ/120, respectively. 
 

 
 

Fig. 5. RCS variation for the 2D PEC cylinder, computed 

via the proposed PI model and the staircase NS-FDTD 

method only (without PI treatment). The incidence angle 
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Fig. 4. RCS variation versus the observation angle θ for
diverse grid sizes ∆. The PEC cylinder is modeled via
the staircase FDTD method, and ∆t = T/15, T/85, T/145,
T/170 are the temporal increments that correspond to ∆

= λ /10, λ /60, λ /100, λ /120, respectively.

In this context, Fig. 5 compares the RCS of the PEC
cylinder computed via the proposed PI model and the
NS-FDTD method solely (i.e., without PI treatment). As
observed, the proposed technique is in very good agree-
ment with the reference solution, despite the fairly coarse
resolution of ∆ = λ /10 and ∆ = λ /7 for the basic and com-
plementary paths, respectively. Concerning the small rip-
ple in the PI results, we presume that it is attributed
to the ∆ = λ /7 size of the complementary path cells.
Actually, this ripple disappears in the case of a ∆ =
λ /12 mesh resolution, as verified in Figs. 7 and 9 (a)
(see below). So, a viable choice for retaining the bal-
ance between an acceptable accuracy level and a lim-
ited computational burden can be ∆ ≤ λ /12. In addition,
Fig. 5 indicates that the NS-FDTD method, without the
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Fig. 5. RCS variation for the 2D PEC cylinder, computed
via the proposed PI model and the staircase NS-FDTD
method only (without PI treatment). The incidence angle
of the TE plane wave is θ inc = 0o and ∆ = λ /10, with λ

= 1 m. The reference solution is obtained in terms of the
staircase FDTD technique with ∆ = λ /120.
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PI model, fails to deliver acceptable accuracy. In sum-
mary, our PI model achieved a considerable (120/10)2

= 144 times reduction of the memory overhead with
regard to the number of cells, and a (120/10)2 × (170/15)
= 1632 times speed improvement, with regard to the
number of time steps, compared to those of the refer-
ence FDTD (∆ = λ /120, ∆t = T/170) solution. Thus, the
new PI concept can greatly enhance the efficiency of the
NS-FDTD formulation in the case of arbitrarily-curved
objects.

Next, we consider the RCS analysis of the PEC
wing-like model, described in Fig. 6, whose dimen-
sions are measured in ∆ units, with ∆ = λ /12 and λ

= 1 m. For its illumination, we use an incident, H inc
z ,

plane wave. Moreover, the space around the structure is
modeled via the NS-FDTD method and the modified PI
scheme is applied to the cells near the wing-like sur-
face. The RCS variation for different incidence angles,
θ inc, is presented in Fig. 7. The simulations are per-
formed through the novel PI model, the staircase NS-
FDTD technique only (i.e., without any PI treatment),
and the reference FDTD solution with ∆ = λ /96. From
the results, it is deduced that, in all cases, the proposed PI
model accomplishes the best accuracy and coincidence
with the reference solution, unlike the typical staircase
implementations.

The prior 2D applications have also led to some
interesting observations. The first one refers to the con-
sistency of the geometrical accuracy of the integral path
length with its area, given in Fig. 3. Hence, no dis-
crepancies can arise during the combined basic and
complementary path calculations. The second remark
is related to the precision in the calculation of the
E and Ẽ quantities on the modified paths near the
surface of the scatterer. Such computations are con-
ducted via an extrapolation/projection process, which
uses the inner product of the unit ex,y vectors with
the nearest-neighbor E field components, as occurs in
(12). This procedure is important for our PI evaluations
and the geometrical accuracy of the modified PI cells,
as well.

 
 

Fig. 6. Cross-section of a PEC wing-like model. All 

dimensions are in Δ units, with Δ = λ/12 and λ = 1 m. 
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Fig. 7. RCS variation for the 2D wing-like model 

illuminated by an incident plane wave with (a) θinc = 0o, 

(b) θinc = 18o, and (c) θinc = 25o, computed through the 

staircase NS-FDTD method only (without PI treatment, 

Δ = λ/12, λ = 1 m), the proposed PI model (Δ = λ/12), and 

the reference staircase FDTD solution with Δ = λ/96. 

 

variation for different incidence angles, θinc, is presented 

in Fig. 7. The simulations are performed through the 

novel PI model, the staircase NS-FDTD technique only 

Fig. 6. Cross-section of a PEC wing-like model. All
dimensions are in ∆ units, with ∆ = λ /12 and λ = 1 m.
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(c)

Fig. 7. RCS variation for the 2D wing-like model illu-
minated by an incident plane wave with (a) θ inc = 0o,
(b) θ inc = 18o, and (c) θ inc = 25o, computed through the
staircase NS-FDTD method only (without PI treatment,
∆ = λ /12, λ = 1 m), the proposed PI model (∆ = λ /12),
and the reference staircase FDTD solution with ∆ = λ /96.

B. Analysis of 3D applications
To prove the efficacy of the developed PI scheme

in 3D problems, we focus on the RCS study of a finite-
length PEC cylinder and the investigation of a thin-wire
antenna impedance using a thin wire model [16], [25],
[26]. The radius and the length of the former structure
are much larger than ∆, while the latter has a fine form
with a curved surface that is smaller than ∆.

1) RCS study of a finite-length PEC cylinder
The staircase model (cubic cells with ∆ = λ /12 and

λ = 1 m) of the 12λ -long PEC cylinder, whose circular
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Fig. 8. Staircase model of a 12λ -long PEC cylinder with
a circular cross-section of radius λ , for ∆ = λ /12 and λ =
1 m. The modified PI cells are applied only to the surface
of the structure.

cross-section has a radius of λ , is illustrated in Fig. 8.
The incident plane wave is E inc

φ
, with its angles (θ , φ )

expressed in polar coordinates. In our simulations, the
PI scheme of Fig. 3 replaces the staircase approxima-
tion only at the smooth surface of the cylinder. Figure 9
gives the RCS results for the Eφ component, evaluated
via several techniques. Note that, apart from the schemes
already employed in the previous examples, we herein
compare our results with the PI formulation of [23],
where the interpolated Ẽ values are obtained from the
PI scheme instead of (12). Again, the outcomes of the
novel PI model are pretty close to the reference solution
and in satisfactory agreement with the PI model of [23].
The presence of some small discrepancies between the
two PI models, at the low RCS levels, is mainly due to
the different treatment of the E-field components on the
modified paths. Indeed, the proposed PI model retrieves
the required Ẽ terms by means of (12), whereas that of
[23] derives them directly from Ampère’s law. Nonethe-
less, another possible reason could be the different han-
dling of those Ẽ terms that cannot be promptly computed
owing to the presence of the PEC object. In any case, our
scheme reduces the overall burden, regarding the number
of cells, to (72/12)3 = 216 times, compared to the stair-
case FDTD method. Hence, the prior facts substantiate
the competence of the model to successfully manipulate
3D curved structures.

2) Study of a thin-wire antenna impedance
The modified PI model for a thin-wire antenna of

length L is elaborately described in Appendix B. The
antenna is placed along the z-axis at the center of a
10∆-wide PI region, surrounded by a NS-FDTD area
terminated by a 20∆-thick PML. To calculate the input
impedance of the antenna, Zant = R+ jX , we use (B11)
and (B12) from Appendix B, while, in our simulations,
we consider a normalized wavelength (i.e., λ = 1 m);

(a)

(b)

(c)

Fig. 9. RCS variation for the 3D finite-length circular
PEC cylinder illuminated by an incident plane wave with
φ inc = 0o and (a) θ inc = 90o (xy-plane), (b) θ inc = 90o (xz-
plane), and (c) θ inc = 75o (xz-plane), calculated via the
reference staircase FDTD solution with ∆ = λ /72, the
staircase NS-FDTD method only (without PI treatment,
∆ = λ /12, λ = 1 m), the PI scheme (∆ = λ /12) of [23],
and the proposed PI model (∆ = λ /12).

hence, the cell size is set to ∆ = L/21 or L/41. More-
over, for the combined PI and NS-FDTD area, ∆t is the
same as its FDTD counterpart. The antenna is driven by a
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(a) (b)

(c) (d)

Fig. 10. Antenna impedance, Zant = R + jX, versus the wire length L for (a) ∆ = L/21 and a = 0.001 m, (b) ∆ = L/41
and a = 0.001 m, (c) ∆ = L/21 and a = 0.002 m, and (d) ∆ = L/41 and a = 0.002 m, computed through the proposed PI
model and compared to the results from the NEC2 software and the staircase FDTD method.

center feed with a ∆-gap on the z-axis and two wire radii
are examined, namely a = 0.001 m and 0.002 m. Lastly,
our reference solution is obtained via the NEC2 software
[27], based on the method of moments (MoM) [28], as
well as the staircase FDTD technique [16] with a prop-
erly fine lattice. As detected from the antenna impedance
results of Fig. 10, the new PI model agrees better with
the NEC2 than the FDTD method. This proves that the
suggested formulation enables the use of the thin wire
model [16], [25], [26] with the NS-FDTD algorithm, a
remarkable advantage for the analysis of 3D curved con-
figurations with demanding structural details.

V. CONCLUSION
The PI model for Maxwell’s equations is suitable to

treat various arbitrarily-shaped objects when combined
with FDTD schemes. To this objective, an efficient PI
algorithm, equivalent to the NS-FDTD concept, has been
presented in this paper for 2D and 3D problems. To keep

this equivalence, the new PI model uses a pair of suitably
tailored basic and complementary integral paths. So, its
numerical accuracy and stability are the same as those
of its NS-FDTD counterparts. Adapting and incorporat-
ing the featured PI model in the NS-FDTD analysis of
realistic configurations, it has been shown that it offers
high precision results for non-orthogonally-shaped struc-
tures, even on coarse grids. Thus, its combination with
the NS-FDTD method increases the applicability of the
latter and leads to notable computational savings.

APPENDIX A
The 3D NS-FDTD operator d(0)

x is expressed as

d(0)
x = α1d(1)

x +α2d(2)
x +α3d(3)

x , (A1)

with

d(1)
x f (x,y,z) = f (x+∆/2,y,z)− f (x−∆/2,y,z), (A2)



197 ACES JOURNAL, Vol. 39, No. 03, March 2024

d(2)
x f (x,y,z)

=
1
4
[ f (x+∆/2,y+∆,z+∆)− f (x−∆/2,y+∆,z+∆)

+ f (x+∆/2,y+∆z−∆)− f (x−∆/2,y+∆z−∆)

+ f (x+∆/2,y−∆,z+∆)− f (x−∆/2,y−∆,z+∆)

+ f (x+∆/2,y−∆,z−∆)− f (x−∆/2,y−∆,z−∆)],
(A3)

d(3)
x f (x,y,z)

=
1
4
[ f (x+∆/2,y+∆,z)− f (x−∆/2,y+∆,z)

+ f (x+∆/2,y−∆,z)− f (x−∆/2,y−∆,z)

+ f (x+∆/2,y,z+∆)− f (x−∆/2,y,z+∆)

+ f (x+∆/2,y,z−∆)− f (x−∆/2,y,z−∆)],

(A4)

where α1 + α2 + α3 = 1. Note that operators d(0)
y,z can

also be similarly derived. Parameters α1,2,3 are given by

α1 = η1 +η2/3+η3/2 and α2 = η2/3, (A5)

(a) (b)

(c) (d)

Fig. B1. Modified integral paths for a straight thin wire of radius a [black solid line: basic path; blue dashed line:
complementary path]. In particular, integral path (a) near the wire at the xy-plane, (b) for a wire end on the z-axis, (c)
near the wire along the z-axis (only the basic path is used), and (d) for a feed point with a ∆-gap on the z-axis. For
simplicity, coordinate z in (a) and y in (b)-(d) are omitted, while the same procedure can be utilized at the yz-plane.

for
η1 = 7/15−17(k∆)2/864 and η2 = η1 −2γ0 +1,

(A6)
on condition that η1 + η2 + η3 = 1. A detailed descrip-
tion for the derivation of operators d(0)

x,y,z, parameters
α1,2,3 and coefficient γ0 can be found in [1–3].

APPENDIX B
The modified integral paths for a thin-wire antenna

are shown in Fig. B1. Thus, to compute the ∂t
∫

S H · dS
quantity, the integral areas are S = SB = ∆2 −πa2/4 and
S = Sc = 2∆2−πa2/2, as given in Fig. B1 (a). Moreover,
after defining unit vector t, we can write

t = (−ex + ey)/
√

2, (B1)
Ẽ ′

y(x−∆/2,y−∆/2)

= [Ex(x,y−∆/2)ex +Ey(x−∆/2,y−∆)ey] · t,
(B2)

Ẽ ′′
y (x−∆/2,y−∆/2)

= [Ex(x−∆,y−∆/2)ex +Ey(x−∆/2,y)ey] · t.
(B3)



OHTANI, KANAI, KANTARTZIS: A PATH INTEGRAL REPRESENTATION MODEL TO EXTEND THE ANALYTICAL CAPABILITY 198

Since, Ex(x, y – ∆/2) ∝ 1/x and Ey(x – ∆/2, y) ∝ 1/y,∫ d⃝

a⃝
Ẽ ·dl =

√
2∆

2

∫ √
2∆/2

a
Ẽ ′

y(x−∆/2,y−∆/2)l−1 dl

+

√
2∆

2

∫ √
2∆/2

a
Ẽ ′′

y (x−∆/2,y−∆/2)l−1 dl

=
∆√
2

ln
(

∆a√
2

)[
Ẽ ′

y(x−∆/2,y−∆/2)

+Ẽ ′′
y (x−∆/2,y−∆/2)

]
.

(B4)
For the complementary path of Figs. B1 (b) and (d),

Ẽ ′
z(x−∆/2,z−∆/2) =−Ex(x,z−∆/2)cos(π/4), (B5)

Ẽ ′
x(x−∆/2,z+∆/2) = Ex(x,z+∆/2)cos(π/4), (B6)

where Ex(x, y ± ∆/2) ∝ 1/x apart from Ex(x, y + ∆/2) in
Fig. B1 (b). In this manner, one obtains∫ 4⃝

a⃝
Ẽ′ ·dl =

√
2∆

4

∫ √
2∆/2

√
2a

Ẽ ′
y(x−∆/2,y−∆/2)l−1 dl

=

√
2∆

4
ln
(

∆

2a

)
Ẽ ′

y(x−∆/2,y−∆/2),

(B7)

∫ c⃝

3⃝
Ẽ′ ·dl =

√
2∆

4

∫ √
2∆/2

√
2a

Ẽ ′
x(x−∆/2,y+∆/2)l−1 dl

=

√
2∆

4
ln
(

∆

2a

)
Ẽ ′

y(x−∆/2,y+∆/2).

(B8)

On the other hand, for the basic path in Fig. B1(a),∫ 1⃝

4⃝
E ·dl =

∆

2

∫
∆

a
Ex(x,y−∆/2)l−1 dl

=
∆

2
ln
(

∆

a

)
Ex(x,y−∆/2),

(B9)

which is similar to the 4⃝- 3⃝ path in Fig. B1 (a), the 4⃝-
1⃝ path in Figs. B1 (b)- B1 (d) and the 3⃝- 2⃝ path in

Figs. B1 (c)- B1 (d). So, the surface integral for the ∂tH̃y
term in Fig. B1 (c), using the basic path, is

∂t

∫
S

H̄y dS ⇒ ∂tH̄y(x,z)
∆2

2
ln
(

∆

2a

)
, (B10)

assuming that Hy(x,z) ∝ 1/x. Note that all integral cal-
culations, except for (B1)-(B10), treat field values on the
path as a constant. Then, to evaluate the ∂tHy,z deriva-
tives, we can use (10), after replacing ∆ with sk(∆)
through µ∂t

∫
S H ·dS=−

∫
C E ·dl, while for the ∂tE term,

the basic path is employed. The feed point with the ∆−

gap along Ez(x−∆/2,z) in Fig. B1 (d), is incorporated as∫
S
(ε∂tE+σE+ jsource ) ·dS =

∫
C

H ·dl, (B11)

where σ is the electric conductivity and jsource the driving
current. Thus, referring to Fig. B1 (d) [16], [25], [26], the
antenna impedance at the feed point is calculated by

Zant = R+ jX =
−
∫ 3⃝

4⃝ E ·dl∫
C H ·dl

, (B12)

with R the resistance and X the reactance.
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