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Abstract ─ This paper demonstrates a shape synthesis 
technique for multi-mode dielectric resonator antennas 
using binary genetic algorithm and characteristic mode 
analysis. The cost function for the synthesis process is 
defined from characteristic modal parameters, such as 
modal quality factors and self-resonance frequencies. 
Since only modal parameters are involved in the cost 
function, the shape synthesis process is made independent 
of feeds. In the paper, we demonstrate the shape synthesis 
of a DRA with three self-resonant modes at 3 GHz. 

Index Terms ─ characteristic modes, dielectric resonator 
antennas, multi-mode antennas, shape synthesis. 

I. INTRODUCTION
Due to their compactness and high radiation 

efficiency at microwave and millimeter wave frequencies, 
dielectric resonator antennas (DRAs) have attracted a lot 
of attention since their initial investigation by Long [1]. 
However, most of the analysis and designs in literature 
are limited to DRAs of canonical geometries, such as 
cylindrical, spherical and rectangular blocks, partially 
because of the readily available analytical design formulas 
[2]. While the analytical and empirical design formulas 
serve the purpose for simple DRA designs, it limits the 
form factor and the search space of the design. Exploring 
DRAs of non-canonical geometries could provide new 
possibilities for DRA miniaturization, multi-mode DRAs 
and broadband DRAs. With recent advances in the 3D 
printing of high dielectric constant materials that can 
be applied to DRA design [3], there are opportunities 
to investigate novel 3D DRA geometries. Several 
unconventional DRA designs can be found in [4], [5]. 
However, the designs are still based on slight modification 
of the canonical geometry using a combination of 
intuition and parametric study. A more methodical search 
algorithm for the desirable DRA geometries would 
provide a more uniform approach to DRA design and 
potentially yield performance improvements. 

In this paper, we introduce a feed-independent shape 
synthesis technique for dielectric resonator antennas, 
as an expansion of our prior work on planar metallic 
antennas [6]. Though one interesting work on shape 
synthesis of DRAs has been reported in [7], our approach 

takes into account of the bandwidth of individual modes 
in optimization and also has fewer constraints on 
allowable geometry. 

II. SHAPE SYNTHESIS TECHNIQUE AND
IMPLEMENTATION

The shape synthesis technique we adopt relies largely
upon characteristic mode analysis in order to first create 
a resonator shape that supports modes with the desired 
properties. Characteristic mode theory (CMT) [8], a 
theory for the modal analysis of an antenna/scattering 
structure, solves the following eigenvalue equation: 

XJn=λnRJn,                                (1) 
where X and R are the imaginary and real parts of the 
method of moments (MoM) Z matrix, and λn and Jn 
are the eigenvalue and eigencurrent of the n-th mode. 
Depending on the way dielectric objects are modeled, the 
MoM Z matrix could be based on surface integral 
equation (SIE) or volume integral equation (VIE).  

As pointed out in [9], the VIE, though 
computationally heavier than the SIE, avoids the issue of 
non-physical modes in characteristic mode analysis of 
DRAs. Furthermore, the eigencurrents calculated from 
the VIE can be directly used to calculate Q factors from 
the source formulation as demonstrated in [9]. We 
therefore choose the VIE for our analysis here.  

An important parameter we will use in our 
optimization is the quality factor of each individual 
characteristic mode. Once having solved the characteristic 
eigenvalue equation, the characteristic modal Q factors 
of DRAs can be calculated from the characteristic modal 
current and charge distribution, as shown in [9]. 

A. Shape Synthesis Framework for Multi-mode DRAs
Our shape synthesis of DRAs is based on a

binary genetic algorithm, where the binary gene in the 
chromosome represents the presence or absence of a 
tetrahedron in the mesh. For the multi-mode DRA synthesis 
problem studied here, the goal is to search for an antenna 
geometry with multiple modes resonating at the same 
frequency, which could be useful for MIMO applications. 
To facilitate the optimization of broadband self-resonant 
DRAs, the cost function for the shape synthesis is defined 
from characteristic modal parameters as: 
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where nnn QMSwC +−= )1(1  represents the contribution 
from the n-th mode. MSn=1/|1+jλn| is the characteristic 
modal significance, and reaches the maximum of 1 at 
self resonance (λn=0). Qn is the modal Q factor, the 
minimization of which maximizes the bandwidth. V is 
the volume of the search geometry normalized to that of 
the complete geometry, the inclusion of which in the cost 
function removes unnecessary tetrahedra in the mesh while 
reducing size and weight. w1 and w2 are the weighting 
coefficients to be selected depending on the problem. 

III. DESIGN EXAMPLE
Following the shape synthesis technique explained 

in Section II, we demonstrate the shape synthesis 
process using an example. The complete structure before 
optimization has a dimension of 40×25×7.7mm3, as 
shown in Fig. 1 (a). The dielectric constant of the material 
is chosen as 23. The characteristic modal significance for 
the first three modes of the complete geometry are 
calculated and shown as dashed lines in Fig. 1 (d). The 
self-resonant frequencies correspond to the frequencies 
where MSn = 1, and we observe from Fig. 1 (d) that the 
three modes are resonant at 3 GHz, 2.8 GHz and 2.4 GHz 
respectively.  

For demonstration, we optimize the antenna geometry 
so that three modes are resonant at 3 GHz. The shape 
synthesis is conducted using a binary genetic algorithm 
with the cost function in (2) with three modes, a mutation 
rate of 10%, and the number of generations as 200. The 
weighting coefficients are selected as w1= 200, and w2= 
20 after several trials. In order to simplify the optimized 

geometry and expedite the convergence, we force 
geometric symmetry in x, y and z dimensions. Figs. 1 (b) 
and (c) show the top view and isometric view of the final 
optimized geometry. The modal significance of the first 
three modes of the optimized geometry is shown as solid 
lines in Fig. 1 (d). Comparing with the dashed lines, we 
notice that the resonance frequency of mode 2 has shifted 
from 2.8 GHz to 3.09 GHz and that of mode 3 has shifted 
from 2.4 GHz to 2.97 GHz, while the resonance 
frequency of mode 1 has slightly shifted up (3.3 GHz) as 
a trade-off. Table 1 compares the modal significance and 
the modal Q factors of the three modes before and after 
optimization. It is obvious from the modal significance 
that all three modes are very close to resonance at 3 GHz 
after shape synthesis. It is also worth noting that the Q 
factors of the three modes are optimized as well, with 
that of mode 2 being significantly reduced from 118 to 8 
after optimization. 
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Fig. 1. (a) The complete antenna geometry (Rect), (b) 
top view, and (c) isometric view of the optimized 
antenna geometry (GA), (d) the modal significance 
before (dash) and after (solid) optimization. 

Table 1: Comparison of modal significance and modal 
Q factors before and after optimization at 3 GHz 

Modes MS (Before) MS (After) Q (Before) Q (After) 
Mode1 1 0.95 2.2 1.7 
Mode2 0.15 0.85 118 8 
Mode3 0.29 0.97 11 9.6 
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