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Abstract – In this paper, we propose an approach to
develop an application independent library of Laplace
and Helmholtz fast multipole method (FMM) that can be
used in different applications. For this purpose, we con-
sider a generalized problem and a corresponding canon-
ical problem (defined below). In the first main contribu-
tion, we show that it is possible to capture the essential
characteristics of the canonical summation from sam-
pling the values of certain potentials or signature func-
tions. In the second main contribution, we show that
partial derivatives of arbitrary orders acting on the far
field can be represented as product of sparse matrices
within the library, transparent to the user. Combining the
two ideas, we show that once the FMM is configured to
compute the canonical summation, the same setup can
be used to work with a much wider, general class of
problems.

Index Terms – Fast multipole methods, integral
equations.

I. INTRODUCTION
In this paper, we describe an approach to develop a

stand-alone, application independent library of the fast
multipole method (FMM) [1–3] to be used in different
physical applications and developed by multiple teams
with differing backgrounds. In particular, we are con-
cerned with the evaluation of summations of the form:

ym =
N

∑
n=1

Amnxn, 1≤ m≤M, (1a)

with:

Amn =
∫

Ω

gm(⃗x)Mu

∫
Ω′

fn(⃗x′)L′vG(⃗x, x⃗′)dΩ
′dΩ, (1b)

u,v = x,y,z; x⃗, x⃗′ ∈ R3,

whereMu and Lv are linear partial differential operators
with constant coefficients and:

G(⃗x, x⃗′) =

{ 1
∥⃗x−⃗x′∥ for the Laplace Equation
eik∥⃗x−⃗x′∥
∥⃗x−⃗x′∥ for the Helmholtz Equation.

(1c)

Note that, in general, Ω′ ̸= Ω. Furthermore,
following the terminology used by the method of
moments (MoM) practitioners in electromagnetics, we
shall refer to f j (⃗x) and gi(⃗x) as the basis and testing func-
tions, respectively, with the understanding that they can
be Dirac δ -functions to represent “point” particles.

Such computations can arise from a wide variety
of applications, such as electromagnetics, acoustics and
elastic wave scattering. Since its development in the
1980s [4, 5] for the Laplace equation to the elegant
extension to the Helmholtz and Maxwell equations in the
1990s [2, 3, 6], FMM and its multilevel variants have
transformed computational physics, especially, compu-
tational electromagnetics. It is beyond the scope of this
paper to provide a comprehensive overview of these
remarkable developments. Instead, we refer the reader to
the recent review by He et al. [7].

Although the theory of FMM has been well estab-
lished and many high quality implementations exist, both
in the public domain and in proprietary products, the
development of an application independent library is
still a challenging problem due to various practical con-
straints such as:

• Different formulations and physics lead to different
choices forMu and Lv.

• Different domain and geometry; the integrals could
be defined over surfaces or volumetric regions, dis-
cretized with surface elements such as flat or curvi-
linear triangles and/or quadrilaterals and volume
elements such as tetrahedra. It is also possible to
have mixed formulations involving both surface ele-
ments and volume elements. The quality of such a
mesh can often be poor, with highly non-uniform
elements.

• Different basis and testing procedures in reducing
the integral equations to a matrix equation; note that
each basis and testing function can be supported by
one or more mesh elements.

• Familiarity/background knowledge of the library
user. Even though one can expect the users to have
a sound understanding of the integral equation and
the underlying physics, it is not necessary that they
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have a sufficient understanding of FMM to develop
the components needed to integrate their code with
a library.

We illustrate this with an example. In an imple-
mentation of Laplace FMM that uses spherical
harmonics, the library user may have to provide
the multipole coefficients of basis/testing functions.
Although standard implementations of spherical
harmonics are available, it may be tricky to ensure
consistency between third party implementation of
spherical harmonics and the ones used in the FMM
implementation.

One of the ways to address these issues is to replace
the basis and testing functions with weighted (point)
“particles” as shown in Fig. 1. Although this approach
simplifies the implementation of the library, it has sev-
eral drawbacks. First, as illustrated in Fig. 1, replacing
mesh elements and basis/testing functions with weighted
particles generally leads to incompatible partitioning of
the geometry, requiring error-prone bookkeeping, com-
plicated data interchange between the application and the
library, and messy corrections in the near field. In addi-
tion, given that the number of quadrature points is gener-
ally larger than the number of basis/testing functions, the
matrix as seen by the library tends to be larger as well,
potentially affecting the performance.

Fig. 1. The two triangles are near to each other, but
some of the quadrature points can still be well separated
(shown in ellipses) leading to tricky bookkeeping and
near field corrections.

Therefore, the objective of this paper is to present
an approach that can handle a wide class of problems
through the use of good abstractions to capture the
physics, the formulation and the discretization. The main
contributions of this work are:

• Abstractions to characterize the geometry of the ele-
ments in a way that allows consistent handling of
non-uniform meshes.

• A technique to compute required multipole coeffi-
cients of the shape/basis and testing functions from
sampled values of their corresponding potentials or
signature functions which are easy to define and
simple to evaluate, without involving any special
functions.

• We show that the partial derivatives of the far field,
represented by multipole or plane wave expan-
sions, can be represented as products of sparse
matrices independent of the basis and testing func-
tions allowing the user to compute these deriva-
tives without having to directly work with multipole
expansions.

Finally, we demonstrate that once the library is inte-
grated into an existing code to compute what we call
the canonical problem, defined in equation (4), the same
implementation can be used to evaluate summations in
equation (1) without modifying the library and without
adding new subroutines to the application code.

II. PRELIMINARIES
A. General class of problems

We assume that the reader is familiar with the basic
mathematical formulation and the octree based computa-
tional structure of the Laplace and Helmholtz multi-level
fast multipole methods (MLFMM). Except when speci-
ficity is needed, we shall use the abbreviation MLFMM
to refer to either of the two versions.

In the context of MLFMM, we begin by noting that
if gm and fn in equation (1) belong to well separated
boxes, the Green’s function in equation (1) does not
involve any singularities. Since:

∂G
∂u

=−∂G
∂u′

, u = x,y,z, (2)

whenever x⃗ ̸= x⃗′, the differential operator L′v appearing
on the source point x⃗′ can be transferred to the observa-
tion point x⃗ when gm and fn are geometrically well sep-
arated. Therefore, for far field computations, it is possi-
ble to transform equation (1b) to a linear combination of
integrals of the form:

Amn =
∫

Ω

gm(⃗x)Dpqr

∫
Ω′

fn(⃗x′)G(⃗x, x⃗′)dΩ
′dΩ, (3a)

where Dpqr =
∂ p+q+r

∂xp∂yq∂ zr , x⃗ ̸= x⃗′, (3b)

with p,q and r being non-negative integers.
One of the key results presented in this work is that

the differential operator Dpqr can be exactly represented
as a product of certain sparse matrices in the calculation
of far interactions. Anticipating this result, we define a
new summation:

ym =
N

∑
n=1

Pmnxn, 1≤ m≤M, (4a)

where Pmn =
∫

Ω

gm(⃗x)
∫

Ω′
fn(⃗x′)G(⃗x, x⃗′)dΩ

′dΩ, (4b)

and refer to it as the canonical problem.

B. Some notations and definitions
If r = ∥⃗x∥ and x̂= x⃗

∥⃗x∥ for x⃗∈R, we shall often write
x⃗ = (r, x̂) = (r,θ ,φ) in spherical coordinates. We shall
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denote the unit sphere centered at the origin by Ω0 =
{⃗r ∈ R3 : |⃗r| = 1} and will typically use the symbol ŝ =
(1,θ ,φ) to denote a vector on Ω0.

Following [8, 9], we define the associated Legendre
function Pm

n (x) of degree n > 0 and order −n ≤ m ≤ n
and by the formula:

Pm
n (x) = (−1)m (1− x2)m/2

2nn!
dn+m

dn+mx
(x2−1)n. (5a)

Following Messiah [9], we define the spherical har-
monic Y m

n (θ ,φ) of degree n and order m by the relation:

Y m
n (θ ,φ) =

[
2n+1

4π

]1/2 [ (n−m)!
(n+m)!

]1/2

Pm
n (cosθ)eimφ .

(5b)

We have:

Y−m
n (θ ,φ) = (−1)m[Y m

n (θ ,φ)]∗, (5c)∫
π

0

∫ 2π

0
Y m

n (θ ,φ)Y m′
n′
∗
(θ ,φ)sinθ dθdφ = δnn′δmm′ ,

(5d)

where ∗ denotes the complex conjugate.
Let x⃗= rx̂= (r,θ ,φ)∈R. We define inner and outer

multipole functions for the Laplace equation by the for-
mulae [10]:

Om
n (⃗x) =

√
4π

2n+1
(−1)ni−m

Am
n

Y m
n (θ ,φ)

rn+1 , (6a)

Im
n (⃗x) =

√
4π

2n+1
imAm

n rnY m
n (θ ,φ), (6b)

where Am
n =

(−1)n√
(n−m)!(n+m)!

. (6c)

Similarly, for the Helmholtz equation, we define the
inner and outer functions, denoted by Ĩm

n (⃗x) and Õm
n (⃗x),

respectively, by the formulae [10]:

Ĩm
n (⃗x) = jn(kr)Y m

n (x̂), (7a)

Õm
n (⃗x) = hn(kr)Y m

n (x̂), (7b)

where jn(kr) and hn(kr) are, respectively, spherical
Bessel and Hankel functions of the first kind and of
order n.

III. ABSTRACTIONS FOR THE FAR FIELD
COMPUTATIONS

We first develop the abstractions needed to evalu-
ate the canonical summation in equation (4). Assuming
the existence of an octree structure, let Bs and Br be the
boxes in which the basis function f j and the testing func-

tion gi, respectively, reside. 1 Referring to Fig. 2, let:

Bs ⊂ Ds
def
= {⃗x ∈ R3∣∣|⃗x− c⃗s|< Rs}, (8)

Br ⊂ Dr
def
= {⃗x ∈ R3∣∣|⃗x− c⃗r|< Rr}. (9)

We assume that supp f j ⊂ Ds and suppgi ⊂ Dr and
that D̄s∩ D̄r = /0.

Source Particle Receiver Particle

Fig. 2. The basis function, f j, and the testing function,
gi, (“generalized particles”) are enclosed in spheres Ds,
with center at c⃗s and Dr, with center at c⃗r, respectively,
under the condition that Ds∩Dr = /0.

To represent the matrix element in equation (4), we
first let:

ψ j (⃗x) =
∫

supp f j

f j (⃗x′)G(⃗x, x⃗′) d⃗x′, (10a)

Pi j =
∫

suppgi

gi(⃗x)ψ j (⃗x) d⃗x. (10b)

For a given accuracy ε > 0, let N ≥ 0 be given.
Let Om

n (⃗x) and Im
n (⃗x), respectively, denote the outer and

inner multipoles of either Laplace or Helmholtz kernel.
Then, we recall the following foundational results from
the theory of MLFMM [2, 10]:

1. The potential ψ j (⃗x) can be approximated by a finite
outer multipole series valid outside Ds:

ψ j (⃗x)≈
N

∑
n=0

n

∑
m=−n

α
m
n Om

n (⃗x− c⃗s), x⃗ /∈ D̄s. (11a)

2. The potential ψ j (⃗x) can be approximated as an
inner multipole series valid inside Dr:

ψ j (⃗x)≈
N′

∑
n=0

n

∑
m=−n

β
m
n Im

n (⃗x− c⃗r), x⃗ ∈ Dr. (11b)

3. There exists a linear operator, T , called a translation
operator, relating the coefficients {αm

n } and {β m
n }

by:

β
m
n =

N

∑
p=0

q

∑
q=−p

T (n,m; p,q)αq
p. (11c)

1Note that we are not providing a strict definition for the term
“reside.” It is simply a rule that the user provides to determine if a
given basis/testing function can be considered as belonging to a given
box. For example, in the case of point particles, if the location of the
particle falls into a box, it can be considered to be a resident of that
box.
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4. To evaluate Pi j, we substitute equation (11b) into
equation (10b), and obtain:

Pi j ≈
min{N,N′}

∑
n=0

n

∑
m=−n

β
m
n ρ

m
n , (11d)

ρ
m
n

def
=

∫
suppgi

gi(⃗x)Im
n (⃗x− c⃗r) d⃗x. (11e)

Borrowing the terminology from Laplace FMM par-
lance, we shall refer to αm

n as the “Q2M” coefficients and
ρm

n as the “L2P” coefficients.
Expressing the Q2M and L2P coefficients in terms

of multipole functions presents a challenge to imple-
mentation when multiple teams are involved. For exam-
ple, a team developing a stand-alone library of FMM, to
be used by multiple product teams, may not be deeply
familiar with the applications themselves. On the other
hand, a product team, although experts in, say, integral
equations, may have little or no familiarity with FMM.
Given that it is these coefficients that couple the applica-
tion side (integral equation) with the FMM implementa-
tion, it is imperative that they are evaluated correctly and
efficiently.

An obvious way to do this is to let the FMM library
be aware of the basis and testing functions, and thus let
the library evaluate these functions. This has the advan-
tage that if the library decides to change, say, the defi-
nitions of inner functions, it will remain transparent to
the application. However, this approach has the severe
disadvantage that the library is deeply tied to a particular
class of basis and testing functions. It is then left with the
task of potentially adding a new class of basis and testing
functions for every new application. This is inefficient
and will eventually make the code unmaintainable.

A second approach is to let the application evaluate
the coefficients (αm

n ,ρ
m
n ) using formulae similar to those

in equation (11d) and then hand-over the results to the
FMM kernel. This has the great advantage that the FMM
library remains completely decoupled from the applica-
tion. However, this approach has the disadvantage that
the application team must have some familiarity with
FMM and multipoles. This may not always be the case.

Therefore, our goal is to evaluate the coefficients αm
n

and ρm
n within the library without exposing the functions

(Om
n ,Im

n ) to the application.
We now present an approach that eliminates these

difficulties and it is inspired by ideas from [11–14].

A. Evaluation of Q2M and L2P coefficients for the
Laplace equation

We begin by noting the basis function f j is defined
by the application and that the application “knows” how
to evaluate ψ j (⃗x) in equation (10a) at any point x⃗ ∈ R3.
Moreover, if x⃗ /∈ supp f j, the integral can be accurately
evaluated using simple quadrature.

Consider a sphere S def
= {⃗x ∈ R3

∣∣|⃗x− c⃗s| = R > Rs}
so that S∩supp f j = /0. Let x⃗∈ S. Then x⃗ = c⃗s+Rŝ where
ŝ ∈ Ω0. Then, substituting the definition of Om

n from
equation (6a) into equation (11a) and using the orthog-
onality of Y m

n (ŝ) from equation (5d), we obtain the well
known relation (see, for example [14, equations 4-5]):

α
m
n = im

√
2n+1

4π(n−m)!(n+m)!
Rn+1·∫

Ω0

ψ j (⃗cs +Rŝ)Y m∗
n (ŝ) dΩs. (12)

Now assume that the degree of approximation used
in the FMM is p > 0. Then, the maximum degree of
spherical harmonics under the integral that is relevant to
the computations is 2p. Therefore, if we use a quadra-
ture, such as a composite Gauss-Legendre-Trapezoidal
rule, that can integrate spherical harmonics of degree
2p exactly, we will be able to compute the coefficients
exactly as well. Let Nq be the number of quadrature
points, {(ŝk,wk)}, be quadrature points and their cor-
responding weights on Ω0, respectively, and let x⃗k =
c⃗s + Rŝk, for 1 ≤ k ≤ Nq. Then, equation (12) can be
approximated as:

α̃
m
n ≈ im

√
2n+1

4π(n−m)!(n+m)!
Rn+1·

Nq

∑
k=1

wkψ j (⃗xk)Y m∗
n (ŝk). (13)

Therefore, to compute the coefficients αm
n , all the

library needs are the values of ψ j (⃗x), given by equa-
tion (10), at a set points on a specified sphere, which the
application can readily supply. As remarked earlier, since
the observation points x⃗k are chosen to be far away from
the support of f j, the integrand in (10a) is non-singular
and hence ψ j (⃗xk) can be evaluated using simple quadra-
ture rules.

Using the addition theorem [10]:
1

∥⃗x− x⃗′∥
=

∞

∑
n=0

n

∑
m=−n

(−1)nI−m
n (⃗x′− c⃗s)Om

n (⃗x− c⃗s),

(14a)
for ∥⃗x− c⃗s∥> ∥⃗x′− c⃗s∥ in equation (10a) and comparing
with equation (11a), it is easy to see that:

α
m
n = (−1)n

∫
supp f j

f j (⃗x′)I−m
n (⃗x′− c⃗s) d⃗x′. (14b)

Comparing equation (14b) with the definition of ρm
n

in equation (11d), we see that:
ρ

m
n = (−1)n

α
−m
n , (15)

for the f j if it were also used as a testing function in a
Galerkin MoM. Since:∫

Ω

gm(⃗x)
∫

Ω′
fn(⃗x′)G(⃗x, x⃗′)dΩ

′dΩ

=
∫

Ω′
fn(⃗x′)

∫
Ω

gm(⃗x)G(⃗x, x⃗′)dΩdΩ
′,
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it follows that we can use exactly the same technique
(equations (12) and (13)) for computing ρm

n of any test-
ing function gi by evaluating the corresponding Q2M
coefficients and using the relation in equation (15).

By this process, we have thus decoupled the appli-
cation and the library for computing the L2P and Q2M
coefficients for the Laplace equation: the application
does not have to work with Im

n functions and the library
does not have to know the nature of the basis and testing
functions, ( f j,gi).

A.1. Comparison of performance
Given a multipole degree p > 0 and using a com-

posite Gauss-Trapezoidal rule with 2(p+1)2 quadrature
points, it is easy to see that the standard approach to
computing Q2M (and L2P) coefficients and the potential
based approach proposed above have the same asymp-
totic complexity. However, the proposed method has a
larger constant associated with it. We now demonstrate
that this additional cost for engineering a simplified
interface is negligible in the context of the much larger
initialization time (the time for the matrix-vectors are not
affected).

To do this, we have taken 30 distinct triangular
meshes ranging in size from 200 to about 1.2 million.
They were generated by Ansys Q3D Extractor for differ-
ent test cases and do not share a common geometry. For
our purposes, it is sufficient to replace the triangles with
point sources at their centroids. The canonical matrix in
equation (4) is then constructed with a multipole degree
of p = 5 which gives roughly 4 digits of accuracy in the
matrix vector products. All the computations were done
on a single core of a virtual machine with two Intel(R)
Xeon(R) 6238R @2.20GHz processors with 182GB of
RAM. In Fig. 3, we compare the time for evaluating the

Fig. 3. Comparing the time for evaluating Q2M coef-
ficients using standard (“Direct Multipole”) and using
sampled potentials (“Potential”) for various test cases.
We have also plotted the total setup time to provide the
larger context.

Q2M coefficients using the standard approach and from
the potential samples.

It is important to note that the bulk of the initializa-
tion/setup time is spent in computing the near matrix and
that the near matrix evaluation for concentrated sources
gives the least possible time. This is because the com-
monly used basis functions require more expensive han-
dling of singularities and near singularities. In other
words, we are comparing the cost of Q2M evaluations
against the best case scenario for the rest of the initial-
ization. It is clear from Fig. 3 that although the proposed
method is slightly more expensive, the increase is neg-
ligible when compared with the overall setup time. We
have also compared the accuracy of the computed matrix
vector products and the largest 2−norm error observed
was less than 2×10−4, which is comparable to the over-
all precision of the matrix-vector products corresponding
to the degree of multipole approximation p = 5.

B. Evaluation of Q2P and L2P coefficients for the
Helmholtz equation

In the case of Helmholtz FMM that uses only mul-
tipole expansions involving Õm

n and Ĩm
n , it is clear that

an approach analogous to the one described in section A
can be readily developed. However, most applications
of Helmholtz FMM involves electrically large structures
where a diagonalized form is employed [2, 10], often
combined with multipole expansions to handle multi-
scale structures [15]. For such a mixed-form FMM, it is
simpler to compute signature functions [10] rather than
work with potentials. We now show how signature func-
tions can be used to decouple the FMM library from the
applications.

The signature function of the potential ψ j (⃗x) of
equation (10a), now with the Green’s function for the
Helmholtz equation (1), is defined by formula [10]:

ψ̃ j(ŝ) = lim
r→∞

kre−ikr
ψ (⃗cs + rŝ), (16a)

which when approximated by equation (11a) with Om
n =

Õm
n , can be shown to be:

ψ̃ j(ŝ) =
∞

∑
n=0

m

∑
m=−n

α
m
n

Y m
n (ŝ)
in+1 . (16b)

Therefore, given a signature function ψ̃(ŝ), the
orthogonality of spherical harmonics implies that we can
recover the coefficients of the multipole expansion in
equation (11a), αm

n , using the formula [16]:

α
m
n = in+1

∫
Ω0

ψ̃ j(ŝ)Y m∗
n (ŝ)dΩs. (17)

It is well known that [2, 10] the signature function

of the Green’s function G(⃗r,⃗r′) = eik|⃗r−⃗r′ |
|⃗r−⃗r′| for r⃗′ ∈ Ds is

given by:
G̃(ŝ) = keikŝ·(⃗cs−⃗r′).
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Therefore, it follows that signature function of ψ j (⃗x)
of the canonical problem in equation (10a) is given by:

ψ̃ j(ŝ) = k
∫

supp f j

f j (⃗r′)eikŝ·(⃗cs−⃗r′) d⃗r′, (18)

and we define the signature of the basis function f j by
f̃ j(ŝ) = ψ̃ j(ŝ).

Using the representation [9, 10]:

Ĩm
n (⃗x− c⃗) =

1
4πin

∫
Ω0

eik(⃗x−⃗c)·ŝY m
n (ŝ)dΩs, (19a)

it is easy to show that the L2P coefficients:

ρ
m
n =

1
4πin

∫
Ω0

g̃i(ŝ)Y m
n (ŝ)dΩs (19b)

where g̃i(ŝ)
def
=

∫
suppgi

gi(⃗x)eik(⃗x−⃗c)·ŝ d⃗x, (19c)

are defined by the signature function of the testing func-
tion gi

2.
Hence, in a mixed-form broadband FMM that uses

both diagonalized and (possibly scaled) multipole expan-
sions, the user only has to provide the signature functions
in equation (18) and equation (19c) for setting up the
far field calculations in Helmholtz FMM. Furthermore,
these functions are easy to define and easy to calculate.

IV. COMPUTATION OF THE DERIVATIVES
OF THE FAR FIELD

We claimed in the introduction that it is possible to
represent the derivatives of far fields as product of sparse
matrices. In this section, we shall demonstrate this claim.
The approach relies on the following observation for the
Helmholtz equation (A similar argument can be made
for the Laplace equation by setting k = 0 and replacing
Ĩm
n with Im

n .)
Consider the potential field ψ j (⃗x) due to sources

in Ds having an approximation of the form in
equation (11b):

ψ j (⃗x) =
N

∑
n=0

n

∑
m=−n

β
m
n Ĩm

n (⃗x− c⃗r), x⃗ ∈ Dr. (20a)

Since:

∇
2 ∂ψ j

∂u
+ k2 ∂ψ j

∂u
=

∂

∂u

{
∇

2
ψ j + k2

ψ j
}
= 0, u = x,y,z,

(20b)

it follows that ∂ψ j
∂u also must have an expansion of the

form:
∂ψ j (⃗x)

∂u
=

N′

∑
n=0

n

∑
m=−n

δ
m
n Ĩm

n (⃗x− c⃗r), x⃗ ∈ Dr, (20c)

and that the coefficients {β m
n } and {δ m

n } must be related
through a linear operator Tu so that:

ψ j 7→
∂ψ j

∂u
=⇒ {β m

n } 7→ {δ m
n }= Tu({β m

n }).

2Compare with equation (18) for subtle differences.

Thus, for non-negative integers p,q,r≥ 0, an induc-
tive reasoning shows that:

ψ j 7→
∂ p+q+rψ j

∂xp∂yq∂ zr =⇒ {β m
n } 7→ {δ m

n }= T r
z T q

y T p
x ({β m

n }).

Therefore: ∫
suppgi

gi(⃗x)
∂ p+q+rψ j

∂xp∂yq∂ zr d⃗x

=
N′

∑
n=0

n

∑
m=−n

δ
m
n ·

∫
suppgi

gi(⃗x)Ĩm
n (⃗x− c⃗r) d⃗x (21a)

=
N′

∑
n=0

n

∑
m=−n

δ
m
n ρ

m
n , (21b)

where ρm
n are the same receiving coefficients defined in

equation (11d). Thus, we see that partial derivatives of
arbitrary order manifest as product of linear operators
that can be applied to the local expansion coefficients β m

n
transparent to the application/user.

So far, we have not said anything about the nature
of Tu. In the next three sections, we shall demonstrate
that the finite dimensional representation of Tu is a sparse
matrix for the Laplace and low frequency Helmholtz
FMM that use explicit multipole expansions and a diag-
onal matrix for the high frequency Helmholtz FMM that
uses signature functions.

A. Derivatives for the Laplace kernel
Let x⃗ = (r,θ ,φ) ∈ R3. We begin with the integral

representation of the inner function Im
n (⃗x) derived in [10,

equation 2.33]:

Im
n (⃗x) =

(−1)n+m

n!
1

2π
·∫

π

−π

(z+ ixcosα + iysinα)n eimα dα. (22)

Without the loss of generality, consider the case of
∂ Im

n (⃗x)
∂x . From Appendix A, we have:

∂ Im
n (⃗x)
∂x

=
i
2
(
Im+1
n−1 (⃗x)+ Im−1

n−1 (⃗x)
)
. (23)

Substituting equation (23) into equation (20a), we
get:

∂ψ j (⃗x)
∂x

=
N

∑
n=0

n

∑
m=−n

β
m
n

∂ Im
n (⃗x− c⃗r)

∂x

=
N

∑
n=0

n

∑
m=−n

β
m
n ·

i
2

(
Im+1
n−1 (⃗x− c⃗r)+ Im−1

n−1 (⃗x− c⃗r)
)
. (24a)

Since Im
n = 0 if n < 0 or |m|> n, the above equation

can be rewritten as:
∂ψ (⃗x)

∂x
=

N−1

∑
n=0

n

∑
m=−n

i
2
(β m−1

n+1 +β
m+1
n+1 )Im

n (⃗x− c⃗r). (24b)
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Identifying:

δ
m
n =

i
2
(β m−1

n+1 +β
m+1
n+1 ),

and N′ = N−1 in equation (20c), we see that the matrix
representation of Tx has at most two non-zero entries per
row. It is clear from Appendix A that a similar reasoning
can be made for Ty and Tz as well.

B. Derivatives for the Helmholtz kernel with multi-
poles

Without the loss of generality, we consider the par-
tial derivative with respect to x. Then, it can be shown
that ∂ Ĩm

n
∂x can be expressed as a four-term recurrence of

the form (see Appendix B for the derivation and for the
explicit expressions):

∂ Ĩm
n (⃗x)
∂x

=
n+1

∑
ν=|n−1|

ν ̸=n

∑
p=−1,1

T m+p
ν Ĩm+p

ν (⃗x). (25a)

A reasoning similar to that made in the previous
section shows that each row of the matrix representa-
tion of Tx has at most four entries, once again showing
that the derivative can be represented as a sparse matrix.
Furthermore, a closer look at equation (25a) shows that
if equation (20a) has degree N, then equation (20c) will
have degree N′ = N + 1. However, if the degree of the
“L2P” coefficients ρm

n is truncated to N, then the sum-
mation in equation (21b) will be truncated to degree N
and we can set N′ = N.

C. Derivatives for the Helmholtz kernel in diagonal-
ized form

A potential field ψ j (⃗x) having an approximation of
the form in (20a), can also be represented as [2, 10]:

ψ j (⃗x) =
i

4π

∫
Ω0

ψ̃ j(ŝ) · eik(⃗x−⃗cr)·ŝ dΩs, (26a)

where ψ̃ j(ŝ)
def
=

N

∑
n=0

m

∑
m=−n

β
m
n

Y m
n (ŝ)
in+1 , (26b)

so that:

Pi j =
∫

suppgi

gi(⃗x)ψ j (⃗x) d⃗x

=
i

4π

∫
Ω0

g̃i(ŝ) · ψ̃ j(ŝ)dΩs, (26c)

where g̃i(ŝ) =
∫

suppgi

gi(⃗x)eik(⃗x−⃗cr)·ŝ d⃗x, (26d)

and we recognize g̃i(ŝ) as the signature function defined
in equation (19c). Since:

∂ψ j (⃗x)
∂x

=
i

4π

∫
Ω0

(iksx) · ψ̃ j(ŝ) · eik(⃗x−⃗cr)·ŝ dΩs, (26e)

from equation (26a), it follows that:∫
suppgi

gi(⃗x)
∂ψ j (⃗x)

∂x
d⃗x

=
i

4π

∫
Ω0

g̃i(ŝ) · (iksx) · ψ̃ j(ŝ)dΩs, (26f)

demonstrating that the partial differential operator
appears as a diagonal modification to the incoming sig-
nature function ψ̃ j(ŝ).

Note that this result has been known from the very
early days of FMM and has been effectively used for
computing with derivatives [17]. The novelty in our
approach is that we are using it to transfer the respon-
sibility of computing the derivative to the library instead
of requiring the application do it.

V. A PSEUDO-EXAMPLE FOR A LIBRARY
INTERFACE

We now discuss how the results from sections III
and IV can be used to develop an application indepen-
dent library of Laplace and Helmholtz FMM. Our objec-
tive is not to describe a concrete implementation, but to
discuss the essential functionality.

To that end, we divide the library functionality into
two parts: the matrix build/initialization functions and
matrix apply (“matrix-vector” product) functions. Dur-
ing the initialization, we expect the user to provide what
are called “call-back” functions. The library, in turn,
repeatedly calls these functions to get the information
needed to complete matrix initialization. After the matrix
is built, the library provides the functionality to evalu-
ate matrix-vector products, potentially involving differ-
ent combinations of derivatives.

A. Matrix initialization
Building the matrix consists of three phases:

• The tree construction phase
• The evaluation of the near interactions
• The evaluation of the far field representations

(“Q2M” and “L2P” coefficients).

A.1. Constructing the tree
Rationale:

In general, each source/receiver can be assigned a
“center” and a spatial extent. The former can be captured
as a array of three floating point numbers. Given that the
mesh used in the discretization can be extremely non-
uniform in practical cases, it is often necessary to take the
spatial extent into account to ensure sufficient accuracy.
This can lead to non-uniform trees with internal nodes
also “hosting” sources and/or receivers. The following
listing shows an example of an interface.

1 function get_center ( particle_index , center [ ] )←↩
;

2 function get_bounding_box ( particle_index , ←↩
xyzMin [ ] , xyzMax [ ] ) ;

A.2. Computing near interactions with multiple
matrices
Rationale:

With the ability to compute arbitrary derivatives of
the far field, it becomes necessary to handle multiple
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matrices as well. As a simple example, consider the fol-
lowing summations:

f (⃗xi) =
N

∑
j=1

a jG(⃗xi, x⃗ j), (27a)

F⃗ (⃗xi) =
N

∑
j=1

a j∇G(⃗xi, x⃗ j). (27b)

Although potential and the derivatives of the far field
can be computed from a single FMM representation,
the four components of the near matrix must be stored
simultaneously. In other words, the library needs to allow
for the possibility of multiple matrix entries resulting
from each pair-wise interaction. If we assume that every
pair-wise near interaction results in the same number of
matrix entries (although there are exceptions, this usu-
ally the case), the following interface would be adequate
for most purposes.

1 function get_matrix_element ( receiver_index , ←↩
source_index , elements [ ] ) ;

In the above example, dim(elements)=4 and a
user can return the Green’s function and its gradient as:

elements=
[
G,

∂G
∂x

,
∂G
∂y

,
∂G
∂ z

]
.

A.3. Computing Q2M and L2P coefficients
Rationale:

In section III, we have shown that the required Q2M
and L2P coefficients can be evaluated from sampled
potential values or signature functions. For the Laplace
equation, this can be implemented in the following way.
Given a node with sources (or receivers) in it, we can
construct a sphere with center, c⃗s at the center of the box
and a sufficiently large radius, R >> d where d is the
box length, and introduce a Gauss-Trapezoidal rule as
discussed in section A. Then, a function of the following
nature can be invoked repeatedly to evaluate the poten-
tial, as defined by equation (10a) at each integration point
x⃗k = c⃗s +Rŝk in equation (13).

1 function P ( xk ) = get_potential ( particle_index←↩
, xk [ ] ) ;

For the Helmholtz equation, we expect the user to
return the signature function, defined by equation (18).

1 function F ( sk ) = get_signature ( particle_index←↩
, cs [ ] , sk [ ] ) ;

Note that in this case, we need both the center of
the box c⃗s and the direction vector ŝk passed to the
application.

B. Evaluating matrix-vector products
In order to offer maximum flexibility, we split the

evaluation of the matrix-vector products (MVP) into
three steps:

• multipole pass: performs all the source-
to-multipole (Q2M), outer-to-outer (M2M,
aggregation), outer-to-inner (M2L) and inner-to-
inner (L2L) translations in the standard FMM
flow. This is a pre-requisite for calling the far field
evaluation step below.

• far axpy: evaluates (the integral of) the potential
(or its derivative) for every testing function using
the results in Section IV.

• near axpy: evaluates the contribution due the near
interaction matrix selected by the user (if there are
multiple matrices involved).

The library can offer a functionality similar to the
following one to accomplish these tasks:

1 / * t a k e s t h e i n p u t v e c t o r X and p e r f o r m s M2M,←↩
M2L and L2L p a s s e s o f FMM

2 * Must be c a l l e d b e f o r e c a l l i n g f a r a x p y .
3 * /
4 function multipole_pass ( input_x ) ;
5

6 / * n e a r m a t r i x i n d e x l e t s t h e u s e r s e l e c t t h e←↩
c o r r e c t n e a r m a t r i x * /

7 function near_axpy ( near_matrix_index , input_x←↩
, output_y ) ;

8

9 / * t h e i n p u t a r r a y d e r i v t e l l s t h e l i b r a r y t o←↩
a p p l y t h e d e s i r e d d e r i v a t i v e s

10 * t o t h e f a r f i e l d c o e f f i c i e n t s b e f o r e ←↩
e v a l u a t i n g t h e p o t e n t i a l * /

11 function far_axpy ( deriv [ ] , output_y ) ;

where the array deriv specifies the orders of the partial
derivatives. For example:

deriv[1,2,2] =⇒ ∂ 2

∂ z2
∂ 2

∂y2
∂

∂x
.

The motivation for this is best illustrated by an
example. Towards this, consider the evaluation of the two
sums in equation (27). A psuedo-code is given below.

1 / * Le t X d e n o t e t h e i n p u t v e c t o r and P , dPx , ←↩
dPy and dPz , r e s p e c t i v e l y d e n o t e t h e ←↩
p o t e n t i a l and

2 * t h e t h r e e components o f t h e g r a d i e n t
3 * /
4

5 / * do M2M, M2L and L2L * /
6 multipole_pass ( X ) ;
7

8 / * compute P = A * X f o r p o t e n t i a l ; m a t r i x ←↩
i n d e x 0 ==> Green ' s f u n c t i o n * /

9 near_axpy ( 0 , X , P ) ;
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10 deriv = [ 0 , 0 , 0 ] ; / * no p a r t i a l d e r i v a t i v e s ←↩
* /

11 far_axpy ( deriv , P ) ;
12

13 / * compute dPx = dAx * X f o r p a r t i a l ←↩
d e r i v a t i v e wi th r e s p e c t t o x * /

14 near_axpy ( 1 , X , dPx ) ; / * m a t r i x i n d e x 1 ==>←↩
p a r t i a l d e r i v a t i v e wi th r e s p e c t t o x ←↩

* /
15 deriv = [ 1 , 0 , 0 ] ; / * p a r t i a l d e r i v a t i v e←↩

wi th r e s p e c t t o x * /
16 far_axpy ( deriv , dPx ) ;

Computation of the partial derivatives with respect
y and z can be done analogously. Note that the
multipole pass is usually the most dominant part dur-
ing a matrix-vector evaluation and it is invoked only
once.

VI. SUMMARY AND CONCLUSIONS
In this paper, we have proposed an approach

to developing a stand-alone, application independent
library of Laplace and Helmholtz FMM. Towards this
end, we have demonstrated a technique to capture the
essential characteristics of the problem needed for set-
ting up the FMM – the basis and testing functions, mesh
etc. – using samples of either potentials or the signature
functions of a canonical problem. Furthermore, we have
shown that it is possible to transfer the responsibility of
computing the partial derivatives of the far field to the
library, instead of burdening the user to implement com-
plicated integrals. This is accomplished by representing
partial derivatives of arbitrary orders as product of cer-
tain sparse matrices. We have also outlined a pseudo
interface that illustrates how the methods can be used.

Within Ansys Inc., we have developed a flexible
library, called Q3Dfastmvpack incorporating these ideas
and it is currently being used by multiple Ansys prod-
ucts.
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APPENDICES
A. Partial derivatives of Im

n
Let h(α; x⃗) = (z + ixcosα + iysinα) in equa-

tion (22). Consider:

∂ Im
n (⃗x)
∂x

=
(−1)n+m

(n−1)!
i

2π

∫
π

−π

h(α; x⃗)n−1eimα cosα dα

=
(−1)n+m

(n−1)!
i

2π

∫
π

−π

h(α; x⃗)n−1eimα eiα + e−iα

2
dα

=
i
2
(−1)n+m

(n−1)!
1

2π

{∫
π

−π

h(α; x⃗)n−1ei(m+1)α dα

+
∫

π

−π

h(α; x⃗)n−1ei(m−1)α dα

}
=

i
2
(−1)n+m

(n−1)!
1

2π

∫
π

−π

h(α; x⃗)n−1ei(m+1)α dα

+
i
2
(−1)n+m

(n−1)!
1

2π

∫
π

−π

h(α; x⃗)n−1ei(m−1)α dα

=
i
2
(
Im+1
n−1 (⃗x)+ Im−1

n−1 (⃗x)
)
,

where we have used the facts n−1+m−1 = n+m and
that (−1)n+m−2 =(−1)n+m. The following results can be
similarly derived:

∂ Im
n (⃗x)
∂y

=
1
2
(
Im+1
n−1 (⃗x)− Im−1

n−1 (⃗x)
)
,

∂ Im
n (⃗x)
∂ z

=−Im
n−1(⃗x).

B. Partial derivatives of Ĩm
n (⃗x)

We have, from equation (19a):
∂ p+q+r

∂xp∂yq∂ zr Im
n (⃗x)

=
(ik)p+q+r

4πin

∫
Ω0

sp
x sq

ysr
ze

ik⃗x·ŝY m
n (ŝ)dΩs, (28)

where ŝ = (sx,sy,sz) = (sinθ cosφ ,sinθ sinφ ,cosθ).
Noting that:

sinθeiφ = (−)
√

8π

3
Y 1

1 (ŝ), (29)

from the definition of spherical harmonics Y m
n (θ ,φ) in

equation (5b), and using equation (5c), we get:

sinθ cosφ = (−)
√

2π

3
[
Y 1

1 (ŝ)−Y−1
1 (ŝ)

]
(30a)

sinθ sinφ = i

√
2π

3
[
Y 1

1 (ŝ)+Y−1
1 (ŝ)

]
(30b)

cosθ =

√
4π

3
Y 0

1 (ŝ). (30c)

Let:

Vp(⃗x) =
1

4πin

∫
Ω0

Y p
1 (ŝ)e

ik⃗x·ŝY m
n (ŝ)dΩs, p =−1,0,1.

(31)
Then, substituting equation (30) into equation (28)

and using equation (31), we get:
∂ Im

n (⃗x)
∂x

= (−)ik
√

2π

3

(
V1(⃗x)−V−1(⃗x)

)
(32a)

∂ Im
n (⃗x)
∂y

= (−)k
√

2π

3

(
V1(⃗x)+V−1(⃗x)

)
(32b)

∂ Im
n (⃗x)
∂ z

= ik

√
4π

3
V0(⃗x). (32c)
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Now, substituting the following well known addition
theorem [9, 10]:

eik⃗x·ŝ =
∞

∑
n′=0

n′

∑
m′=−n′

4πin
′
jn′(kx)Y m′∗

n′ (x̂)Y m′
n′ (ŝ),

into equation (31), we can express:

Vp(⃗x) =
1

4πin
∞

∑
ν=0

ν

∑
µ=−ν

4πiν(−1)µ jν(k∥⃗x∥)Y−µ

ν (x̂)·∫
Ω0

Y p
1 (ŝ)Y

µ

ν (ŝ)Yn(ŝ)dΩs (33a)

=
∞

∑
ν=0

ν

∑
µ=−ν

iν−n(−1)µ jν(k∥⃗x∥)Y−µ

ν (x̂)γ
(

ν 1 n
µ p m

)
,

(33b)
where γ is the Gaunt coefficient defined as

γ

(
n1 n2 n3
m1 m2 m3

)
def
=

∫
Ω0

Y m1
n1

(ŝ)Y m2
n2

(ŝ)Y m3
n3

(ŝ) dΩs,

(33c)
for integers ni≥ 0 and−ni≤mi≤ ni for i= 1,2,3. Using
the properties of Gaunt coefficients [9], for γ ̸= 0, we
have to have |n−1| ≤ ν ≤ n+1, ν +n+1 even and µ +
m+ p = 0. Thus, ν = |n−1| and ν = n+1 and therefore:

Vp(⃗x) =
n+1

∑
ν=|n−1|

ν ̸=n

iν−n(−1)m+p jν(k∥⃗x∥)Y m+p
ν (x̂)

γ

(
ν 1 n

−(m+ p) p m

)
(33d)

= (−1)m+p
n+1

∑
ν=|n−1|

ν ̸=n

iν−n·

γ

(
ν 1 n

−(m+ p) p m

)
Im+p
ν (⃗x), (33e)

showing that the right hand sides of equations (32a)-
(32c) have at most four non-zero terms.
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