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Abstract – This paper proposes a scalable architecture
for predicting antenna performance using various data-
informed machine learning (DIML) methods. By utiliz-
ing the computation power of graphics processing units
(GPUs), the architecture takes advantage of hardware
(HW) acceleration from the beginning of electromag-
netic (EM) full-wave simulation to the final machine
learning (ML) validation. A total of 49152 full-wave
simulations of a classical microwave patch antenna
forms the ML dataset. The dataset contains the perfor-
mance of patch antenna on six commonly used materials
and two standard thicknesses in a wide frequency range
from 0.1 to 20 GHz. A total of 13 base ML models are
stacked and ensembled in a tabular workflow with per-
formance as 0.970 and 0.933 F1 scores for two classifica-
tion models, as well as 0.912 and 0.819 R2 scores for two
regression models. Moreover, an image-based workflow
is proposed. The image-based workflow yields the 0.823
R2 score, indicating a near real-time prediction for all
S11 values from 0.1 to 20 GHz. The proposed architec-
ture requires neither the fine-tuned hyperparameters in
the ML-assisted optimization (MLAO) model for spec-
ified antenna design nor the pre-knowledge required in
the physics-informed models. The fully automated pro-
cess with data collection and the customized ML pipeline
provides the architecture with robust scalability in future
work where more antenna types, materials, and perfor-
mance requirements can be involved. Also, it could be
wrapped as a pre-trained ML model as a reference for
other antenna designs.

Index Terms – Data informed, ensemble, full-wave sim-
ulation, machine learning, scalability, stacking, wide fre-
quency range.

I. INTRODUCTION
With the unlocking of computing power, machine

learning (ML) brings new prospects for non-linear and
non-convex problems in higher dimensions or deeper
networks. By regarding the weighting parameters as con-
stants or a prior distribution, the Frequentist aspect [1]
and Bayesian aspect [2] establish two separate systems
to interpret the black-box behaviors of ML. Even though
the mechanisms are different, both aspects set up sim-
ilar representable matrices linking the input and out-
put as the shared goal. Electromagnetic (EM) problems
always suffer from complex input combinations, time-
consuming simulations, multiple local bests, and rapid
design changes. All these hindrances are exactly in line
with the goal to overcome using ML. Hence, ML is
undoubtedly the new perspective to explore EM prob-
lems [3, 4], and well-trained ML models could provide
real-time prediction of the EM responses.

ML has been getting attention in various EM appli-
cations. For instance, at the RF system level [5–8], a
customized statistical ML model combined with entropy
weight theory [5] was trained by 2001 samples to predict
the path loss of RF wave propagation in the very high
frequency (VHF) band. ML was implemented to speed
up near-field RF measurements [6] or calibrate stochastic
radio propagation [7]. In [8], ML was applied to device
scheduling in an over-the-air (OTA) system with lower
computational loads.

From the ML point of view, as for the ML-assisted
optimization (MLAO) for antenna and array designs, the
traditional ML methods [9–11] demonstrated outstand-
ing performance. For instance, the Gaussian process
regression (GPR) provided the pre-knowledge guidance
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to optimize array mutual coupling with low side-lobe
level (SLL) [9]. The support vector regressor (SVR)
was utilized to predict the magnitude and the phase of
periodic units’ EM response for reflectarrays [10]. SVR
also assisted in converting the polarization and reshap-
ing the beam with an isoflux pattern [11]. Moreover,
advanced deep learning (DL) and reinforcement learn-
ing (RL) were integrated into the antenna design pro-
cesses [12–16]. For instance, the Bayesian neural net-
works (NNs) wrapping as surrogate models assisted
antenna optimization with varying performance metrics
[12, 13]. In [14], a computer-vision (CV) DL model
combined with a traditional global optimization method,
the genetic algorithm (GA), tuned the array elements
for beam steering. Relying on human-like decisions
with reward or penalty, RL realized automation learning
in array decoupling optimization [15]. The variational
autoencoders (AEs) in [16] encoded the optimum physi-
cal structure for the transmitarray design as a generative
model.

From the antenna applications aspect, ML methods
were also widely used in many antenna designs [17–20].
For example, in [17] the multiple-input multiple-output
(MIMO) antenna in ultra-wideband (UWB) took advan-
tage of the hybrid ML model to optimize the envelope
correlation coefficient (ECC), diversity gain (DG), and
total active reflection coefficient (TARC). This hybrid
ML model was composed of SVR, GPR, and NN. Also
related to the MIMO, the intelligent antenna switch-
ing, and massive MIMO in [18] achieved 18.5% higher
energy efficiency over the traditional optimization meth-
ods. The RL scheme provided the optimized mapping
between user elements (UE) positions and the number
of active antennas during the switching in MIMO. Cat-
egorizing the information radiated from radio-frequency
identification (RFID) chipless tags by utilizing ML was
also a research topic. Over 99.3% accuracy was accom-
plished in chipless RFID measurement with five classifi-
cation models [19]. Four regression models were evalu-
ated to detect the sensing information of the 8-bit ID tag
[20]. ML models also extracted high-dimensional meta-
features from EM responses of on-body or implanted
antennas [21–25]. For example, 1500 images in [21]
were fed into convolutional neural networks (CNNs) for
cancer detection.

Unlike various MLAO methods wrapped with sur-
rogate models summarized in [26–28], data-informed
machine learning (DIML) methods are explored in this
paper, benefitting from a large dataset and simplicity of
input/output (I/O) pairs. Data informing means all data
are generated and packaged in customized formats in the
first stage and then fed into the ML models in the second

stage. In other words, DIMLs are regarded as “offline
learning” compared to “online learning” of MLAO as a
one-stage process [26]. DIML leverages generalization
and scalability to include more antenna configurations
with a unified format into a general model. It eliminates
the consideration for the uncertain number of trials to
find the local-best priori conditions in surrogate models
[13, 27]. However, as a trade-off, there would be more
variables from various antenna configurations to form
the I/O datasets. DIML takes the fine-tuning ability of
a single antenna configuration in exchange for pursuing
the generalization and scalability of multiple configura-
tions [28].

Compared with the data-informed concept, physics-
informed machine learning (PIML) methods require
much less data but more pre-knowledge physics. It
solves the unknowns in partial differential equations
(PDEs) at the high-dimensional expansions of classi-
cal EM algorithms. For example, PIMLs were applied
with the Method of Moments (MoM) [29], Finite Ele-
ment Method (FEM) [30], and Finite-Difference Time-
Domain (FDTD) method [31, 32]. PIML mimics the
behavior of numerical full-wave simulation solvers,
which brings EM theoretical support to black-box pre-
diction with the online learning surrogate. In [33], the
application of PDEs transforms the classic NNs into
PIML, and the proposed integral error function bypassed
the pre-calculated training set with the self-learning abil-
ity. Nvidia’s “Modulus” platform provides end-to-end
ML solutions for various physics problems by linking the
gap between DIML and PIML methods [34].

This paper presents an automated architecture utiliz-
ing the graphics processing unit (GPU) with the scalabil-
ity of predicting antenna performance using DIML meth-
ods. The DIML methods are integrated with antenna
design and will be necessary for our future works with
PIML architecture. The general DIML architecture is
presented in Fig. 1, containing two workflows utilizing
a massive dataset of 49152 samples.

This paper is organized as follows. A dataset with
49152 full-wave simulations is described in Section II.
The tabular workflow is demonstrated in Section III. Two
classification models and two regression models based
on ensemble learning are implemented to automate the
predictions of antenna performance. In Section IV, the
image-based workflow implements a DL NN with the
Fourier Neural Operator (FNO) [35] to predict the input
reflection coefficients (S11) on the wide frequency range
from 0.1 to 20 GHz. This neural operator is carefully
designed to fit the EM frequency response with fine-
tuned prediction accuracy. The conclusions and further
work are presented in Section V.
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II. DATASETS
As one of the most critical parts of DIML, it is essen-

tial to construct corresponding datasets feeding into the
ML models with varying prediction targets. In this paper,
a classical microstrip patch antenna fed by a transmis-
sion line (TL) on various substrates is used, as shown
in Fig. 2. Since the proposed architecture is for gener-
alization purposes and not for the specific antenna fine-
tuning at a pre-defined narrow band, the scalability for
this architecture will be discussed in the tabular and
image-based workflows in Section III and Section IV,
respectively.

In Fig. 2, six materials are listed with the relative
permittivity (ε r) covering a relatively wide range with
discrete samplings as 2.2, 3.38, 4.0, 4.2, 4.4, and 6.12.
These RF materials are often commercially available as
RO5880C, RO4003C, FR4 type 1, FR4 type 2, FR4 type
3, and RO4360G2 in the order mentioned. It is apparent
that the ε r sampling is denser around 4.2 because FR4 is
the most commonly used material for both EM research
and industry mass production by compromising material
loss tangents for the low cost.

Moreover, the FR4 ε r values 4.0, 4.2, and 4.4 are
the top three values appearing in various manufacturing
datasheets, considering frequency dependency, tempera-
ture dependency, material variations, and testing meth-
ods. Similarly, the thickness values 0.8 mm and 1.6 mm
are two typical thicknesses on the datasheets for all six
mentioned materials without extra costs of customized
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Fig. 2. Geometry of classical patch antenna on six differ-
ent substrate materials (εr j) with two commercial thick-
nesses (hi), 12 combinations constitute the total dataset.

thickness. Six materials with two thicknesses form 12
combinations. In each combination, antenna dimensions
sweep in the same way on the fixed 50 mm × 50 mm
footprint size of the substrate with fully covered ground.
In Fig. 2, when RO5880C is selected as the substrate
(gray color) with ε r1=2.2 and h2=1.6 mm, the 50-Ω TL
connects the radiating patch and the substrate edge for
RF port excitation. The width WTL is adaptively adjusted
by the substrate thickness and permittivity to achieve
the 50-Ω characteristic impedance. Hence, there are 12
different WTL values for 12 combinations of substrate.
The length LTL is a dependent variable, making sure
the TL connects the patch and the port at the substrate
edge.

The radiating patch width W and length L vary from
5 mm to 36.5 mm with 0.5-mm increments, creating
a 64×64 uniform grid-search space. Hence, there are
4096 antenna configurations in each substrate combina-
tion so, for the total dataset with 12 combinations, there
are 49152 antenna configurations and, to rephrase, 49152
data samples for ML models to train and test with.

EM full-wave simulator CEMS based on FDTD
method integrated with GPU acceleration [36] is used to
obtain the full-wave responses for those 49152 antenna
configurations at the frequency range from 0.1 to 20
GHz with 20 MHz frequency step (996 frequency points
in total). Under the listed HW platform - Intel(R) Core
(TM) i9-13900K; NVIDIA 4090 GPU with 24 GB mem-
ory; 128-GB DDR5 RAM at 4800 MHz - each antenna
simulation takes 0.26 minutes. The time-domain (TD)
solver is preset as 2000 time-steps and uniform cuboid
cell sizes with increments of 0.1 mm, 0.25 mm, and 0.2
mm along x, y, and z directions, respectively. This cell
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Fig. 3. Simulated S11 comparison among three full-wave
simulation software with different solvers.

size will be regarded as the image-resolution limitation
in the following image-based workflow.

CEMS simulations are repeated for each of the
49152 configurations, and the input reflection coeffi-
cients are obtained as S11 in decibel scale. For exam-
ple, the result of one simulation is shown in Fig. 3. To
check the consistency, simulation results from two other
commercial full-wave simulation software, CST 2023 S2
[37] and HFSS 2023 R1 [38], are obtained to compare
the simulated S11 values as the blue dotted curve and the
green dash-dotted curve in Fig. 3, respectively. As CEMS
uses the TD solver (FDTD), CST also uses a TD solver
but with Finite Integration Technique (FIT), while HFSS
utilizes an FD solver with FEM method. The S11 results
from three simulators match with each other. Some devi-
ations in the HFSS curve at the range higher than 18 GHz
are caused by the inherent limitation of FD solvers for
wide-band simulation [39].

A customized application programming interface
(API) called CEMSPy is developed to automate the
pipeline, from the massive generation of antenna mod-
els to the data post-processing of simulated results. Con-
sequently, both inputs (antenna configurations) and out-
puts (S11 values) are ready to feed into the black boxes
to establish the I/O relationship mapping for ML mod-
els. The tabular and image-based workflows use the same
dataset of 49152 samples for single value prediction in
Section III and the whole S11 curve regression in Section
IV, respectively.

III. TABULAR WORKFLOW
A. Tabular datasets

For ML training based on the tabular dataset, all
input features and output labels are arranged in the
column-based table. The configuration information of

the 49152 classical patch antenna mentioned in Fig. 2
forms 49152 rows of the tabular dataset. Five configu-
rations, W, L, hi, ε rj, and WTL, are regarded as five input
features for the tabular workflow. This research considers
S11 values at 996 discrete points in the frequency range
from 0.1 to 20 GHz as the ground-true outputs for each
data sample. The output labels are the extracted obser-
vations from these simulated S11 values. These obser-
vations could be the discrete values as the classification
labels or the continuous values as the regression labels.
There are two classification labels and two regression
labels in the tabular workflow, which will be discussed
in detail.

In a previous work related to the tabular workflow,
authors have shown that more data produces higher pre-
diction accuracy by increasing the number of samples
from 256 to 4209 [40]. The authors also inspected the
binary classification (BC) and single-value regression
models with 20480 antenna configurations on a single
substrate [41]. As a continuation of the previous work,
the tabular workflow in this work extends the prediction
range from 0.1 to 20 GHz to show the generalization and
combines 12 different material settings to show the scala-
bility. First, two classification models will be introduced
using the 1st and 2nd labels in Part B of this section. Two
regression models will be presented using the 3rd and 4th

labels stored in the tabular dataset in Part C. After that,
the prediction of all S11 values at all frequencies will be
discussed in Section IV.

B. Binary and multi-class classifications
As the 1st output label, the BC model is trying to pre-

dict if there is a valid resonance (Rf) in a valid bandwidth
(BW). The valid Rf means 10% or less power reflects
back to the excitation port, while the valid BW means
the head and tail of -10-dB bandwidth are inside the
frequency range from 0.1 to 20 GHz. The label assign-
ments of valid Rf and BW are packaged in CEMSPy API
and can be tailored to any frequency range for specified
design requirements.

Figure 4 shows the label assignments for both the
1st label of BC and 2nd label of multi-class classification
(MC). The same set of curves is applied to demonstrate
the classification representations for both BC and 4-class
MC, so there are four curves in Fig. 4.

For BC, the output at 996 frequency points having
at least one valid Rf in a valid BW can be categorized
as Class 1, like the black solid curve in Fig. 4. The S11
values in the valid band from 6.76 to 7.5 GHz are below
-10 dB with two valid resonances at 6.88 and 7.36 GHz.
Any other scenarios are categorized as Class 0 for BC.
Under such binary strategies, 88.36% of samples in all
49152 antenna outputs are assigned in Binary Class 1
(BC: 1). The rest are assigned in Binary Class 0 (BC:
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The radiating patch width W and length L vary from 

5 mm to 36.5 mm with 0.5-mm increments, creating a 

64×64 uniform grid-search space. Hence, there are 4096 

antenna configurations in each substrate combination so, 

for the total dataset with 12 combinations, there are 

49152 antenna configurations and, to rephrase, 49152 

data samples for ML models to train and test with. 

EM full-wave simulator CEMS based on FDTD 

method integrated with GPU acceleration [36] is used to 

obtain the full-wave responses for those 49152 antenna 

configurations at the frequency range from 0.1 to 20 GHz 

with 20 MHz frequency step (996 frequency points in 

total). Under the listed HW platform - Intel(R) Core (TM) 

i9-13900K; NVIDIA 4090 GPU with 24 GB memory; 

128-GB DDR5 RAM at 4800 MHz - each antenna 

simulation takes 0.26 minutes. The time-domain (TD) 

solver is preset as 2000 time-steps and uniform cuboid 

cell sizes with increments of 0.1 mm, 0.25 mm, and 0.2 

mm along x, y, and z directions, respectively. This cell 

size will be regarded as the image-resolution limitation 

in the following image-based workflow. 

CEMS simulations are repeated for each of the 

49152 configurations, and the input reflection 

coefficients are obtained as S11 in decibel scale. For 

example, the result of one simulation is shown in Fig. 3. 

To check the consistency, simulation results from two 

other commercial full-wave simulation software, CST 

2023 S2 [37] and HFSS 2023 R1 [38], are obtained to 

compare the simulated S11 values as the blue dotted curve 

and the green dash-dotted curve in Fig. 3, respectively. 

As CEMS uses the TD solver (FDTD), CST also uses a 

TD solver but with Finite Integration Technique (FIT), 

while HFSS utilizes an FD solver with FEM method. The 

S11 results from three simulators match with each other. 

Some deviations in the HFSS curve at the range higher 

than 18 GHz are caused by the inherent limitation of FD 

solvers for wide-band simulation [39]. 

A customized application programming interface 

(API) called CEMSPy is developed to automate the 

pipeline, from the massive generation of antenna models 

to the data post-processing of simulated results. 

Consequently, both inputs (antenna configurations) and 

outputs (S11 values) are ready to feed into the black boxes 

to establish the I/O relationship mapping for ML models. 

The tabular and image-based workflows use the same 

dataset of 49152 samples for single value prediction in 

Section Ⅲ and the whole S11 curve regression in Section 

Ⅳ, respectively. 

 

III. TABULAR WORKFLOW 

A. Tabular datasets 

For ML training based on the tabular dataset, all 

input features and output labels are arranged in the 

column-based table. The configuration information of 

the 49152 classical patch antenna mentioned in Fig. 2 

forms 49152 rows of the tabular dataset. Five 

configurations, W, L, hi, εrj, and WTL, are regarded as five 

input features for the tabular workflow. This research 

considers S11 values at 996 discrete points in the 

frequency range from 0.1 to 20 GHz as the ground-true 

outputs for each data sample. The output labels are the 

extracted observations from these simulated S11 values. 

These observations could be the discrete values as the 

classification labels or the continuous values as the 

regression labels. There are two classification labels and 

two regression labels in the tabular workflow, which will 

be discussed in detail. 

In a previous work related to the tabular workflow, 

authors have shown that more data produces higher 

prediction accuracy by increasing the number of samples 

from 256 to 4209 [40]. The authors also inspected the 

binary classification (BC) and single-value regression 

models with 20480 antenna configurations on a single 

substrate [41]. As a continuation of the previous work, 

the tabular workflow in this work extends the prediction 

range from 0.1 to 20 GHz to show the generalization and 

combines 12 different material settings to show the 

scalability. First, two classification models will be 

introduced using the 1st and 2nd labels in Part B of this 

section. Two regression models will be presented using 

the 3rd and 4th labels stored in the tabular dataset in Part 

C. After that, the prediction of all S11 values at all 

frequencies will be discussed in Section Ⅳ. 
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Fig. 4. Four S11 simulation results as the classing repre-
sentatives of binary classification (BC) and multi-class
classification (MC).

0). The definition of class assignment is demonstrated in
Table 1. All 49152 samples are processed by CEMSPy
and assigned the corresponding Class 0 or Class 1 for
BC. The assigned binary information is stored in the tab-
ular dataset as the 1st output label. Hence, five columns
as five input features (W, L, hi, ε rj, and WTL) and one col-
umn as the output label is poised for binary ML training
and validation.

Table 1: Binary and multi-class definitions
(Rf, BW) BC MC Ratio of Total (%)

(0, 0) 0 0 10.38
(Valid, Invalid) 0 1 0.76

(Invalid, Invalid) 0 2 0.50
(Valid, Valid) 1 3 88.36

An automatic ML tool called “AutoGluon” builds a
platform for ensemble learning on tabular datasets for
both classification and regression problems [42]. Ensem-
ble learning is a weighted strategy that combines all well-
trained models as a weighted ML model to make the
best predictions. Many APIs in AutoGluon provide the
flexibility to customize the ensembling structure, like the
selection of ML base models, the distribution of weights,
etc. Associated with a customized CEMSPy script, Auto-
Gluon is integrated into the tabular workflow to process
the tabular data automatically with scalable presetting.

For BC, all 49152 samples in the total dataset are
split stochastically into train/test datasets with the ratio
rs: 80/20 under random seed 2. The same random strat-
egy is carried through all the following work to maintain
consistency and reproducibility. Those 20% samples as
the test set only work for the well-trained model’s over-

all performance on new data after training. During the
training/validation iterations, 13 base models are listed in
Table 2 that are trained on 36821 samples and validated
simultaneously on the remaining 2500 samples in the
39321 train dataset. Two classification metrics, F1 score
and Log loss, are used for the quantitative evaluation dur-
ing the iteration of training/validation process. A total of
13 base models are updated independently towards the
perfect prediction score of 1.0 and loss of 0.0 as the ideal
goals. The training/validation process of 13 models will
terminate when the F1 score does not increase or Log
loss no longer decreases significantly. For each sample,
the F1 score is calculated as:

F1 =
2T P

2T P+FP+FN
, (1)

where TP, often called “True Positive”, stands for the
correct prediction of Class 1. Similarly, in statistical
analysis, FP (False Positive) and FN (False Negative)
stand for overestimation and underestimation. However,
it can be noticed that TN (True Negative) is missed in
the F1 score. In other words, the scenario for the correct
rejection is not counted. That is the reason why another
metric Log loss is used as:

Llog(y, p) =− [y log(p)+(1− y) log(1− p)] , (2)
where, p is the probability estimating label y=1 for a sin-
gle sample. The averaged value F1 score and Log loss on
all test samples evaluate the general reliability of the BC
model.

Table 2: Ensemble model for binary classification
Index Model F1 Score Log Loss

0 Stacked Model 0.970272 0.171912
1 KNeighborsUnif 0.968224 0.389549
2 CatBoost 0.967822 0.185379
3 KNeighborsDist 0.967149 0.386027
4 XGBoost 0.965579 0.188325
5 LightGBMLarge 0.965428 0.181846
6 ExtraTreesEntr 0.964930 0.290892
7 ExtraTreesGini 0.964856 0.286748
8 LightGBM 0.964516 0.190572
9 RandomForestEntr 0.963731 0.301912
10 RandomForestGini 0.963173 0.315406
11 NeuralNetFastAI 0.962329 0.205084
12 NeuralNetTorch 0.961868 0.185094
13 LightGBMXT 0.961072 0.197700

The final F1 score and Log loss average on the test
datasets are displayed in Table 2. The stacked model
at index 0 is the weighted combination of all 13 base
models from 1 to 13. As a result, when the new/unseen
antenna configuration is characterized by five features,
W, L, hi, ε rj, and WTL, the stacked model can make the
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real-time prediction of whether there is a resonance point
in a valid BW (BC: 1) or not (BC: 0). The F1 score
0.97027 and Log loss 0.171912 indicates the ensemble
model can achieve relatively reasonable prediction in the
frequency range from 0.1 to 20 GHz.

For the 2nd output label, the MC aims to refine the
binary classes to four classes. The data categories for MC
are also summarized in Table 1. For example, invalid BW
means either the head or tail is out of the preset frequency
range. For the blue-dotted and green-dashed curves in
Fig. 4, both tails are out of 20 GHz, so these two antenna
configurations are regarded as having invalid BW.

The invalid Rf is only triggered when there is an
invalid BW. According to the definition, if a valid -10-
dB BW exists, at least one peak value must be inside
the range. The green-dashed curve in Fig. 4 presents
the antenna configuration with both invalid Rf and BW
because of the S11 values’ monotonical decrease at the
tail of the frequency range. Mirror symmetrically, if the
S11 values increase monotonically at the head range, that
configuration also has invalid Rf and BW.

An automatic pipeline has already been established
for BC prediction using CEMSPy as mentioned previ-
ously. With its scalability, MC can also be implemented
similarly with the slight modification of BC models. The
prediction of 20% of test data achieves 0.93323 weighted
F1 and 0.2004 Log loss. However, it can also be noted in
the last column of Table 1 that Class 1 (MC: 1) and Class
2 (MC: 2) have a relatively small number of samples
compared to the total number of samples. As a result,
it is an unbalanced MC problem in the whole frequency
range, and it causes the MC model to be unbalanced and
gives it an inherently high F1 score of 0.93323. There-
fore, for the unbalanced MC, an additional term called
‘balanced Acc’ is a more convincing metric to evaluate
the quality of the unbalanced model:

Accbalanced =
T P

2(T P+FN)
+

T N
2(T N +FP)

, (3)

where TP, TN, FN, and FP follow the exact definition in
(1). It gives a value of 0.55790, which is not a good score
but in line with expectations due to the imbalance.

MC is not applicable for prediction in such a wide
frequency range from 0.1 to 20 GHz. The application
scenario would be more suitable to classify with clear
objectives in narrower bands, like limiting the range to
around 5.8 GHz for Wi-Fi design or around 10 GHz for
space communication. In such narrow bands, the four
reallocated classes will be more balanced, and the pre-
diction will be more accurate. The CEMSPy API pro-
vides scalable functions to automate the general pipeline
with the required objectives. For example, to optimize
an antenna at 5.8 GHz for Wi-Fi applications, CEM-
SPy APIs will only simulate the models in the frequency
range from 5 to 7 GHz and make the multiple-class

assignment accordingly. In addition to balancing the MC,
it will save significant time and computational resources
to generate the I/O dataset with auto-assigned classes.

C. Single-value regressions
Unlike classification problems, single-value regres-

sion focuses on predicting a continuous value extracted
from all S11 values at 996 frequency points. In this
section, the 1st valid Rf and its BW will be predicted by
two regression models with similar automatic pipelines
as mentioned before, but for the regression scenarios.
Following the 1st and 2nd labels in the tabular dataset of
all 49152 samples, the 3rd label and 4th label are assigned
to the 1st valid Rf and its valid BW, respectively. Hence,
the first single-value regression model could predict the
1st valid Rf for a given input set of W, L, hi, ε rj, and WTL,
and the second model for the associated BW. There is an
assumption that the input antenna configuration should
have a valid Rf and valid BW. A data filter follows the
class definition in Table 1. Only BC: 1 (same as MC: 3)
are considered as valid samples for the two regression
models. The samples in these classes are also described
as “Partial Samples” in the general architecture shown in
Fig. 1.

By taking 88.36% of the total 49152 samples, a trun-
cated tabular dataset with 43431 antenna configurations
is selected for two regression models. Each configura-
tion extracts the 3rd output label, Rf in GHz, and the
4th label, BW in MHz, from the corresponding S11 val-
ues at 996 frequency points. For comparison, the 1st and
2nd labels are assigned as binary and multiple classes in
BC and MC problems. Before the train/test splitting, 10
samples as the observers from each substrate combina-
tion (12 combinations) are dropped out randomly and
stitched together as an observation dataset with 120 sam-
ples. Those samples will not be involved in any train-
ing/validation or testing process. Eventually, there are
34648, 8663, and 120 samples for training/validation,
testing, and observation. The deeper reason for the obser-
vation dataset with 120 samples is that they can evenly
observe the final model performance on different sub-
strate combinations. If the model performance has a
noticeable degradation in one of the 12 substrate combi-
nations, the hyperparameters can be fine-tuned and pri-
oritized for the respective combination separately.

Like the BC and MC pipelines, the ensemble learn-
ing method is also applied to the two single-value regres-
sion models but with deeper stacking. In the 1st stacking
layer, 11 base ML models produce 10 outputs as 10 new
features for the 2nd layer. Those 10 features are imported
as the input in the 2nd stacking level to predict the tar-
geted single-value output, which is Rf and BW, respec-
tively. Compared with a one-layer structure with 13 flat-
tened base models for BC and MC, each single-value
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regression model is weighted by 21 stacked models. One
score metric called R2 score:

R2 = 1− ∑
N
i=1 (yi − ŷi)

∑
N
i=1

(
yi − 1

N ∑
N
i=1 yi

) , (4)

and another loss metric called root-mean-squared error
(RMSE):

RMSE =

√
1
N

N

∑
i=1

(yi − ŷi)
2 (5)

are enforced to increase the score and reduce the loss
during each training/validation iteration. After training,
(4) and (5) are applied again to evaluate the final model
performance as two averaged values.

In both (4) and (5), yi represents the simulated
value as ground true and ŷi as the corresponding pre-
dicted value by regression. Theoretically, perfect regres-
sion always has a maximum score of 1.0 and a mini-
mum loss of 0.0, like the F1 score and Log loss for the
ideal classification. The final performances for the Rf and
BW regressions are listed in Table 3. The R2/RMSE val-
ues for the test dataset with 8663 samples are the global
representation of the well-trained models. The R2/RMSE
ones for 120 observers are used to mimic the behavior
of well-trained models when seeing new data from 12
substrate combinations evenly. The “new” here means
10 sets of (W, L, hi, ε rj, and WTL) from each 12 com-
binations that are generated randomly to observe their
predicted Rf and BW.

Table 3: Single-value regression performance
Prediction Dataset Samples R2 Score RMSE

Rf Test 8663 0.912440 1.171061
Rf User 120 0.932543 1.119442

BW Test 8663 0.818673 135.9358
BW User 120 0.770934 162.6399

To better visualize the offset between the true value
from simulation and the prediction from ML, the abso-
lute relative error (ARE) in percentage

ARE =

∣∣∣∣yi − ŷi

yi

∣∣∣∣×100%, (6)

is used, where yi and ŷi follow the same definition as in
(4) and (5).

For both single-value regressions of Rf and BW,
both prediction/true offsets for 8663 samples can be cal-
culated and stored in two ARE lists: ARERf and AREBW.
The cumulative distribution function (CDF) is imple-
mented to observe the error distribution for both regres-
sions as shown in Fig. 5. Two markers are printed based
on the cumulative probabilities of two threshold values
on the solid red and the blue-dashed curves, respectively.
Since the R2 score value is a bounded value in the range

[0.0, 1.0], it can be regarded as a threshold represen-
tative of the cumulative probability. The first threshold
is the same as the cumulative probability 0.5 for both
curves. The second threshold is the R2 score but different
for Rf (solid red curve) and BW (blue-dashed curve). As
the first vertical dashed threshold on the solid red curve,
50% of samples in total 8663 have ARE equal to or less
than 3.17% for Rf. The second threshold indicates that
91% have ARE equal to or less than 18.87%. Also, as the
two thresholds on the blue-dashed curve, 50% of sam-
ples have ARE equal to or less than 17.75% for BW, and
82% have ARE equal to or less than 64.62%.

Table 3: Single-value regression performance 
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Fig. 5. Cumulative distribution of absolute relative error
between true and prediction for Rf and BW on 8663 test
samples.

Comparing the ARE curve for BW with that for Rf
in Fig. 5, there is a dramatic degradation in BW pre-
diction due to the resolution preset for frequency points.
For the purpose of generalization, a very wide frequency
range from 0.1 to 20 GHz with an incremental step of 20
MHz is utilized to show the performance on those 996
frequency points. The minimum -10 dB BW is 40 MHz
because at least two values equal to or less than -10 dB
could form a band. For better visualization of the value
distribution, both the 3rd and 4th labels of all 43311 sam-
ples are normalized to the same range from 0.0 to 1.0
range based on the min-max normalization, as shown in
Fig. 6. The normalized BW on the right has a much more
compact distribution than that for normalized Rf on the
left. It can be expected that many antenna configurations
with lower BW performance will share the same BW val-
ues (4th label) under such frequency resolution.

Further uniqueness analysis in Table 4 shows the
extreme cases with the top-3 and bottom-3 unique counts
for the 3rd and 4th labels of all 43311 samples. There
are 839 unique Rf values as the 3rd label and 145 unique
BW values as the 4th label for all 43311 samples. The
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Table 3: Single-value regression performance 
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Rf and valid BW on 43311 samples.

Table 4: Unique counts for Rf and BW
Index Rf (GHz) Counts BW (MHz) Counts
Top 1 8.34 118 40.0 5509
Top 2 5.80 116 60.0 4935
Top 3 7.16 111 80.0 3796

Bottom 3 19.94 1 3120.0 1
Bottom 2 3.18 1 3060.0 1
Bottom 1 3.12 1 3340.0 1

top-3 and bottom-3 unique counts are listed in Table 4
after sorting from largest to smallest. For example, 5509
samples of a total of 43311 have the same 40-MHz BW,
which is highly concentrated compared to 118 samples
with 8.34-GHz Rf as the maximum unique counts.

From Table 4 and Fig. 6, it can be concluded that for
a wide band range with such frequency resolution, the
BW prediction cannot perform well due to the concen-
trated distribution with large identical values. As men-
tioned previously in the MC part, it is also a limitation
of generalization, even though the BC and Rf regression
performances are reasonably good.

D. Limitation of tabular workflow
When considering generalization and scalability as

the purposes, the limitation of tabular workflow is raised
from two aspects. First, from the local point of view, even
though the predictions are relatively good for BC and Rf
regression, the wide frequency range brings imbalance
for the class definition in MC. Also, the frequency res-
olution limits the output uniqueness and distribution in
BW regression. The first limitation can be broken by set-
ting the narrow range for specific design requirements
mentioned as the 5 to 7 GHz range for 5.8 GHz Wi-Fi
antenna design in the MC part. The second limitation
can be eliminated with a smaller sweeping step in the
narrow range. Both concerns can be solved by utilizing
the scalable CEMSPy APIs. However, it will push the
model to fall into the specific local optimum and defeat

the purpose of generalization. Second, from the global
aspect, the tabular workflow is based on tabular datasets.
Ideally, when more antenna configurations are included,
users can extend the feature space along the column and
the number of samples along the row to achieve scal-
ability. However, various configurations share different
parameters, and these parameters increase the complex-
ity of constructing the tabular dataset. More configu-
rations cause much more extensive and sparser feature
space with the majority number of NaN values. Defining
and unifying the variable names in tabular datasets will
also be problematic. As a result, an image-based work-
flow is introduced in the following section. No param-
eter needs to be defined in the input tabular dataset; all
antenna configurations will be described by the images
of slice cuts from different observation planes, like mag-
netic resonance imaging (MRI) scanning for human
tissues.

IV. IMAGE-BASED WORKFLOW
There is always a principle of DIML that post-

processed data should be easy to expand at high-
dimensional mapping space as the bridge connecting
inputs and outputs. Inevitably, some information will be
lost in the feature-extraction period from original data
to post-processed data, like from the full-wave simula-
tion model to the tabular dataset. The more information
is retained from the original data, the more complicated
and accurate outputs can be predicted [2]. In the tabular
workflow, the original data from 49152 full-wave sim-
ulations are extracted and stored in the tabular dataset.
Five input features (W, L, hi, ε rj, and WTL) in the five
columns are applied to predict four single-value labels
column by column as BC, MC, Rf, and BW regression.

For each label in the tabular workflow, the sin-
gle value is extracted from all S11 values at 996 fre-
quency points with presupposed conditions and assump-
tions. Hence, all four labels highly summarize the S11
responses but discard lots of information in the original
996 values. It restricts the tabular workflow from achiev-
ing the purpose of generalization and scalability.

This section presents the details of the image-based
workflow, showing that images carry much more input
information than the tabular dataset, and the workflow
will predict all the S11 values in the whole frequency
range. The same patch antenna in Fig. 2 demonstrates the
image-based workflow. Two images with 600×600 reso-
lutions are encoded and shown in Fig. 7. They represent
two cross-sectional views of a 60 mm × 60 mm × 60 mm
EM problem space. The antenna is placed at the center
of the problem space based on proportional dimensions.
Two cross-sectional views are selected as the observation
of the patch antenna at the x-y and x-z planes in Fig. 2.
All pixels in the two images are assigned the encoded
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to or less than 3.17% for Rf. The second threshold 

indicates that 91% have ARE equal to or less than 

18.87%. Also, as the two thresholds on the blue-dashed 

curve, 50% of samples have ARE equal to or less than 

17.75% for BW, and 82% have ARE equal to or less than 

64.62%. 

Comparing the ARE curve for BW with that for Rf in 

Fig. 5, there is a dramatic degradation in BW prediction 

due to the resolution preset for frequency points. For the 

purpose of generalization, a very wide frequency range 

from 0.1 to 20 GHz with an incremental step of 20 MHz 

is utilized to show the performance on those 996 

frequency points. The minimum -10 dB BW is 40 MHz 

because at least two values equal to or less than -10 dB 

could form a band. For better visualization of the value 

distribution, both the 3rd and 4th labels of all 43311 

samples are normalized to the same range from 0.0 to 1.0 

range based on the min-max normalization, as shown in 

Fig. 6. The normalized BW on the right has a much more 

compact distribution than that for normalized Rf on the 

left. It can be expected that many antenna configurations 

with lower BW performance will share the same BW 

values (4th label) under such frequency resolution. 

 

Table 4: Unique counts for Rf and BW 

Index Rf (GHz) Counts BW (MHz) Counts 

Top 1 8.34 118 40.0 5509 

Top 2 5.80 116 60.0 4935 

Top 3 7.16 111 80.0 3796 

Bottom 3 19.94 1 3120.0 1 

Bottom 2 3.18 1 3060.0 1 

Bottom 1 3.12 1 3340.0 1 

 

Further uniqueness analysis in Table 4 shows the 

extreme cases with the top-3 and bottom-3 unique counts 

for the 3rd and 4th labels of all 43311 samples. There are 

839 unique Rf values as the 3rd label and 145 unique BW 

values as the 4th label for all 43311 samples. The top-3 

and bottom-3 unique counts are listed in Table 4 after 

sorting from largest to smallest. For example, 5509 

samples of a total of 43311 have the same 40-MHz BW, 

which is highly concentrated compared to 118 samples 

with 8.34-GHz Rf as the maximum unique counts. 

From Table 4 and Fig. 6, it can be concluded that for 

a wide band range with such frequency resolution, the 

BW prediction cannot perform well due to the 

concentrated distribution with large identical values. As 

mentioned previously in the MC part, it is also a 

limitation of generalization, even though the BC and Rf 

regression performances are reasonably good. 

 

D. Limitation of tabular workflow 

When considering generalization and scalability as 

the purposes, the limitation of tabular workflow is raised 

from two aspects. First, from the local point of view, 

even though the predictions are relatively good for BC 

and Rf regression, the wide frequency range brings 

imbalance for the class definition in MC. Also, the 

frequency resolution limits the output uniqueness and 

distribution in BW regression. The first limitation can be 

broken by setting the narrow range for specific design 

requirements mentioned as the 5 to 7 GHz range for 5.8 

GHz Wi-Fi antenna design in the MC part. The second 

limitation can be eliminated with a smaller sweeping step 

in the narrow range. Both concerns can be solved by 

utilizing the scalable CEMSPy APIs. However, it will 

push the model to fall into the specific local optimum 

and defeat the purpose of generalization. Second, from 

the global aspect, the tabular workflow is based on 

tabular datasets. Ideally, when more antenna 

configurations are included, users can extend the feature 

space along the column and the number of samples along 

the row to achieve scalability. However, various 

configurations share different parameters, and these 

parameters increase the complexity of constructing the 

tabular dataset. More configurations cause much more 

extensive and sparser feature space with the majority 

 
Fig. 7. Encoded images of top and side views of two 

random samples at the index of 6823 and 42312 in 

total 49152 samples. 

Fig. 7. Encoded images of top and side views of two
random samples at the index of 6823 and 42312 in total
49152 samples.

values in Table 5, to represent the materials considered
with EM characteristics. For instance, the pixels with
values of 0.22 represent substrate material RO5880 in
these pixels.

Table 5: Encoding card
Materials Info Encoded

Value
Encoded

Range
Free Space Lossless

Transmission
0.0 [0.0, 0.1]

Buffer 1 Boundary NaN (0.1, 0.2)
RO5880 ε r=2.2 0.220 [0.2, 0.8]

RO4003C ε r=3.38 0.338 [0.2, 0.8]
FR4 Type 1 ε r=4.0 0.400 [0.2, 0.8]
FR4 Type 2 ε r=4.2 0.420 [0.2, 0.8]
FR4 Type 3 ε r=4.4 0.440 [0.2, 0.8]
RO4360G ε r=6.12 0.612 [0.2, 0.8]
Buffer 2 Boundary NaN (0.8, 0.9)

Port SMA Feed 0.9 [0.9, 1.0]
Perfect

Conductor
Lossless

Reflection
1.0 [0.9, 1.0]

Encoded values in the range [0.0, 1.0] are assigned
to distinguish components by filling in the image pixels
to represent antenna configurations with material infor-
mation. Table 5 lists the encoding information for all
corresponding components. There are two boundaries
to split all components into three sections with enough
buffering. In the middle-encoded range [0.2, 0.8], all
dielectric materials are normalized in this range. Cur-

rently, the normalization factor 10 is applied on all
dielectric materials, and it can be modified for scalability
if the dielectric materials have relative permittivity less
than 2 or larger than 8.

The two terminal values, 0.0 and 1.0, represent the
free space and perfect conductor (PEC) as the lossless
transmission and lossless reflection, respectively. The
values can be assigned in the range [0.0, 0.1] for any
lossy propagating environment. Any conducting mate-
rials with losses can be placed in the range [0.9, 1.0].
For example, the Subminiature Version A (SMA) port is
assigned as 0.9. When new materials are involved, they
can be designated as new values in the encoded card as
new rows in Table 5. Then, new antenna configurations
can pick up the values to form the images accordingly.
Thus, the image-based workflow can be extended to any
antenna configurations with the scalable card in Table 5.

Two encoded images for the demo configurations
are displayed in Fig. 7, and they exemplify all configura-
tions through shapes and colors. Instead of defining the
variables in the tabular dataset, images carry all infor-
mation in pixels, even for the different antenna types.
In Fig. 7, two antenna configurations with the indices
of 6823 and 42312 are selected from the total 49182
antenna samples. In the left column of Fig. 7, two top-
view images embody the difference in three aspects: sub-
strate materials, radiating patch dimensions, and width
of TL. From the right column, the difference is pre-
sented in substrate thickness, width of TL, and substrate
materials. Applying this encoding strategy using the inte-
grated CEMSPy scripts, all 49152 antenna samples can
be encoded and stored in a high-dimensional matrix with
shape (49152, 600, 600, 2) as the ML inputs.

In the input matrix, the 1st dimension shows the
number of samples Nsam, the 2nd and 3rd dimensions are
the resolution of Rx and Ry, and the 4th dimension is
the number of the plane-cut views Ncp. As the target of
image-based workflow, all S11 values at 996 frequency
points from 0.1 to 20 GHz are predicted. Hence, the out-
put matrix is formed in the shape (49152, 996). In the
output matrix, the first dimension is the same as Nsam for
inputs, and the second dimension is the number of S11
values at Nfreq frequency points.

So far, the I/O matrices are ready for the image-
based DIML workflow. However, the I/O here is much
more complicated than that for the tabular dataset.
Furthermore, as the S11 curves manifested in Figs. 3
and 4, there are correlations among adjacent points on
the curves. In other words, the S11 curve could be
regarded as sequential data. Theoretically, it means for
the EM response of the conjugated impedance matching
at the excitation port, there should be a continuous EM
response along with frequency [39]. This EM property
makes the traditional ML architecture not suitable for the
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image-based workflow since the independent and iden-
tical distribution (i.i.d.) is often assumed in many ML
models [2]. Therefore, FNO is raised as a succinct and
efficient solution using an eight-layer structure with rel-
atively faster convergence for the S11 curve regression. It
involves the EM I/O characteristics in the spectral con-
volutional transformations [35].

For the training/validation splitting, 152 samples are
dropped out randomly only for observation purposes, as
the observers mentioned in the tabular regression work-
flow. Then, an 80/20 splitting ratio is applied to the
remaining 49000 samples. So, there are 39200 samples
for training and, during the training iterations, 9800 sam-
ples are monitored to provide the performance feedback
simultaneously. The model performance is optimized by
evaluating the R2 score and L2 loss on the training and
validating sets correspondingly. The R2 score is illus-
trated in (4) and L2 loss is the squared value of RMSE
mentioned in (5). Second, after the training/validation
process, all 152 samples are used to “observe” the well-
trained models and provide the evaluation since those
152 samples are new and unseen by the well-trained
model.

The brief NN architecture with matrix shape infor-
mation is portrayed in Fig. 8, based on a single data batch
with five samples. Four fully connected (FC) layers and
four Fourier layers alternately construct the main skele-
ton of this NN used in the image-based workflow.

In the dashed zoom-in box of Fig. 8, each input v(x)
processes the Fourier layers shown in the gray shadow
area. The Fourier operator starts from the Fourier trans-
form F , to the linear transform ℜ with a low-pass filter,
then applies the inverse Fourier transform F−1. During
the backpropagation, the operator adjusts weights w to
maximize the R2 score and minimize L2 loss.

By superimposing the transform and weights, the
activation function Gaussian Error Linear Unit (GELU)
introduces non-linearity into the model. The FNO learns
the complex patterns from the images with 600×600 pix-
els. GELU provides a smooth curve, making it compu-
tationally beneficial for optimization with faster conver-
gence during training. The same activation function is
also applied to link the FC layers. Taking five samples as
the batch size Bs of a 4-D input, the variation of batch
shape between NN layers is described in the intermedi-
ate flow of Fig. 8. The batch shape starts from the initial
inputs with shape (Bs, Rx, Ry, Ncp) to the final output
with shape (Bs, Nfreq). The smoothness and nonmono-
tonicity of GELU bring the possibility of predicting the
continuous S11 curves at Nfreq points.

The hyperparameters in the NN architecture are
fine-tuned to achieve the trade-off between the best
performance of the R2 score and L2 loss. This work-
flow optimizes eight hyperparameters: learning rate Lr,

number of NaN values. Defining and unifying the 

variable names in tabular datasets will also be 

problematic. As a result, an image-based workflow is 

introduced in the following section. No parameter needs 

to be defined in the input tabular dataset; all antenna 

configurations will be described by the images of slice 

cuts from different observation planes, like magnetic 

resonance imaging (MRI) scanning for human tissues.  
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There is always a principle of DIML that post-

processed data should be easy to expand at high-

dimensional mapping space as the bridge connecting 

inputs and outputs. Inevitably, some information will be 

lost in the feature-extraction period from original data to 

post-processed data, like from the full-wave simulation 

model to the tabular dataset. The more information is 

retained from the original data, the more complicated 

and accurate outputs can be predicted [2]. In the tabular 

workflow, the original data from 49152 full-wave 

simulations are extracted and stored in the tabular 

dataset. Five input features (W, L, hi, εrj, and WTL) in the 

five columns are applied to predict four single-value 

labels column by column as BC, MC, Rf, and BW 

regression. 

For each label in the tabular workflow, the single 

value is extracted from all S11 values at 996 frequency 

points with presupposed conditions and assumptions. 

Hence, all four labels highly summarize the S11 

responses but discard lots of information in the original 

996 values. It restricts the tabular workflow from 

achieving the purpose of generalization and scalability. 

This section presents the details of the image-based 

workflow, showing that images carry much more input 

information than the tabular dataset, and the workflow 

will predict all the S11 values in the whole frequency 

range. The same patch antenna in Fig. 2 demonstrates the 

image-based workflow. Two images with 600×600 

resolutions are encoded and shown in Fig. 7. They 

represent two cross-sectional views of a 60 mm × 60 mm 

× 60 mm EM problem space. The antenna is placed at 

the center of the problem space based on proportional 

dimensions. Two cross-sectional views are selected as 

the observation of the patch antenna at the x-y and x-z 

planes in Fig. 2. All pixels in the two images are assigned 

the encoded values in Table 5, to represent the materials 

considered with EM characteristics. For instance, the 

pixels with values of 0.22 represent substrate material 

RO5880 in these pixels. 
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Fig. 8. Neural network architecture with four Fourier 

and four fully connected layers takes five samples as 

a batch during optimizing the R2 score and L2 loss. 

Fig. 8. Neural network architecture with four Fourier and
four fully connected layers takes five samples as a batch
during optimizing the R2 score and L2 loss.

batch size Bs, step size Ss, gamma Γ, modes Nmod,
widths Wd, number of FC layers NFC, and number of
FNO layers NFNO. By grid searching the hyperparameter
space, eight hyperparameters are selected as Lr=0.001,
Bs=Ss=5, Γ=0.5, Nmod=Wd=32, and NFC=NFNO=4. The
L2 loss and R2 scores are achieved as 0.0742 and 0.9091
on 39200 training samples after 160 epochs and corre-
sponding 0.0871 and 0.8728 on 9800 validation samples.

The L2 loss and R2 score variations with epochs are
shown in Fig. 9. Both loss and score values for train-
ing and validation remain stable after 60 epochs, which
indicates that the DIML model can converge and catch
the prediction properly without underfitting or overfitting
issues.

After the training/validation process with 160
epochs, 152 random samples are fed into the well-trained
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For the training/validation splitting, 152 samples are 

dropped out randomly only for observation purposes, as 

the observers mentioned in the tabular regression 

workflow. Then, an 80/20 splitting ratio is applied to the 

remaining 49000 samples. So, there are 39200 samples 

for training and, during the training iterations, 9800 

samples are monitored to provide the performance 

feedback simultaneously. The model performance is 

optimized by evaluating the R2 score and L2 loss on the 

training and validating sets correspondingly. The R2 

score is illustrated in (4) and L2 loss is the squared value 

of RMSE mentioned in (5). Second, after the 

training/validation process, all 152 samples are used to 

“observe” the well-trained models and provide the 

evaluation since those 152 samples are new and unseen 

by the well-trained model. 

The brief NN architecture with matrix shape 

information is portrayed in Fig. 8, based on a single data 

batch with five samples. Four fully connected (FC) 

layers and four Fourier layers alternately construct the 

main skeleton of this NN used in the image-based 

workflow. 

In the dashed zoom-in box of Fig. 8, each input v(x) 

processes the Fourier layers shown in the gray shadow 

area. The Fourier operator starts from the Fourier 

transform Ғ, to the linear transform ℜ with a low-pass 

filter, then applies the inverse Fourier transform Ғ-1. 

During the backpropagation, the operator adjusts 

weights w to maximize the R2 score and minimize L2 

loss. 

By superimposing the transform and weights, the 

activation function Gaussian Error Linear Unit (GELU) 

introduces non-linearity into the model. The FNO learns 

the complex patterns from the images with 600×600 

pixels. GELU provides a smooth curve, making it 

computationally beneficial for optimization with faster 

convergence during training. The same activation 

function is also applied to link the FC layers. Taking five 

samples as the batch size Bs of a 4-D input, the variation 

of batch shape between NN layers is described in the 

intermediate flow of Fig. 8. The batch shape starts from 

the initial inputs with shape (Bs, Rx, Ry, Ncp) to the final 

output with shape (Bs, Nfreq). The smoothness and 

nonmonotonicity of GELU bring the possibility of 

predicting the continuous S11 curves at Nfreq points. 

The hyperparameters in the NN architecture are 

fine-tuned to achieve the trade-off between the best 

performance of the R2 score and L2 loss. This workflow 

optimizes eight hyperparameters: learning rate Lr, batch 

size Bs, step size Ss, gamma Γ, modes Nmod, widths Wd, 

number of FC layers NFC, and number of FNO layers 

NFNO. By grid searching the hyperparameter space, eight 

hyperparameters are selected as Lr=0.001, Bs=Ss=5, 

Γ=0.5, Nmod=Wd=32, and NFC=NFNO=4. The L2 loss and 

R2 scores are achieved as 0.0742 and 0.9091 on 39200 

training samples after 160 epochs and corresponding 

0.0871 and 0.8728 on 9800 validation samples. 

The L2 loss and R2 score variations with epochs are 

shown in Fig. 9. Both loss and score values for training 

and validation remain stable after 60 epochs, which 

indicates that the DIML model can converge and catch 

the prediction properly without underfitting or 

overfitting issues. 

 
Fig. 9. Training/validation L2 loss and R2 score 

variations with epochs. 

Fig. 9. Training/validation L2 loss and R2 score varia-
tions with epochs.

model to review the prediction performance on random
antenna configurations. A total of 152 samples perform
0.0877 and 0.8725 for the averaged L2 loss and R2

score, respectively. Figure 10 compares the simulated S11
results as ground truth and the predicted S11 results by
the FNO model on three representative antenna config-
urations. In each subplot of Fig. 10, the floating textbox
shows the sample index in 152 total observation sam-
ples. The red-dashed curves represent the simulated S11
results as true values. The solid black curves show the
predicted S11 when two encoded images are fed into the
well-trained NNs without simulation. Moreover, for the
input matrix with shape (152, 600, 600, 2), the model can
make the prediction for all 152 samples in near real-time
and produce an output matrix with shape (152, 996).

In the top subplot of Fig. 10, when the S11 curve
transits smoothly with less resonance along the full fre-
quency range from 0.1 to 20 GHz, the fluctuations are
relatively small. The FNO model can predict the S11 val-
ues on all 996 frequency points very well. This case is
classified as MC 0 in Table 1 with both zero Rf and BW.

After the training/validation process with 160 

epochs, 152 random samples are fed into the well-trained 

model to review the prediction performance on random 

antenna configurations.  A total of 152 samples perform 

0.0877 and 0.8725 for the averaged L2 loss and R2 score, 

respectively. Figure 10 compares the simulated S11 

results as ground truth and the predicted S11 results by 

the FNO model on three representative antenna 

configurations. In each subplot of Fig. 10, the floating 

textbox shows the sample index in 152 total observation 

samples. The red-dashed curves represent the simulated 

S11 results as true values. The solid black curves show 

the predicted S11 when two encoded images are fed into 

the well-trained NNs without simulation. Moreover, for 

the input matrix with shape (152, 600, 600, 2), the model 

can make the prediction for all 152 samples in near real-

time and produce an output matrix with shape (152, 996).  

In the top subplot of Fig. 10, when the S11 curve 

transits smoothly with less resonance along the full 

frequency range from 0.1 to 20 GHz, the fluctuations are 

relatively small. The FNO model can predict the S11 

values on all 996 frequency points very well. This case 

is classified as MC 0 in Table 1 with both zero Rf and 

BW. In the middle subplot, this kind of S11 response is a 

typical performance requirement of an alternative 

antenna design. The EM response has several resonances 

with S11 values below -10 dB, and the impedance 

matching at the excitation port is conjugated 

harmoniously without glitches. But, in the higher 

frequency range, the FNO model could not predict the 

bands with two nearby resonances, like around 15 and 

17.5 GHz. It is one topic of the authors’ following work 

to fine-tune the FNO model on the required narrower 

band. As for the bottom subplot in Fig. 10, there are more 

resonances and narrower BW in the whole frequency 

range compared to the red-dashed curves in the top and 

middle subplots. This causes more difficulty in 

prediction for the well-trained model. However, there is 

a tendency for the FNO model to catch all ripples on the 

curve. A similar observation is that the prediction at the 

lower frequency range is better than that at the higher 

frequency range. 

The image-based workflow is backward compatible 

with all four models in the tabular workflow: BC, MC, 

regression for Rf, and BW. More than that, it breaks the 

limitation of the tabular dataset. The plane-cut images 

reserve much more information from the original 

antenna model. The dataset is no longer bothered by pre-

defined labeling and imbalanced sampling issues. The 

FNO model could provide a near real-time prediction 

close to the simulation results for a given antenna 

described by the encoded image. CEMSPy developers 

and users could customize or truncate the frequency 

ranges based on specific applications and then fine-tune 

the antenna designs. 

Furthermore, the I/O data formats allow 

generalization and scalability when more antenna 

configurations are involved. As the input matrix follows 

the shape (49152, 600, 600, 2), sample numbers at the 1st 

dimension will be increased if there are more 

configurations. More complicated configurations add 

more plane-cut views at the 4th dimension. Those views 

describe the antenna structure from different observation 

directions. The 4th dimension will always consider the 

maximum number of views compatible with different 

antennas. If some antennas don’t need specific views, 

those images will be filled with NaN values to keep the 

uniform number of views at the 4th dimension. A total of 

600×600 pixels at the 2nd and 3rd dimensions could 

accommodate the 0.1-mm dimension changes in the 

design. When considering the fabrication tolerance, this 

resolution is adequate in antenna design, and users can 

refine it. This 0.1-mm dimension is also the limitation of 

the CEMS cell size setting. In the current simulations, 

the minimum cell size is 0.1 mm along the x direction, 

and the other two cell sizes are 0.25 mm and 0.2 mm 

along the y and z directions, respectively. The image 

resolution and the CEMS cell size both ensure that the 

simulation results can be relied on as the true values in 

ML regression. 

 
Fig. 10. Representative comparison of prediction and 

full-wave simulation at three indexes in all 152 

samples: 34, 137 and 59. 

Fig. 10. Representative comparison of prediction and
full-wave simulation at three indexes in all 152 samples:
34, 137 and 59.

In the middle subplot, this kind of S11 response is a typ-
ical performance requirement of an alternative antenna
design. The EM response has several resonances with
S11 values below -10 dB, and the impedance matching
at the excitation port is conjugated harmoniously with-
out glitches. But, in the higher frequency range, the FNO
model could not predict the bands with two nearby res-
onances, like around 15 and 17.5 GHz. It is one topic of
the authors’ following work to fine-tune the FNO model
on the required narrower band. As for the bottom subplot
in Fig. 10, there are more resonances and narrower BW
in the whole frequency range compared to the red-dashed
curves in the top and middle subplots. This causes more
difficulty in prediction for the well-trained model. How-
ever, there is a tendency for the FNO model to catch all
ripples on the curve. A similar observation is that the pre-
diction at the lower frequency range is better than that at
the higher frequency range.

The image-based workflow is backward compati-
ble with all four models in the tabular workflow: BC,
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MC, regression for Rf, and BW. More than that, it
breaks the limitation of the tabular dataset. The plane-cut
images reserve much more information from the orig-
inal antenna model. The dataset is no longer bothered
by pre-defined labeling and imbalanced sampling issues.
The FNO model could provide a near real-time predic-
tion close to the simulation results for a given antenna
described by the encoded image. CEMSPy developers
and users could customize or truncate the frequency
ranges based on specific applications and then fine-tune
the antenna designs.

Furthermore, the I/O data formats allow general-
ization and scalability when more antenna configura-
tions are involved. As the input matrix follows the shape
(49152, 600, 600, 2), sample numbers at the 1st dimen-
sion will be increased if there are more configurations.
More complicated configurations add more plane-cut
views at the 4th dimension. Those views describe the
antenna structure from different observation directions.
The 4th dimension will always consider the maximum
number of views compatible with different antennas. If
some antennas don’t need specific views, those images
will be filled with NaN values to keep the uniform num-
ber of views at the 4th dimension. A total of 600×600
pixels at the 2nd and 3rd dimensions could accommo-
date the 0.1-mm dimension changes in the design. When
considering the fabrication tolerance, this resolution is
adequate in antenna design, and users can refine it. This
0.1-mm dimension is also the limitation of the CEMS
cell size setting. In the current simulations, the minimum
cell size is 0.1 mm along the x direction, and the other
two cell sizes are 0.25 mm and 0.2 mm along the y and
z directions, respectively. The image resolution and the
CEMS cell size both ensure that the simulation results
can be relied on as the true values in ML regression.

In the view of input encoded images, colors
will hold all material information in the images with
600×600 resolution. Users can pick the color from the
encoded card in Table 5 and then fill all pixels using the
CEMSPy API for all plan-cut views. In the case there
is no required material in the card, users can define the
encoded values derived from the corresponding encoded
ranges with solid boundaries. From another view of the
output shape (49152, 996), the 1st dimension keeps the
one-on-one mapping with the 1st dimension of inputs.
The 2nd dimension reserves a list of predicted values
for each sample. In this general workflow, it is an S11
list with 996 frequency points. Similarly, it can be the
list like voltage standing wave ratio (VSWR), maximum
gain (G), minimum axial ratio (AR), and so on. By mod-
ifying the final FC layer structure in the FNO model
presented in Fig. 8, the pipeline could also predict the
2D matrix, like the whole spherical radiation pattern at
defined frequency points.

However, there are also limitations to this image-
based workflow. First, as for the input, since it only
demonstrates the generalization and scalability purpose,
only a classic patch antenna is utilized as the proof of
concept. The authors’ following work will generate a
more diverse dataset in which there are more antenna
configurations as input. Second, only S11 values are
predicted as output in the current image-based work-
flow, and no other antenna performance is involved. It
will be the extended work of this pipeline to consider
more radiation parameters as output. For any develop-
ers or users applying the tabular or image-based work-
flow, except for customizing the antenna configuration
and performance requirements, all parts will remain the
same as the proposed workflow by applying the auto-
matic pipeline with integrated CEMSPy APIs. The scal-
able pipeline will handle all work from simulation, data
post-processing, and ML training to validation. Unlike
the MLAO models, both tabular and image-based work-
flows are freed from the cost function customized by
the trial-and-error approach, and neither need to calibrate
the parameters with ML assistance during the iteration.
CEMSPy packages all work inside the DIML black box
in the training/validation process. With the well-trained
model, users could get near-real-time predictions based
on tabular or image inputs.

V. CONCLUSION
This paper proposes an automated architecture to

predict the antenna performance S11 values using the
DIML methods in different data-format levels. The tab-
ular and image-based workflows take the same 49152
samples with 12 different material combinations but uti-
lize different dataset formats. Both exhibit the proper-
ties of scalability and generalization from various points
of view. In the tabular workflow, the binary and multi-
class classifications achieved 0.970 and 0.933 F1 scores
on the test dataset with 9831 samples. The single-value
regression models for Rf and BW accomplished 0.912
and 0.819 R2 scores on 8663 test samples. In the image-
based workflow, the 9800 validation samples reached a
0.873 R2 score for prediction after hyperparameter opti-
mization in the FNO DL model. The scalable workflows
and the easy-to-append dataset format give the architec-
ture great potential to accommodate other antenna types
and more diverse performance needs. It can be regarded
as a pre-trained model for other projects. This DIML is
also a necessary part of the future PIML work, with much
fewer samples required.

ACKNOWLEDGMENT
The author would like to thank Dr. Zhiwei Fang

for providing valuable technical support related to
deep learning architecture applied in the image-based
workflow.



287 ACES JOURNAL, Vol. 39, No. 04, April 2024

REFERENCES
[1] C. M. Bishop and M. N. Nasser, Pattern Recogni-

tion and Machine Learning. New York: Springer,
2006.

[2] K. P. Murphy, Machine Learning: A Probabilistic
Perspective. Cambridge, MA: MIT Press, 2012.

[3] M. Martı́nez-Ramón, A. Gupta, J. L. Rojo-Álvarez,
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