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Abstract ─ In this paper, we present a method for 

estimating complex impedances using reflectometry and 

a modified steepest descent inversion algorithm. We 

simulate spread spectrum time domain reflectometry 

(SSTDR), which can measure complex impedances on 

energized systems for an experimental setup with resistive 

and capacitive loads. A parametric function, which 

includes both a misfit function and stabilizer function, is 

created. The misfit function is a least squares estimate of 

how close the model data matches observed data. The 

stabilizer function prevents the steepest descent algorithm 

from becoming unstable and diverging. Steepest descent 

iteratively identifies the model parameters that minimize 

the parametric function. We validate the algorithm by 

correctly identifying the model parameters (capacitance 

and resistance) associated with simulated SSTDR data, 

with added 3 dB white Gaussian noise. With the stabilizer 

function, the steepest descent algorithm estimates of the 

model parameters are bounded within a specified range. 

The errors for capacitance (220pF to 820pF) and resistance 

(50 Ω to 270 Ω) are < 10%, corresponding to a complex 

impedance magnitude |𝑅 +
1

𝑗𝜔𝐶
| of 53 Ω to 510 Ω.  

 

I. INTRODUCTION 

Complex impedance measurements are used in a 

variety of applications, such as antenna design [1], 

precision agriculture [2], and estimates of photovoltaic 

(PV) aging [3]. For antenna design, complex impedance 

is measured to ensure a good match between the source 

transmission line and the antenna [4]. For precision 

agriculture, complex impedance is used as a measure of 

the moisture content in the soil. In PV systems complex 

impedance measurements ensure minimal impedance 

mismatch between the PV panels and charge controllers, 

for efficient power throughput [5] and the integrity of 

panels and system [4].  

Complex impedance is commonly measured with  

an inductance-capacitance-resistance (LCR) meter or a 

vector network analyzer (VNA) [6]–[8]. An LCR meter 

transmits a small AC voltage signal for a range of 

frequencies and calculates the complex impedance from 

the ratio of applied voltage to measured current through 

the device under test (DUT) [9]. A VNA is similar in that 

it transmits a small AC voltage and varies frequency, but 

it calculates the reflection and transmission coefficients 

at the DUT. From these coefficients and knowledge of 

the transmission line impedance, the complex impedance 

is calculated [10].  

One of the disadvantages of using an LCR meter or 

a VNA is that they require the DUT to be disconnected 

and generally de-energized [9], [10]. PV health 

monitoring [11] is one example where the system cannot 

be easily de-energized [12]. In this paper, we propose  

a new method of measuring complex impedance on 

energized systems using spread spectrum time domain 

reflectometry (SSTDR) [13] in conjunction with a 

steepest descent inversion algorithm.  

Reflectometry has been used for detecting and 

locating electrical faults in transmission lines, aircraft 

cabling, and PV systems [14], [15]. SSTDR can be used 

to locate open and short circuit faults on energized 

systems [13], however there is limited research on using 

SSTDR to measure complex impedance. In [16], [17] 

SSTDR is used to measure the impedance of a capacitive 

load at the end of a transmission line. These methods can 
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be adapted to measure inductance, but incorporating 

resistance for a full complex impedance would 

significantly increase the complexity of the algorithms. 

In [16], a dictionary matching approach is implemented. 

Although effective, this method can be computationally 

expensive. In [17], a curve fitting approach to identify 

the shape of the signal is used. This is simple and suitable 

for loads that are strictly capacitive or inductive, but 

more complex loads cannot be evaluated with this 

particular algorithm. In [18], SSTDR was used to evaluate 

single loads (resistor, capacitor, inductor, PV panel) 

through visual inspection of the time domain SSTDR 

response. This paper introduces an inverse method based 

on steepest descent to measure complex impedance(s) 

(capacitance and resistance simultaneously), that is both 

computationally efficient and accurate. 

Inversion algorithms are used in radar, acoustics, 

geophysics, computer vision, and other fields [19]–[21]. 

The inverse problem consists of extracting useful 

information from experimental/observed data [21]. 

Model parameters, which are often found iteratively, 

describe the observed data and are used to generate 

predicted data that fit best with the observed data. 

Steepest descent algorithms are relatively simple, 

accurate, and computationally efficient [21]. Although 

steepest descent inversion has a history in geophysics 

and other fields [22], it has not yet been applied to 

SSTDR. This paper describes a computationally efficient 

and accurate method to measure complex impedance 

using SSTDR and steepest descent.  

This paper combines the ability of SSTDR to 

measure in live systems with an efficient steepest descent 

inversion algorithm to determine complex impedances 

from SSTDR responses. We validate this approach by 

simulating an SSTDR signature with a known complex 

load impedance (a series connected capacitor and resistor) 

and add white Gaussian noise to represent experimental 

data. We demonstrate that our new algorithm accurately 

estimates impedance from these noisy SSTDR signals. 

Algorithms used in previous work [16] were able to 

evaluate capacitance from 278 pF to 409 pF with less 

than 10% error, and we will show similar results, as well. 

These algorithms used the shape of the time domain 

signal for capacitance measurement. However, for 

complex impedances (including resistance), this time 

domain analysis is more complicated. In this paper, we 

will use a steepest descent algorithm in the frequency 

domain, thus enabling efficient measurement of both 

capacitance and resistance simultaneously.  

II. METHODOLOGY
To measure the complex impedance, we solve an 

inverse problem using steepest descent [21], [23]. First, 

we define the inverse problem in terms of the observed 

data space and the model space. Next, we define the 

parametric function, which is the function we seek to 

minimize with a steepest descent algorithm. The 

parametric function is a combination of the misfit 

function and a stabilizer function [21]. Through sampling 

the misfit function, we show that the model space has a 

unique solution within the bounds of the sampled model 

space. Finally, we show the steepest descent algorithm 

using regularization to measure complex impedance. 

The main purpose of this paper is to demonstrate the 

methodology. Therefore, we use a relatively simple 

example of measuring series-connected capacitance and 

resistance, where the test signal is simulated SSTDR data 

with added white Gaussian noise to be more representative 

of experimental data.  

A. Setting up the inverse problem

The inverse problem is the solution to the function:

   𝐝 = A(𝐦), (1) 

where data 𝐝 is a 4,096 x 1 frequency dependent vector 

in the observed SSTDR response data space associated 

with an unknown complex impedance. We have modeled 

this unknown impedance as a resistor (R) and capacitor 

(C) connected in series. From (1), m is a 2 x 1 vector of

the model parameters (R and C). The model space A(m)

is the function acting on the model parameters m to get d.

The observed data d and model data A(m) are 

SSTDR signatures (converted to the frequency domain) 

resulting after transmitting an incident 12MHz SSTDR 

signal, X(ω), through 27.5 m of 10 AWG PV cable (with 

parameters given in [24]), as shown in Fig. 1. The 

27.5 m cable was long enough to separate reflections 

from the load from those between the SSTDR instrument 

and the transmission line. We include in the simulation 

the complex impedance of the SSTDR, 𝑍𝑆𝑆𝑇𝐷𝑅(𝜔),
the incident simulated signature, X(ω), the transmission 

line characteristic impedance, 𝑍0, the load, 𝑅 +
1

𝑗𝜔𝐶
, the 

reflection coefficient Γ(ω) between 𝑍0 and the

capacitor-resistor load, and the transmission coefficient, 

T(ω), between 𝑍𝑆𝑆𝑇𝐷𝑅 and 𝑍0. The transmission line

characteristics used to model the characteristic 

impedance, Zo, are defined in [17] using a twin-lead 

transmission line model for the PV cable. 

Fig. 1. Experimental setup for measuring SSTDR 

responses from a capacitive-resistive load. 
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The observed data, d, and the model data in A(m) 

are simulated by the frequency response of a sinc-like 

incident signal, X(ω), multiplied by the reflection 

coefficient, Γ(ω), and transmission coefficient, T(ω), as: 
𝐝𝒎={𝑅,𝐶} and A(𝐦)𝒎={𝑅,𝐶} = X(ω)Γ(ω)T(ω). (2) 

From [16] X(𝜔) is calculated as the Fourier transform of 

the expected value of the autocorrelation between the 

incident and reflected SSTDR signals. The reflection 

coefficient Γ(ω) is calculated as: 

 Γ(ω)𝒎={𝑅,𝐶} =
(R +

1
𝑗𝜔𝐶

) − 𝑍𝑜

(𝑅 +
1

𝑗𝜔𝐶
) + 𝑍𝑜

,     (3) 

where R and C represent the resistance and capacitance 

of the load impedance. The transmission coefficient, T(𝜔), 

is calculated as a voltage divider between the impedance 

of the SSTDR, 𝑍𝑆𝑆𝑇𝐷𝑅(𝜔), and the transmission line, 𝑍0, 
as: 

       𝑇(𝜔) =
𝑍𝑆𝑆𝑇𝐷𝑅(𝜔)

𝑍0 + 𝑍𝑆𝑆𝑇𝐷𝑅(𝜔)
, (4) 

The time domain SSTDR response from (2) for the 

system shown in Fig. 1 is time-gated [17] to include only 

the part of the signal where the reflection from the load 

is seen, and converted to the frequency domain. The 

propagation through the transmission line is assumed to 

be ideal (lossless with constant velocity of propagation). 

Loss and dispersion could be accounted for by adding an 

additional transfer function with these effects to (2). 

For our purpose of testing the algorithm, d is a 

column vector of simulated SSTDR data for a known R 

and C value, with 3 dB added white Gaussian noise. For 

a validation test, the known R and C values were chosen 

to be 200 Ω and 300 pF, respectively. The rows in d show 

the complex energy for each frequency in the bandwidth 

of the SSTDR signature, d. The SSTDR response for a 

12 MHz signal covers the frequency band from -24 MHz 

to +24 MHz, with a frequency spacing of 11.719 kHz, 

with the highest energy centered at 12MHz [16] and 4096 

frequency samples (rows) from -24MHz to +24MHz. 

 
B. Parametric function: Misfit and regularization 

We solve for the model parameters of the simulated 

noisy data, d, through a least squares approximation of 

the parametric function, which is a combination of the 

misfit function and regularization, similar to [21]. The 

misfit function is a measure of closeness between the 

SSTDR responses in the model space, A(𝐦), and the 

simulated noisy SSTDR response, 𝐝. The misfit function, 

ϕd(𝐦), also termed the residual, is calculated for each 

kth iteration of the steepest descent algorithm as: 

ϕd(𝐦) = ‖A(𝐦𝒌) − 𝐝‖𝟐.  (5) 

The least squares minimum best estimate of the model 

parameters is found when:  

        ϕd(𝐦) ≤ η2, (6) 

where η2 is the noise energy level of the simulated noisy 

data, 𝐝. In this example, the observed (measured) data is 

simulated with added white noise, so that the SNR = 3 dB. 

To establish that there is a unique solution for (1) 

within the bounds of interest for a known load (C = 300 

pF, R = 200 Ω), we sampled the parameter space of A(m) 

to get a matrix, A, where each column, 𝐚i, in A is a 

simulated SSTDR response from a unique R and C  

value. We chose the sampled parameter space to be  

200 capacitors, logarithmically spaced between 1 pF  

and 1,000 pF and 80 resistors, linearly spaced between 

50 Ω and 500 Ω. It is expected that the unknown RC 

combination will lie somewhere in this range. A has 

16,000 columns (200 capacitors x 80 resistors) and 4,096 

rows for the complex energy values of each frequency in 

the SSTDR signature.   

The misfit (5) for every SSTDR signature in A  

is plotted in Fig. 3 as a function of the two model 

parameters, R (horizontal axis) and C (vertical axis), for 

one test scenario where the observed data, d, was 

simulated using a load C=300pF and R=200Ω. The  

color shows the misfit for the respective model space 

signatures. Dark blue represents the minimum of the 

misfit function, where the simulated model data, A(m), 

closely matches the observed data, d.  

Regularization was used to make the parametric 

function more robust and reduce sensitivity to small 

variations in the data [21]. This enables the steepest 

descent algorithm to keep model parameters within a 

specified range (in our case the range of A) and enables 

it to identify the correct model parameters. The 

regularization was calculated using the stabilization 

function: 

 ϕm(𝐦) = α‖𝐦 − 𝐦𝐚𝐩𝐫‖
𝟐

, (7) 

where α is the estimated regularization factor, described in 

more detail in the next section. The 𝐦 in (7) is the vector 

of model parameters (R and C), and 𝐦𝐚𝐩𝐫 is the median 

C=500pF and median R=250Ω in the sampled space of A. 

The medians of both the R and C were chosen to keep 

the steepest descent estimates within the sampled space.  

The algorithm requires an estimated range (max and 

min) of the model parameters, and there is a tradeoff in 

robustness vs. efficiency of the algorithm. The broader 

the range, the more likely the algorithm is to converge to 

the correct values, but it could take many more iterations. 

If the range is narrower, the algorithm can converge with 

fewer iterations, but if the model parameters are outside 

the range, the correct values would be missed. 

Combining the misfit function ϕd(𝐦) and stabilization 

function ϕm(𝐦), the parametric function becomes: 

𝐏𝛂(𝐦, 𝐝) = ϕd(𝐦) + ϕm(𝐦).  (8) 

We identify the correct model parameters by using 

steepest descent to iteratively find the minimum solution 

to (8). 
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C. Applying a steepest descent algorithm to measure

capacitance and resistance

To find the minimum of the parametric function 

(8), we apply a modified steepest descent algorithm [21]. 

Steepest descent starts with an initial guess of the model 

parameters and iteratively identifies the parameters 

within the model space, A(m), that are closest to the 

model parameters in d. The steepest descent algorithm 

has three steps: Step 1, make an initial guess of the model 

parameters, 𝐦𝐨. Step 2, from the parameters around this

guess, identify the direction within the model space, 

A(m), which results in the greatest slope. Step 3 is to 

move in this direction to find the next model parameters 

within A(m). Step 4 is to repeat steps 2 and 3 until the 

model data A(m) from the estimated model is within the 

noise level of the observed data, d.  

For our case, the initial model parameter guess is an 

RC combination within the range of the model space, 

A(m). Next, we follow the steepest descent method [21] 

and define the change of the model parameters for each 

iteration as: 

𝛅𝐦 = −kα𝐥𝛂(𝐦), (9) 

where the length of a step in the iteration process, kα, is 

a positive real number. The vector 𝐥𝛂(𝐦) is a column 

vector defining the direction of steepest descent of the 

parametric function (8), which is calculated using the 

Fréchet derivative [21] of C and R. Normalization is 

applied to 𝐥𝛂(𝐦) to make the step size in the direction of 

both R and C the same order of magnitude. Specifically, 

𝐥𝛂(𝐦) is multiplied by the inverse of the parameter with 

smaller magnitude, which is C. The steepest descent 

method is an iterative process of finding each m according 

to: 

𝐦𝐧+𝟏 = 𝐦𝐧 + δm = 𝐦𝐧 − kα𝐥𝛂(𝐦), (10) 

where the step size kn
α is defined by the line search 

method [16] as: 

𝐤𝐧
𝛂 =

‖𝐥𝛂(𝐦)‖𝟐

‖𝐅𝐥𝛂(𝐦)‖𝟐 + ‖𝐥𝛂(𝐦)‖𝟐
, (11) 

where 𝐅lα(𝐦) is the Fréchet derivative of the current 

model parameters, 𝐦𝐧, multiplied by the direction of

steepest descent, 𝐥𝛂(𝐦), and α is the regularization factor 

used to hold 𝐦𝐧 within the bounds of the sampled space.

In the iteration process, the regularization factor, 

α, starts with a value of zero. The value after the first 

iteration is determined so that the stabilization function, 

ϕm(𝐦), matches 𝐦𝟏 as a ratio to balance the misfit and

the stabilizer functions [21] as: 

α1 =
‖A(𝐦𝟏) − 𝐝‖𝟐

‖𝐦𝟏 − 𝐦𝐚𝐩𝐫‖
𝟐 . (12) 

Then for each kth iteration αk is updated according to:

αk = α1qk−1, (13) 

where k is the steepest descent loop iteration, and q is 

a normalizing constant chosen to be 0.5. The iterative 

process is terminated when the  misfit, ϕd(𝐦), reaches

the given noise level, η2, of the observed data. 

In this section, we have shown that there is a unique 

solution of the inverse problem in (1) within the bounds 

of the sampled parameter space for measuring complex 

impedance. This is shown in Fig. 3 for one test case. A 

steepest descent algorithm with regularization was used 

to iteratively identify the complex impedance associated 

with SSTDR signals. However, the algorithm may 

experience instability when the residual for the current 

model parameters is close to the residual for neighboring 

model parameters. As a result, the step size, 𝐤𝐧
𝛂, will

sometimes overshoot out of  the bounds of interest [25]. 

This can happen when the residuals of differing model 

parameters are close, which happens if the impedance 

of the loads are nearly the same. For example, a large 

capacitance (𝑍 =
1

𝑗𝜔𝐶
) appears nearly like a short circuit 

(𝑍 = 0 𝛺) [16]. How close these are depends on the 

frequency, 𝜔, (for higher 𝜔, the impedance of a capacitor 

is closer to a short circuit). Similar effects are seen 

for loads that combine capacitance, resistance, and 

inductance. 

To solve the overshoot issue, the algorithm checks 

if the new estimated model parameters for each iteration 

are within range. If not, the algorithm implements a 

random restart [25] by choosing a random RC 

combination within the bounds of interest. Then the 

algorithm continues normally. Figure 2 shows a flow 

chart summarizing the steps to determine the complex 

impedance. 

D. Steepest descent for measuring complex impedance

In this section, we evaluate how effective the

steepest descent algorithm is in measuring the complex 

impedance associated with an observed SSTDR signature. 

The model parameters (R and C) are found such that the 

residual of the parametric function (8) is < 1% above the 

noise level of the simulated noisy SSTDR data. We tested 

the algorithm for 25 standard resistor values ranging from 

51 Ω to ~510 Ω, where R=[51, 56, 62, 68, 75, 82, 91, 

100, 110, 120, 130, 150, 160, 180, 200, 220, 240, 270, 

300, 330, 360, 390, 430, 470, 510] Ω and 19 standard 

capacitor values ranging from 1 pF to 1,000 pF, where  

C=[5, 10, 15, 22, 33, 47, 100, 120, 130, 150, 180, 220, 

330, 470, 560, 680, 750, 820, 1,000]pF. 

The ranges for R and C were chosen so that the 

associated SSTDR responses would be distinguishable 

from one another. and so they would not appear as 

an open or a short[16]. The resistors and capacitors 

were connected in series, giving 475 (25x19) total RC 

combinations. The range for where a 𝑓=12 MHz SSTDR 

signature has highest energy from the load ‖𝑅 +
1

𝑗2𝜋𝑓𝐶
‖ 

is from 51.7 to 2,699 Ω.  
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Fig. 2. Flow chart for steepest descent algorithm to 

measure complex impedance. 
 

Our metric of success is when both model parameters 

(R and C) are measured with percent error ≤10.5%. Of 

the 475 different load combinations tested, 200 were 

successful (42%). Best results (success > 92%) were 

found when  51 Ω < R < 270 Ω and, simultaneously,  

220 pF < C < 820 pF. This successful range corresponds 

to 53 Ω < ‖𝑅 +
1

𝑗𝜔𝐶
‖ < 276 Ω. For impedances tested 

outside of this range, the probability of success was 25%.     

Table 1 shows the results for 10 of the 475 RC 

combinations tested. The results include the known (true) 

values, the estimated values, the number of iterations to 

get the final estimations, and the % error for both the R 

and C estimates. Rows 3 through 9 show RC combinations 

within the  defined range of success where the error is 

<10.5%. Rows 1, 2, and 10 show results for combinations 

outside this range, with higher % error. Some tests (e.g., 

row 1) still provide good estimates, however, success is 

not ensured. In some cases (e.g., row 2) the algorithm 

takes the maximum number of iterations (10,000) and 

still does not converge well. 
 

Table 1: Results of modified steepest descent algorithm 

True R 

(Ω) 

True C 

(pF) 

Est. R 

(Ω) 

Est. C 

(pF) 

# 

Iter. 

Error 

% R 

Error 

% C 

51 100 54.4 99 35 6.69 0.07 

51 120 202.6 21.8 10,000 297 81.8 

51 220 53.7 218 63 5.45 0.87 

56 470 55.8 461 5 0.42 2.00 

62 560 63.3 557 127 2.12 0.56 

120 470 119.9 458 11 0.09 2.62 

200 330 204.8 342 21 2.38 3.59 

220 820 223.3 795 42 1.48 3.05 

270 220 262.6 205 60 2.76 6.82 

330 750 330.8 581 185 0.26 22.6 

 
 

Fig. 3. Misfit as a function of A(m) parameters resistance 

and capacitance for two separate initial guesses. 

 

The initial guess matters, as shown from the two 

different convergent paths to the correct estimate, shown 

in Fig. 3. Path 1 starts with the initial guessed model 

parameters, C=10pF and R=80 Ω, and follows the red 

circles showing the residuals for each iteration of the 

steepest descent algorithm. The initial guess has a residual 

~ 2,000, as indicated by the color. Through successive 

iterations, the residual approaches zero, where the 

simulated model data, A(m), matches the observed data, 

d.  

Path 2 in Fig. 3 illustrates the need for a random 

restart modification. It starts with the initial guessed 

model parameters, C=800pF and R=400 Ω. Note that the 

resistance value is outside the range of success. Also,  

the residuals of both the initial model parameters and  

its neighboring values are close, which causes the step 

size to overshoot the boundaries of allowable guesses. 

The algorithm would normally guess a set of model 

parameters within the bounds of interest (often getting 

stuck there), but because of the random reset, it jumps to 

some different random parameters within the range. 

From the new estimate, path 2 can converge to the 

minimum and identify the correct model parameters. The 

final estimated parameters for both paths 1 and 2 are 

R=199 Ω and C=299 pF for the correct model parameters 

in d that are 200 Ω and 300 pF. Thus, the error for both 

C and R is < 1%. The number of iterations is dependent 

on the initial guessed model parameters and the observed 

data model parameters.  

In Fig. 4, we show the convergence of the residuals 

at each iteration for the two initial guess paths illustrated 

in Fig. 3. With each progressive iteration in the steepest 

descent algorithm, the model data is closer to the 

observed data, and the residual converges to 55, which  

is below the noise energy level (=59) of the simulated  

noisy data, d. For path 2, marked with black Xs, the first 

guessed parameter has a relatively low residual. It then 

jumps to a higher residual because of the new random 

guess and progresses to lower residuals until it reaches  
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a value within the noise level. From Figs. 3 and 4, we 

have shown an example where the steepest descent can 

correctly identify the model parameters of noisy simulated 

SSTDR data. 

Fig. 4. Convergence of the residual for two different 

initial guesses. Guess 1 (C=10pF, R=80 Ω) as red circles 

and guess 2 (C=800pF and R=400 Ω). 

E. Steepest descent algorithm complexity

In this section, we discuss the computational

complexity of the algorithm and compare it to a similar 

algorithm. We will estimate complexity by the number 

of multiplications required per iteration, and the average 

number of iterations.  

For each iteration, the steepest descent algorithm for 

these examples took 180,256 multiplications. This scales 

linearly with the number of data points (4,096) in the 

frequency response. The steps in this algorithm with the 

largest number of multiplications were calculating the 

Fréchet derivative (90,130 multiplications) and producing 

A(𝐦𝐤) (20,480 multiplications). The number of iterations

depends on the initial guess and model parameters, as 

described in previous sections. We will use an estimate 

for the average number of iterations (N~88), which was 

found using the 10% trimmed mean from the tests (e.g., 

in Table 1) that were within the range of success for both 

C and R. We used a trimmed mean to remove both the 

10% highest and 10% lowest outliers. Note that the mode 

of the number of iterations was 10, and the median was 46. 

From this, when measuring a complex RC 

impedance within the range of success, the typical 

number of multiplications is 15.8 million (180,256 

multiplications × 88 iterations). For comparison, in [16], 

an SSTDR response dictionary was used to measure a 

single parameter (capacitance). If the dictionary were 

expanded to include combinations of 1,000 C and 1,000 

R values, it would contain 1 million (1,000 × 1,000) SSTDR 

responses (each with 4,096 data points). Measuring both 

C and R would take ~12.3 billion multiplications (4096 × 

3 × 1,000,000), which is significantly greater than for the 

steepest descent algorithm. 

III. CONCLUSION
Using a simple example with a series connected 

resistor and capacitor, SSTDR and a modified steepest 

descent algorithm was shown to be an accurate and 

computationally efficient solution to measure complex 

impedance. The significance of using SSTDR is that 

impedances could be measured on energized systems. 

For a range of RC combination loads where the 

associated SSTDR response does not appear as an 

open circuit or short circuit response [16], we were able 

to measure their impedances with < 10.5% error. The 

successful estimations for R and C ranged from 50 Ω to 

270 Ω and from 220 pF to 820 pF, respectively. This 

corresponds to complex impedance magnitude 53 Ω < 

|𝑅 +
1

𝑗𝜔𝐶
| < 276 Ω. 

Some of the computational challenges of the 

algorithm are discussed next. One challenge is that a 

single load parameter (R or C) can dominate the control 

of the SSTDR response shape, which can affect the 

ability to measure the other parameter. For example, the 

SSTDR response for an RC combination will resemble 

an open-circuit response if C=1 pF (making the overall 

impedance large) regardless of what the resistor value is. 

Another challenge is that the computational complexity 

is dependent on the initial guess and the number of 

random restarts required. If the algorithm starts with a 

poor guess, this will increase the complexity. This idea 

is illustrated in Figs. 3 and 4, where path 2 takes more 

iterations to converge than path 1.  
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