
ACES JOURNAL, Vol. 39, No. 05, May 2024 390

A Novel Proximal Policy Optimization Approach for Filter Design

Dongdong Fan1, Shuai Ding1,2, Haotian Zhang2, Weihao Zhang4, Qingsong Jia2, Xu Han2,
Hao Tang2, Zhaojun Zhu2, and Yuliang Zhou3

1Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China
Shenzhen 518110, China

dond fan@std.uestc.edu.cn

2Institute of Applied Physics, University of Electronic Science and Technology of China
Chengdu 610054, China
uestcding@uestc.edu.cn

3School of Aeronautics and Astronautics, University of Electronic Science and Technology of China
Chengdu 610054, China

4School of Materials and Energy, University of Electronic Science and Technology of China
Chengdu 610054, P.R. China

Abstract – This paper proposes a proximal policy opti-
mization (PPO) algorithm for coupling matrix synthe-
sis of microwave filters. With the improvement of filter
design requirement, the limitations of traditional meth-
ods such as limited applicability are becoming more and
more obvious. In order to improve the filter synthesis
efficiency, this paper constructs a reinforcement learn-
ing algorithm based on Actor-Critic network architec-
ture, and designs a unique filter coupling matrix synthe-
sis reward function and action function, which can solve
combinatorial optimization problems stably.

Index Terms – bandpass filters (BPF), coupling matrix
synthesis, Proximal Policy Optimization (PPO).

I. INTRODUCTION
With the development of wireless communication

technologies such as 5G or post-5G, the requirements
for the integration and design efficiency of passive
microwave devices are increasing, among which filters
are the most important ones since they can select specific
frequencies. Filter design involves multiple steps and
several factors, such as insertion loss, bandwidth, work-
ing frequency, out-of-band suppression, physical size,
power capacity and stability [1].

Automation of filter design has long been pursued
to enhance design efficiency [2]. In recent years, a ris-
ing number of artificial intelligent methods have been
incorporated in the filter design process. Among them,
optimization is a common method in the design pro-
cess based on electromagnetic simulation. Optimization
aims to transform the design specification into a suit-

able objective function, and then obtain the parameters
that meet the final design requirements through an opti-
mization algorithm. For example, rapid simulation and
optimization of microwave component models based on
functional substitution modeling technology can enable
advanced circuit design or computer-aided tuning of
microwave components [3], The coupling matrix algo-
rithm based on neural network can realize filter syn-
thesis and fine tuning [4–7], and the adaptive synthe-
sis of resonant-coupled filters can be realized based on
particle swarm optimization [8, 9] and spatial mapping
technology [10, 11].

In this paper, we propose to solve the filter synthe-
sis problem by applying a proximal policy optimization
(PPO) algorithm based on deep reinforcement learning.
We construct a neural network model based on the Actor-
Critic architecture and design specific reward function
and action function to synthesize the filter coupling
matrix. The novelty and main contributions of this paper
are as follows: (1) to the best of our knowledge, this is
the first work to present a complete PPO framework and
apply it to the synthesis of filter coupling matrix; and
(2) based on extensive experiments, we design a model
structure that can solve this problem and achieve satis-
factory results.

II. METHODOLOGY: PPO ALGORITHM
A. Framework

A PPO algorithm is a reinforcement learning
algorithm proposed by OpenAI in 2017 [12]. It is con-
sidered a state-of-the-art method in the field of reinforce-
ment learning and is one of the most widely applicable
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Fig. 1. PPO evolution process.

algorithms in the field. Because it is simple to imple-
ment and exhibits stable performance, a PPO algorithm
can handle both discrete or continuous action spaces and
conduct large-scale training. It has received widespread
attention in recent years due to these advantages, and its
evolution is shown in Fig. 1.

The core idea of a PPO algorithm is to use PPO to
train the agent. PPO is a kind of policy gradient rein-
forcement learning algorithm that optimizes the policy
by maximizing the expected return.The core of a PPO
algorithm is the use of the following policy loss function:

LCLIP(θ) = Êt [min(rt(θ)Ât ,clip(rt(θ),1− ε,1+ ε)Ât)]. (1)

Where we have the following definitions.
rt(θ) = (πθ (a|s))/(πθold (a|s)) is the policy update

ratio. The larger the rt(θ), the higher the probability of
taking action a under state s by the current policy, and
the larger the update ratio relative to the old policy.

Ât = Qπθ old (s,a)−Vπθold(s) is the advantage func-
tion, which represents the difference between the value
of the current state and action and the average value,
which is used to calculate the clipping range in the proxi-
mal ratio clipping loss. The larger the value of the advan-
tage function, the better the current state and action, and
they should obtain a larger reward.

ε is a hyper-parameter that controls the clipping
range.

clip(x,a,b) is a clipping function, which means that
x is restricted to the interval [a,b].

Êt represents the expected experience over time
steps.

To summarize: the proximal ratio clipping loss con-
sists of two parts, and we chose the smaller one. This can
ensure that the policy update does not deviate too much
from the original policy, thus achieving stable and effi-
cient training results.

The Actor-Critic network, and their basic architec-
ture are shown in Fig. 2. The Actor network is responsi-
ble for outputting policies, i.e., the probability distribu-
tion of action selection at each state; the Critic network

Fig. 2. Actor-Critic architecture.

is responsible for estimating the state value function, i.e.,
the expected cumulative reward at each state. The core
idea of the PPO algorithm is to limit the magnitude of
policy updates to ensure that the policy does not deviate
too far, thereby improving the stability and efficiency of
learning.

B. Coupling matrix synthesis based on PPO
By modeling the comprehensive process of the cou-

pling matrix as a deep reinforcement learning problem,
a deep neural network model is trained by taking the
performance index of the filter (such as bandwidth and
return loss) as the state, the adjustment of the coupling
coefficient in the coupling matrix by the agent as the
action, and the change of the performance index when
the coupling coefficient is adjusted as the reward. The
method consists of the following modules.

State and action space: The state space refers to
the set S of possible states in the coupling matrix syn-
thesis problem, expressed as follows S = {s1,s2, ,sn}.
The action space refers to the set A of all of the possi-
ble actions that the agent can take, expressed as follows
A = {a1,a2, ,am}. In this method, the agent uses discrete
actions to add or subtract the elements of the coupling
matrix with a fixed step length within a certain range to
achieve the change of the state.

State transition: In reinforcement learning, a state
transition is the agent learning by interacting with the
environment, observing the current state, and then acting
on its own strategy and receiving a reward or punishment
from the environment. It then moves to a new state, and
this process is called a state transition. The state transi-
tion function is usually expressed as:

s′ = f (s,a) , (2)
where s is the current state, a is the action taken by the
agent, and s′ is the new state transferred to by the agent.

Reward function: The reward function is used to
evaluate the value of each state and action and is denoted
as R(st ,at ,s(t+1)). In this paper, a special reward func-
tion is proposed for coupling matrix synthesis that con-
sists of two parts: target difference reward RS11max and
distance reduction reward RSreduce . The target difference
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reward refers to the absolute difference between the max-
imum return loss and target return loss, and the absolute
difference between the minimum out-of-band return loss
and target return loss in the coupling matrix synthesis
process. The target difference reward can be written in
the following form:

RS11max ∝
1

S11max −S11goal
. (3)

RSreduce sets the reward by measuring the difference
between the current S-parameter state and next S param-
eter state by means of the mean square error. We define
Dist so as to construct a set consisting of the values of the
S parameters of each frequency of the target state, and the
mean-square error of the frequency point values between
the two sets is calculated using the following formula.
After the action is executed, when the Dist of the next
state is greater than that of the current state, it means that
the agent is moving away from the target, and the reward
is 0. Otherwise, the reward is 1, thereby encouraging the
agent to execute actions in the direction in which Dist
becomes smaller. The award may be written as follows:

Dist =
1
n

n

∑
i=1

(S11real(i)−S11goal(i))2, (4)

RSreduce =

{
1, i f newDist > lastDist
0, i f newDist ≤ lastDist.

(5)

Network architecture and training process: The
basic structure of the Actor and the Critic network adopts
a fully connected neural network and is shown in Fig. 3.
The neural network structure in the PPO algorithm con-
sists of an input layer, a hidden layer and an output layer.

Neural network training can be described as an opti-
mization problem, and this optimization algorithm usu-
ally needs to calculate the gradient. In the neural network
with sigmoid function, the gradient becomes smaller and
smaller in the process of backpropagation and gradu-
ally approaches zero as the number of layers increases.
Gradients approaching zero prevent weights from being
updated during training. Such a problem is called the
vanishing gradient problem. In fact, when using sig-
moid activation functions, the gradient will usually van-
ish,especially at the beginning of learning [13, 14].
ReLU allows deep neural networks to have no gradient
vanishing problem during training[15, 16]. Deep neural
networks with ReLU have been proven to be effective for
speech recognition[17].

In order to overcome the problem of gradient dis-
appearance during deep neural network training, we use
ReLU as the activation function.The ReLU function is
expressed as:

f (γ) = max(γ,0) =

{
γ, if γ > 0
0, otherwise.

(6)

(a) (b)

Fig. 3. Actor (a) and Critic (b) network structure.

The gradient of ReLU is:

f ′(γ) =

{
1, if γ > 0
0, otherwise

. (7)

In the case of a negative input, it will output 0, then
the neuron will not be activated. This means that only
some neurons are activated at the same time, making the
network sparse and thus very efficient for computation.

Step 1: The Actor and Critic networks are con-
structed by initializing the parameters θ0 and ω0.

Step 2: Collect data and store them in experience
pool D0:Dt = (st ,at ,rt ,s(t+1)), where st represents the
state at time t, at represents the action at time step t, rt
represents the reward at time t, and s(t+1) represents the
state at time t +1.

Step 3: For each training cycle, we repeat the follow-
ing steps:

a: Update the experience pool data.
b: The PPO method optimizes the policy function θk =

argmaxθ LCLIP(θ(k−1),θ), where LCLIP(θ(k−1),θ)
represents the loss function of the Actor network.

c: We repeat steps a and b until the specified num-
ber of training rounds is reached or the convergence
condition is reached.

Step 4: Output the optimal policy function and
use it to generate the agent’s actions π∗ (a|s) =
argmaxθ LCLIP (π). The optimization process must be
limited to ensure that the step size of each update is not
too large to avoid excessive updating. The optimal pol-
icy function π∗ (a|s) can be obtained through the Actor
network and is used to generate the actions of the agents.

III. DESIGN EXAMPLES
A. Design specification

The sixth-order dielectric waveguide BPF shown in
Fig. 4, uses PPO for coupling matrix synthesis.

The design specifications are as follows:
1): Center frequency: f0=3.0 GHz.
2): Fractional bandwidth: ∆ f f0 = 5%.
3): Transmission zero: 2780 and 3220 MHz.
4): Number of resonators: NR = 6.
The dielectric constant of the dielectric waveguide filter
is 20.5.
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(a) (b)

Fig. 4. (a) Sixth order filter topology with symmetric
transmission zeros, and (b) 3D model.

B. Concrete realization
During the coupling matrix synthesis process, when

the intelligent agent interacts with the environment, the
first step involves acquiring the current state. In this case,
a sixth-order filter with a center frequency of 3 GHz
and a bandwidth of 150 MHz is employed. Based on
the symmetry of the coupling matrix, there are a total
of eight nonzero values in the current state. The role
of the intelligent agent is to modify these eight values
by either increasing or decreasing them, with the val-
ues along the diagonal of the coupling matrix ranging
from [0.5,1.3]. The range for the cross-coupling m2,5
is [−0.5,0.5].

According to the symmetry of the coupling matrix,
the agent has a total of 10 different actions, which are
expressed as follows:

A = {m0,1±,m1,2±,m2,3±,m3,4±,m2,5±}, (8)
m(x,x)±= max(min(m(x,x)± change,maxM),minM),

(9)
where m(x,x) refers to the currently adjusted matrix ele-
ment.

After the agent performs an action, it transitions to
a new state. In this process, the environment provides
the agent with rewards for the action based on the old
state and the new state. As described in section II, these
rewards are utilized by the agent through the use of a
reward function to select actions for coupling matrix syn-
thesis, thus adjusting the direction and objectives for the
coupling matrix. During the agent’s training process, the
PPO network gradually learns the relationship between
S-parameters and the adjustment of the coupling matrix.
The agent continues to explore in search of better solu-
tions. Upon training completion, the agent is capable
of identifying coupling matrices that meet the specified
requirements.

C. Design results
In this paper, a PPO algorithm is used to opti-

mize the eighth order coupling matrix for 2 minutes,
which is a relatively long value in the optimization pro-
cess because the PPO algorithm itself has randomness.
The comprehensive process is shown in Figs. 5 (a)-(c).

The eight nonzero coupling coefficients M of this sixth-
order filter are M = {M0,1 = M6,7 = 1.009,M1,2 =
M5,6 = 0.851,M2,3 = M4,5 = 0.617,M3,4 = 0.61,M2,5 =
−0.025}. As can be seen from Fig. 5 (c), the S param-
eters meet the in-band return loss and insertion loss,
and generate two transmission zeros near the specified
frequency. In addition, according to the synthesized cou-
pling matrix, a full-wave simulation was performed in
simulation software Ansys HFSS, and the simulation
result is shown in Fig. 5 (d). The simulation result is
basically consistent with the S parameters of the filter
synthesized by the coupling matrix.

(a) (b)

(c) (d)

Fig. 5. (a)-(c) Coupling matrix synthesis process based
on PPO algorithm, and (d) full-wave simulation result.

IV. CONCLUSION
In this paper, a PPO algorithm in deep reinforce-

ment learning is introduced, and an Actor-Critic net-
work for coupling matrix synthesis is constructed and
designed with unique action function and reward func-
tion. The coupling matrix of a six-order filter is synthe-
sized by using PPO, and the corresponding full-wave
simulation is performed after obtaining the coupling
matrix. It is proved that the S parameters of the coupling
matrix synthesis and the full-wave simulation results cor-
responding to the coupling matrix are basically consis-
tent. The feasibility and generality of the PPO algorithm
are verified. In the proposed PPO comprehensive cou-
pling matrix in this paper, although the synthesis time for
complex coupling matrices is relatively long, this algo-
rithm not only synthesizes traditional common coupling
matrices but also can synthesize some special coupling
matrices. That is, it can synthesize uncommon coupling
structures.
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