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Abstract—We describe the construction, analysis, and imple-
mentation of arbitrary-order local radiation boundary condition
sequences for Maxwell’s equations. In particular we use the
complete radiation boundary conditions which implicitly apply
uniformly accurate exponentially convergent rational approxi-
mants to the exact radiation boundary conditions. Numerical
experiments for waveguide and free space problems using high-
order discontinuous Galerkin spatial discretizations are pre-
sented.

Index Terms—radiation boundary conditions, time-domain
methods.

I. INTRODUCTION

The radiation of energy to the far field is a central feature

of electromagnetism. As such, efficient, convergent domain

truncation algorithms are a necessary component of any soft-

ware for simulating electromagnetic waves in the time domain.

Complete radiation boundary conditions (CRBC), introduced

for acoustics in [1], are, in our view, an ideal solution to

this problem. In particular they have a number of advantages

relative to the popular perfectly matched layers (PML) [2].

Most importantly:

i. They are provably spectrally convergent and the

required parameters can be chosen automatically to

guarantee any required accuracy;

ii. The computational boundary can be placed arbitrarily

close to scatterers or other inhomogeneities.

In this paper we will outline the theory behind the method,

discuss the auxiliary equations which must be solved, and

show some results from simple numerical experiments using

high-order discontinuous Galerkin (DG) discretizations [3].

II. EXACT RADIATION CONDITIONS AND LOCAL

APPROXIMATIONS

Consider Maxwell’s equations in a uniform dielectric half-

space, x1 > 0:

ǫ
∂E

∂t
= ∇×H, µ

∂H

∂t
= −∇× E.

We imagine the computational domain to be located in x1 < 0
with x1 = 0 being the radiation boundary. The model used in

x1 < 0 may contain complex scatterers, dispersive media, and

other complexities. It is possible to generalize our construction

to the case of stratified media (see [4] for the acoustic case)

and dispersive models [5] extending into the far field, but here

we will restrict ourselves to the simplest case.

An exact radiation condition with c = 1/
√
ǫµ and α =

√

µ
ǫ

is given by [6]:

2

c

∂

∂t
(E2 − αH3) +R (E2 − αH3) = α

∂H1

∂x3

−
∂E1

∂x2

, (1)

2

c

∂

∂t
(E3 + αH2) +R (E3 + αH2) = −α

∂H1

∂x2

−
∂E1

∂x3

. (2)

Here R is a nonlocal operator defined in terms of the spatial

Fourier transform F on the hyperplane x1 = 0 and a

convolution in time with a Bessel kernel:

Rw = F−1 c|k|2K(c|k|t) ∗ (Fw)
)

, K(z) =
J1(z)

z
.

(A similar formula holds on a spherical boundary [6].)

It is possible to construct efficient, low-memory algorithms

to evaluate these nonlocal operators [7], [8], which could be

a useful alternative for waveguide geometries or scatterers

which can be snugly fit by a spherical radiation boundary.

With CRBC we approximate the nonlocal operator R using a

sequence of auxiliary fields which satisfy hyperbolic equations

on the radiation boundary. Advantages of the local approach

are relative ease of implementation (no spatial transforms are

required) and the possibility to use a rectangular cuboid or a

more general polyhedron as the radiation boundary.

Fundamentally the local methods implement rational ap-

proximations in frequency space to the Laplace transform of

the temporal convolution kernel K ,

K̂(s) =
1

s+ (s2 + c2|k|2)
1/2

.

We demand an accuracy τ uniformly on an inversion contour

ℜs = T−1 where T is the simulation time. Assuming a

separation δ > 0 from sources and scatterers we guarantee

this accuracy with a CRBC using P auxiliary fields and [1]:

P ∝ ln

(

cT

δ

)

· ln

(

1

τ

)

.

Optimal approximants are easily computed. They are defined

via certain parameters aj and a code for their computation

given the error tolerance τ and the dimensionless parameter
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η = cT/δ can be found at www.rbcpack.org. The approxi-

mations are extraordinarily efficient. For example, if we take

τ = 10−4 and η = 103 then P = 9 suffices.

III. CRBC SYSTEM

The CRBC system on a face with normal e1 is defined via a

collection of parameters aj mentioned above. It is most easily

understood using the normal characteristic variables, which we

also note are what appear in (1)-(2). They are:

w± =

(

E2 ± αH3

E3 ∓ αH2

)

, wtan =

(

E1

αH1

)

.

Written in terms of these variables Maxwell’s equations take

the form:

∂w+

∂t
+ c

∂w+

∂x1

+ cS+

(

∂

∂x2

,
∂

∂x3

)

wtan = 0

∂w−

∂t
− c

∂w+

∂x1

+ cS−

(

∂

∂x2

,
∂

∂x3

)

wtan = 0

∂wtan

∂t
+ cStan

(

∂

∂x2

,
∂

∂x3

)

(

w+, w−
)

= 0,

where S+,−,0 are linear partial differential operators. We now

introduce auxiliary fields (w+

j , w
−

j , w
tan

j ), j = 0, . . . , P and

solve for j = 1, . . . , P :

(1 + a2j)
∂w+

j

∂t
+

1− a2
2j

Ta2j
w+

j + S+wtan

j =

(1− a2j−1)
∂w+

j−1

∂t
−

1− a2
2j−1

Ta2j−1

w+

j−1
+ S+wtan

j−1
,

(1 + a2j−1)
∂w−

j−1

∂t
+

1− a2
2j−1

Ta2j−1

w−

j−1
+ S−wtan

j−1
=

(1− a2j)
∂w−

j

∂t
−

1− a2
2j

Ta2j
w−

j + S−wtan

j ,

∂wtan

j

∂t
+ Stan

(

w+

j , w
−

j

)

= 0.

Additionally we impose data from the interior related to w+

0

and a termination condition on w−

P - the precise choices of

these may be implementation-dependent. The equations solved

on faces with different normals are analogously defined. For

our DG schemes we use w
+,−,tan
0

as the outside states to

define fluxes at the outer boundary of the mesh; full details

will appear elsewhere.

For waveguide problems the auxiliary variables simply

inherit the boundary conditions satisfied by the corresponding

physical fields. For exterior problems we impose relations at

edges and corners to close the system. These involve multiply-

indexed auxiliary variables associated with the adjoining faces:

P 2 at an edge and P 3 at a corner.

We note that a completely different approach to implement-

ing the local boundary conditions is based on defining the aux-

iliary functions in a small layer. Termed the double absorbing

boundary (DAB) formulation [9], the method has advantages

for second order formulations of Maxwell’s equations and for

finite difference discretizations. In particular we have used to

implement CRBC in conjunction with the Yee scheme [10],

which we have made available at www.rbcpack.org. We have

also used it for high order difference methods [11].

IV. NUMERICAL EXPERIMENTS

Here we demonstrate the accuracy of the method with DG

discretizations of the TM system in two space dimensions.

Further results, including computations in three space dimen-

sions, will be presented in the talk. We consider initial value

problems in a waveguide of width 1 and in free space. For the

waveguide problem the computational domain is (−1, 1) ×
(0, 1) with PEC boundary conditions imposed at x2 = 0, 1
and the CRBCs imposed at x1 = ±1. Exact solutions are

given by appropriate derivatives of solutions of the scalar wave

equation produced by a point source centered near (0, 0.1)
with time amplitude exp (−125(t+ .475)2). For the free space

problem the computational domain is (−1, 1)× (−1, 1) with

CRBCs imposed at all four boundaries. This requires the

corner closures alluded to above at the four corners of the

domain. The exact solution is now produced, using the same

prescription as above, with a free space solution of the wave

equation produced by the point source centered near the origin.

We take ǫ = 0.8, µ = 1.25 and solve up to T = 100.

Since the radiation boundaries are a distance 1 from the source

we set η = 100. We use an upwind DG discretization with

polynomial degree 9 and square elements of width 1/12, time

stepping using eighth order order Taylor series with ∆t =
1/600. We compare results with P = 5 and P = 9. For

these choices the a priori error bounds are 5.6 × 10−4 and

3.7 × 10−6 respectively. The actual maximum relative errors

in the computations were approximately the same for each

case and were below tolerance: 3.7× 10−4 and 2.6× 10−6.
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