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Abstract ─ A compact three order 5G low frequency 

band Hairpin Bandpass Filter (HPBF) is analyzed, 

designed and fabricated in this paper. The designed filter 

operates at 5G frequency range (5.975-7.125 GHz). 

17.76% compactness in each λ/2 uniform transmission 

line (UTL) resonator of the filter is achieved by applying 

Non-Uniform Transmission Lines (NTLs) theory. This 

compactness will make modern wireless transmitter and 

receiver designs more compatible. Study on the best 

reduction size percentage and suitable constraints to 

design the required NTL resonator is highlighted in this 

paper. Six samples with different size reductions 

percentage are fabricated and measured. The simulation 

is carried out in this study uses High Frequency Structure 

Simulator (HFSS) software and Computer Simulation 

Technology (CST) software. The simulated results for 

UTL HPBF and NTL HPBF with the six cases are 

verified with measurement. For the best size reduction 

percentage design, the measured results demonstrated 

that the 6.55 GHz NTL and UTL HPBF show good 

impedance matching within the unsilenced 5G frequency 

band. 

 

Index Terms ─ 5G, hairpin bandpass filter, HFSS and 

CST, non-uniform transmission lines theory, uniform 

transmission line. 

 

I. INTRODUCTION 

Filters play an important role in many RF/ 

Microwave applications which it is used to control the 

frequency responses (bandpass, bandstop, lowpass, and 

highpass). HPBF is a compact structure bandpass filter 

and simply constructed by folding the λ/2 resonators of 

the parallel coupled line filter, to get the U shape that 

eases its fabrication process where no grounding via 

holes are needed [1]. By controlling the filter resonators’ 

parameters (length, width and space between them), the 

required pass band can be obtained [2]. At different 

frequencies of interest, HPBFs were used in many 

applications such as Ku-band satellite communication 

[3, 4], X-band radar navigation [5], (2 – 4 GHz) satellite 

application [6], 5th generation mobile communication 

system [7], narrow band communication (uplink 

frequency in the band -3 eNodeB LTE) [8], millimeter-

wave applications [9, 10], 923 MHz RFID application 

[11] and WiMAX application [12, 13]. Hairpin units are 

used in [14] to get a wide stop band of 3.36 – 21.5 GHz 

with a sharp roll off skirt for 3.1 GHz lowpass filter. 

Defected Ground Structures (DGS) and Microstrip 

Structures (DMS) are used in HPBF design for 

performance enhancement and size reduction [15-19]. 

One of the major concerns in any RF front ends wireless 

communication system, is to miniaturize its devices. 

Many techniques were developed to reduce the size of 

HPBF such as using ground holes [11], high dielectric 

substrate [20], multilayers structure [3, 21, 22], 

Nonuniform Coupled Lines (NCLs) resonators [10], 

metamaterial complimentary split ring resonators [13], 

Inkjet Printing (IP) [23] and Integrated Passive Device 

Technologies (IPDT) [9]. In this paper, in order to reduce 

high cost and the difficulties of the previous methods 

with the aim to reduce HPBF size, NTLs theory [24-29]  

is applied for the first time to compact the HPBF size at 

5G low frequency band of 5.975 – 7.12 GHz, available 

for unlicensed operations [30] without effecting its 

primary performance. Furthermore, a study to achieve 

the best size reduction percentage with the suitable 

constraints of NTL HPBF is highlighted. 

 

II. NON-UNIFORM TRANSMISSION LINES 

(NTLs) THEORY 
Higher performance, lower cost and compact size 

passive microwave components are important devices  

in the modern wireless communication system to be 

compatible with the recent industrial requirements. 

There are many approaches to achieve the required 
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compactness by reducing the devices transmission lines 

size such as using NTLs. NTLs theory [24-29] has been 

applied to many microwave circuits in order to reduce 

their sizes. The idea behind this theory is to make the 

performance of NTL with reduced length (d), varying 

characteristics impedance Z(z) and propagation constant 

β(z), equivalent to UTL of length (d0), constant 

characteristics impedance Z and propagation constant β 

over the desired frequency range. Both NTL and UTL 

are shown in Fig. 1. Z(z) can be expanded in a truncated 

Fourier series as: 

                   ln( 𝑍(𝑧)/𝑍0) = ∑ 𝐶𝑛  cos (
2𝜋𝑛𝑧 

d
)N

𝑛=0 ,            (1) 

where 𝑍0 is the characteristics impedance of UTL and N 

is chosen to be 10. NTL and UTL will have equivalent 

performance if their ABCD matrix parameters are equal. 

Figure 1 (b) shows how to get the ABCD parameters of 

NTL by dividing it into K UTL sections then finding the 

ABCD parameters of those UTLs, so the total ABCD 

matrix will be: 

                        [
𝐴 𝐵
𝐶 𝐷

]=∏ [
𝐴K 𝐵K

𝐶K 𝐷K
]K

i=1 ,                    (2) 

where                     Ai = Di = cos(Δθ),                       (2.1) 

                  Bi = j Z(z) ((i − 0.5)Δz)sin(Δ𝜃),            (2.2) 

          Ci =
 jsin(Δ𝜃)

𝑍 ((𝑖 − 0.5)Δ𝑧) 
, i = 1, 2,….K ,  Δz = d/K,      (2.3) 

and                Δθ = 
2𝜋

𝜆
Δ𝑧 =

2𝜋𝑓

𝐶
√Ɛ𝑒𝑓𝑓  𝛥𝑧,               (2.4) 

 

 

 

 

 

 

 

 

 

 

Fig. 1. (a) UTL and (b) NTL with its subdivision into K 

uniform sections. 

 

The Z(z) coefficients Cns are optimized using built 

in MATLAB function “fmincon” to minimize the 

following error function through the frequency band of 

5.975 – 7.125 GHz: 

  Error =√
1

𝑀
∑

1

4
 (|𝐴 − 𝐴0|2 + 𝑍0

−2|𝐵 − 𝐵0|2 + 𝑍0
2|𝐶 − 𝐶0|2 +  |𝐷 − 𝐷0|2 )     𝑀

𝑚=1 , (3) 

where M is the number of the frequencies fm (m = 1, 2,  

. . . M) within the desired band with frequency increment 

Δf and A0, B0, C0 and D0 are the ABCD matrix parameters 

of UTL. To restrict the error function in (3), two 

constraints should be considered: The resulting NTL 

should have the same width of UTL at the two ends to 

guarantee physical matching and it should be easy to 

fabricate.  In this work, NTLs theory is applied to reduce 

the resonators’ length of UTL HPBF without effecting 

its performance in terms of matching and transmission 

coefficients as will be explained in the next sections. 

III. DESIGN OF THE PROPOSED 6.55 GHz 

UTL AND NTL HPBF 

A. UTL HPBF design 

Based on the design equations in [1], 6.55 GHz 

HPBF is deigned. In this study, the chosen substrate 

material is Rogers RO4003C ( Ɛ𝑟= 3.55 and h = 0.813 

mm). Table 1 indicates all the calculated and optimized 

parameters of the filter, where Qext, M12, Lres, Wres, S, Lt, 

Lp1, Lp2 and Wp are external quality factor, coupling 

coefficient, the length of the resonator, width of the 

resonator, the space between two adjacent resonators, 

tapping length, length of the first and second port and 

width of the ports, respectively. Based on equations in 

[1], the relation between S and M12 and between Lt  

and Qext as shown in Fig. 2 is extracted using Full  

Wave Electromagnetic simulations such as HFSS. The 

optimized parameters in Table 1 are obtained via 

parametric studies to get better filter matching response 

as indicated in Fig. 3. The proposed UTL HPBF is shown 

in Fig.4. 

 

Table 1: Calculated and optimized parameters for 6.55 

GHz UTL HPBF 

Parameters Calculated Optimized 

Qext 7.84 - 

M12
 = M21 0.162 - 

Lres (mm) 14.324 15.524 

Wres (mm) 0.5 0.6 

S (mm) 0.65 0.3 

Lt (mm) 1.3 2.9 

Lp1 = Lp2 (mm) - 4 

Wp (mm) 1.819 1.819 

 

 
                        (a)                                       (b) 

 

Fig. 2. Relation between (a) M12 and S and (b) Qext and 

Lt. 
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     (c)                                        (d) 

 

Fig. 3. Parametric studies of the proposed 6.55 GHz UTL 

HPBF on (a) Lres, (b) Wres, (c) S, and (d) Lt. 
                   

  

 

 

 

 

 

             (a)                                        (b) 

 

Fig. 4. (a) Layout of the proposed 6.55 GHz UTL HPBF, 

and (b) Fabricated prototype. 

 

B. NTL HPBF design 

Since modern 5G wireless system applications 

require compact microwave components, NTLs theory  

is applied to 6.55 GHz UTL HPBF resonators to reduce 

their sizes. Since Wres of UTL is 0.6 mm, so the width of 

NTL (WNTL) should be between Wres and the minimum 

allowable width for fabrication, Wmin= 0.3 mm. To test 

many cases with different size reduction percentages, in 

the MATLAB optimization code, the operation frequency 

band (5.975 –7.125 GHz) is relaxed to (5.5 –7.5 GHz) 

and different Δfs are used. As a result, six different 

samples of NTL HPBF are designed, fabricated and 

measured to test the best obtained size reduction 

percentage. Details on these cases and the required 

constraints are found in [29]. The measurement in this 

work is carried out uses N5245A network analyzer. The 

best achieved size reduction of 17.79% (i.e., the length 

of NTL resonator LresNTL is equal to 12.766 mm) is 

obtained at Δf = 0.5 GHz. The optimized Cns coefficients 

for this case is shown in Table 2. The six NTL HPBF 

porotypes as they are compared to UTL HPBF are 

illustrated in Fig. 5. 

 
Table 2: Optimized Fourier coefficients for λ/2 6.55 GHz 

NTL HBPF’s resonator 

Constraints: 1.305 ≤ �̅�(𝑧) ≤ 1 

C0 C1 C2 C3 C4 C5 

-0.5196 -0.1508 0.2651 0.0146 0.0841 0.0978 

C6 C7 C8 C9 C10 
 

0.0362 0.0515 0.0718 -0.0111 0.0604 

 

 

 

 

 

 

 

 

 
                        (b) 

 

 

 

 

 
 

 

                        (c) 
 

            (a)                                       
 

Fig. 5. (a) Fabricated prototypes of 6.55 GHz NTL HPBF 

at six different Δfs, (b) configuration of the proposed 

6.55 GHz NTL HPBF at Δf = 0.5, and (c) fabricated 

prototypes of 6.55 GHz UTL and NTL HPBF.  
 

IV. RESULTS AND DISCUSSION 
The simulated and measured reflection and 

transmission coefficients of the six samples are shown in 

Figs. 6 and 7, respectively. As it is clear all the samples 

give good impedance matching and transmission response 

through 5.975 GHz - 7.125 GHz.  
 

             
       (a)                                        (b) 

 

Fig. 6. (a) Simulated and (b) measured return loss of the 

proposed 6.55 GHz NTL HPBF for six different Δfs. 
 

 
(a)                                     (b) 

 

Fig. 7. (a) Simulated and (b) Measured insertion loss of 

the proposed 6.55 GHz NTL HPBF for six different Δfs.   
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NTL HPBF results of the best obtained size 

reduction (17.79%) at Δf = 0.5 GHz is compared with 

UTL HPBF as shown in Fig. 8. Both filters provide good 

reflection and transmission coefficients. The comparison 

between the simulated and the realized results of 6.55 

GHz UTL and NTL HPBF is given in Table 3. The slight 

difference between the simulated and measured results  

is due to the fabrication and measurement tolerances. 

Finally, as indicated in Fig. 8 (c), due to NTL and UTL 

resonators’ lengths difference there is a slight difference 

in phase between the 6.55 GHz NTL and NTL HPBF. 

This difference has no big effect on the filter obtained 

matching and transmission performance which in turn 

indicates the effectiveness of applying NTLs theory to 

reduce the filter size. 

 

(a)                                    (b) 

 

 

 

 

 

 

 

 

 

    (c) 

 

Fig. 8. (a) Return loss, (b) insertion loss, and (c) phase of 

6.55 GHz UTL and NTL HPBF. 

 

Table 3: Comparison between simulated and measured 

results for the designed UTL and NTL 6.55 GHz HPBFs 
Parameters Sim. (HFSS) Sim. (CST) Meas. 

S11 = S22 

(NTL) 

-22.7 dB at  

(5.99 - 7.34) GHz 

-43 dB at 

(5.97 - 7.83) GHz 

-22.52 dB at 

(6 - 7.86) GHz 

S11 = S22 

(UTL) 

-19.1 dB at 

(5.87 - 7.35) GHz 

-25 dB at 

(5.96 - 7.48) GHz 

-11.66 dB at 

(5.62- 7.6) GHz 

S12 = S21 

(NTL) 

-0.46 dB at  

Fc = 6.67 GHz 

-0.29 dB at 

Fc = 6.9 GHz 

-1.15dB at 

Fc = 6.93 GHz 

S12 = S21 

(UTL) 

-0.5dB at 

Fc = 6.61 GHz 

-0.28 dB at 

Fc = 6.72 GHz 

-1.17dB at 

Fc = 6.61 GHz 

 
A comparison to other HPBFs in the literature at 

different frequency ranges in terms of techniques used 

for miniaturization, obtained size reduction percentage 

in λ/2 of the filter resonator’s length, BW, filter response 

and circuit area is shown in Table 4, indicating that 

although the proposed filter uses simple miniaturization 

technique (NTLs theory) as compared to others, it provides 

low cost, better S11 and S12 and wider bandwidth. In 

addition, it provides better compactness in the resonator’s 

length as compared to [10], [18] and [31]. 

  

Table 4: Comparison to other works in literature  

Ref. 
Technique 

Used 
h (mm)/εr 

Reduction 

% in λ/2 Lres 

3 dB FBW, 

Freq. Band 

GHz 

S11= 

S22 

(dB)< 

S12= 

S21 

(dB) 

Circuit 

Area 

λg x λg 

This 

work 
NTLs 0.813/3.55 17.76 

26.95% 

6 – 7.86 
< -22.5 -1.15 

0.64 × 

0.23 

[9] 
UTLs using 

IPT on LCP 

0.1/3.2 

 
NA 

15% 

28.12 – 

32.68 

-18.9 -2.41  
0.50 × 

0.48 

[10] 
NCLs 

 
0.127/2.94 9.2 

3.45% 

31.02 – 

32.11 

< -

9 

 

-3.5 
2.16 × 

0.25 

[18] 
UTLs with 

Square DGS 
1.58/2.2 1.69 

30.11% 

9.11 − 9.39 
−19.2 - 3.7 

1.81 × 

0.35 

[23] 
UTLs using 

IPDT 
different/different NA 

0.83% 

91.9 – 99.9 
-10 -5 

0.95 × 0.4 

mm2 

[31] 
UTLs with 

Square DGS 
0.348/1.524 11.31 

97.33% 

2.82 – 3.02 
-19.5 -1.6 

0.87 × 

0.29 

* LCP-Liquid Crystal Polymer, NA-Not Available. 

 

VI. CONCLUSION 
Three order 5G Hairpin Band Pass Filter (HPBF) 

with compact size λ/2 resonators at frequency range 

(5.975 – 7.125 GHz) is analyzed, designed and fabricated. 

Nonuniform Transmission Lines (NTLs) theory is used 

effectively in this study to get simple compactness in the 

filter resonators' lengths without additional components 

for matching or bandwidth enhancement. A study on the 

best size reduction percentage and the suitable constraints 

to design NTL HPBF is highlighted in this paper. 

17.76% size reduction is achieved in each λ/2 resonator's 

length of HPBF. The designed NTL 6.55 GHz HPBF 

provides good impedance matching, enhanced bandwidth 

and good rejection out of band up to 11 GHz. The realized 

slight difference between simulation and hardware 

measurement is due to fabrication and measurement 

processes errors. As a future work, many techniques can 

be applied to the proposed filter to get further harmonics 

suppressions. 
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