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Abstract ─ The way to handle the uncertainty of design 

parameters has attracted wide attention in the 

optimization of electromagnetic designs. The Monte 

Carlo Method works well when dealing with uncertainties 

but it consumes too much time and computational 

resources. This paper proposes a computationally 

efficient way to achieve robust optimization based 

on Stochastic Collocation Method and the TEAM 22 

problem is used as a verification example. It is 

demonstrated that the approach combining Stochastic 

Collocation Method and a genetic algorithm provides 

high computational efficiency, without losing accuracy 

compared with the Monte Carlo Method. 

Index Terms ─ Monte Carlo Method, robust, Stochastic 

Collocation Method, TEAM 22, uncertainty. 

I. INTRODUCTION
It is a common knowledge that the performance 

of the electromagnetic (EM) design is influenced by 

uncertainties [1]. The uncertainties may be caused 

by, for example, manufacturing tolerances in geometric 

variables or the inevitable variation of material 

parameters. These uncertainties will jeopardize the 

robustness of the design. Robustness refers to the 

insensitivity of the final optimization results to 

parameter perturbations [4]. A robust design should not 

be very sensitive to slight changes in its design 

parameters as this would either seriously impact 

production costs or make the physical machine behave 

differently from its optimized computer simulation 

model [5].  

In response to this requirement, many scholars have 

used a variety of methods to obtain a robust device or 

control method. Some examples of the state-of-the-art 

optimization methods used in the field comprise a new 

algorithm based on the Climb method [4], a possibility-

based optimal design algorithm [5], a surrogate modeling 

technique based on a second-order equation [6], and the 

space-time kriging surrogate model [8]. 

The previous methods require a lot of time and 

computational resources to obtain a robust solution, 

which significantly affect computational efficiency of 

EM optimization [9] .Therefore, some measures 

are taken such as evaluating the robustness of both 

performance and constraints under uncertainty by the 

worst-case optimization [9], reusing the global surrogate 

model to perform sensitivity analyses of generated 

designs [10], and proposing an efficient reliability-based 

robust design optimization method [11]. However, these 

methods more or less show limitations when they are 

applied to other optimization problems. 

To improve the numerical efficiency of EM 

optimization while maintaining design robustness, an 

optimization strategy based on Stochastic Collocation 

Method (SCM) [12] is proposed in this paper. The basic 

concepts of SCM are given in Section II. Section III 

shows the process of obtaining the robust optimal 

solution based on SCM. Section IV introduces the 

TEAM 22 problem [17] and compares the robustness and 

time consumption of the optimization techniques, with 

the results obtained by the different methods. Finally, the 

paper’s conclusions are drawn in Section V.  

II. OUTLINE OF THE STOCHASTIC

COLLOCATION METHOD
It can be helpful to apply uncertainty analysis 

methods to computational electromagnetics (CEM) [20] 

in order to take account of practical complexity and 

unpredictability within a simulation. To this end, design 

parameters of EM simulation are presented by random 

variables with properly assigned distributions. 

The Stochastic Collocation method (SCM) is a 

popular choice for the stochastic processing of complex 

systems where well-established deterministic codes 

exist. SCM is supposed to be universal because it only 
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deals with the input and output of the problem without 

changing the solver itself. The applicability of SCM 

method is not affected by the complexity of the original 

problem so long as reliable deterministic solver is 

developed. By utilizing the SCM method, the relationship 

between the uncertainty of output and the input variables 

is approximated by the sum of some specific polynomials. 

One way is to use a Lagrange interpolation approach that 

is given by (1): 
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where y(x) is a polynomial approximation of the true 

solution f(x). n is the number of collocation points. xj 

and f(xj) stand for the collocation points and the 

corresponding deterministic solutions of these points, 

respectively. lj(x) are the Lagrange interpolation 

polynomials structured by the collocation points: 
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As for the SCM, the collocation points are given by 

the zero points of the generalized Polynomial Chaos 

[12]. The orthogonal polynomial basis is selected 

according to the probability distribution of the random 

variables, as shown in Table 1. Specially, if the variables 

are multidimensional, the interpolating points are the 

tensor product form of interpolating points in every 

dimension [16]. The accuracy of the SCM had been 

elaborated in [22]. It was shown that the longer each 

single CEM simulation lasted, the more efficient and 

thus more desirable SCM could be. 

Table 1: The correspondence between the type of 

generalized Polynomial Chaos and Random Variables 

Random 

Variables 

Wiener-Askey 

Chaos 
Support 

Gaussian Hermite-chaos ( , ) 

Gamma Laguerre-chaos [0, )

Beta Jacobi-chaos [ , ]a b

Uniform Legendre-chaos [ , ]a b

III. SCM BASED ROBUST OPTIMAL

DESIGN 
The traditional optimal design problem is constructed 

as: 

d

d
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where f(Pd) is the objective function for design variable 

set Pd; gi(Pd) are the constraint functions for i=1,…,m. 

When the uncertainties are taken into account, the 

random design variable set P is defined as: 

, P P ξ

where P is the mean value of P according to the 

statistical definition, while ξ  is the random variable 

whose distribution can be assumed to be uniform in order 

to obtain a robust solution to the optimization problem. 

Thus, P can be redefined by normalization as: 

,x  P P η (4) 

where η is half of the range of the distribution and x a 

random number between [-1,1]. 

The incorporation of the robustness analysis with 

formulation (4) incurs high computational time. For 

the traditionally used Monte Carlo method (MCM), a 

serious computational burden is imposed by the required 

large sample size, as well as the iterative nature of the 

design optimization process. In contrast, the SCM is 

similar to MCM in the sense that it involves only the 

solution of a sequence of deterministic calculations at 

given collocation points in the stochastic space [23]. 

By applying the SCM to robust optimal design 

problem, f(P) can be approximated by Lagrange 

interpolation polynomial according to (1): 

1
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where Pi (i=1,2,…,n) is the collocation points for 

univariate (or tensor product form of interpolating points 

for multivariate) problems, with a similar form to (4): 

.
i i

x  P P η

Generally, the zero points of generalized 

Polynomial Chaos in Table I are chosen to be xi. For 

instance, the Legendre polynomials are orthogonal with 

respect to the uniform distribution. Its expression is as 

follows:  
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Let the zero points of the n-dimensional Legendre 

polynomial be 
1 2, ,..., nx x x , and the Lagrange basis 

polynomial li(x) are given by (2). 

After the y(P) is constructed (equation (5)), the 

mean of the obtained n values is defined as the objective 

function value of P as MCM does. It is denoted as: 

1

1ˆ ( ) ( )
n

S i

i

f y
n 

 P P (7) 

The SCM is not subject to the number of sampling 

points but to the number of variables. For problems 

where the solution is a smooth function of the random 

input variables and the dimension of the stochastic space 

is moderate, SCM has been shown to converge much 

faster than MCM [23]. 

IV. APPLICATION TO TEAM 22
The TEAM workshop problem 22 [14-16] is an 

optimization case of the Superconducting Magnetics 
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Energy Storage (SMES) that has been used as a 

benchmark problem in magneto statics. The TEAM 22 

system is composed of two coils with opposite current 

densities. The configuration of the TEAM 22 is presented 

in Fig. 1, and its parameters are summarized in Table 2. 

The goal of TEAM 22 is to find the best configuration in 

SMES device to maintain the stored energy while 

minimizing the stray field. The stray field is represented 

by magnetic flux density Bstray and it is evaluated in 21 

equidistant points marked on lines a and b in Fig. 1: 
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Furthermore, to keep the superconductivity 

characteristic, the restriction is given by the inequality 

(9): 
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Since the current density of both coils is fixed in the 

TEAM 22, the inequality (9) can also be expressed as 

(10): 
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Fig. 1. The configuration of the TEAM 22. 

 

When the robustness is taken into account in the 

optimization of TEAM 22, it is assumed that the 

adjustable parameters R2, h2, d2 in the outside coil suffer 

undesirable and unavoidable presence of the uncertainties. 

The goals of the robustness-considered case remain the 

same as the classical problem. By defining the design 

variables set  
2 2 2

= , ,R h dP , the robust TEAM 22 

problem can be formulated with the objectives and the 

restriction above as: 
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where Bnorm=200μT; Bmax is the maximum magnetic flux 

density; E is the energy that is actually stored in the 

designed device; E0 is the target stored energy with a 

fixed value 180MJ;
1

 ,
2

  are the barycentric weights. 

Take
1

 =0.001, 
2

 =1 in this case to keep the relative 

value of the leakage flux in the same order of magnitude 

as the relative error of the stored energy: 
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The genetic algorithm (GA) is used to optimize the 

TEAM22, and the robustness is achieved by using MCM 

and SCM respectively at the fitness function which is the 

criterion for selection operators. The process of finding 

the optimal solution is shown in Fig. 2. Following the 

process of survival of the fittest in nature, the objective 

function is chosen as a selection criterion. Once the 

genetic representation and the fitness function are 

defined, the GA proceeds to initialize a population of 

solutions and then to improve it through repetitive 

application of the mutation, single point crossover, 

inversion and selection operators until a termination 

condition has been reached. The population is set to 200, 

and the termination condition is set to iterate 200 

generations. The workstation used in this paper is Dell 

T7610 with Intel(R) Xeon(R) E5-2687W v2 3.4GHz and 

128G RAM. 
 

Table 2: Team 22 parameters 

 R1[m] R2[m] h1[m] h2[m] d1[m] d2[m] J1[A/mm2] J2[A/mm2] 

Min - 2.6 - 0.408 - 0.1 - - 

Max - 3.4 - 2.2 - 0.4 - - 

Step - 0.01 - 0.007 - 0.003 - - 

Fixed 2.0 - 1.6 - 0.27 - 22.5 -22 

ACES JOURNAL, Vol. 35, No. 4, April 2020392



 
 

Fig. 2. The process of finding the optimal solution 

through GA. 

 

A. Robustness achieved by MCM 

Let    
2 2 2

, , 0.01, 0.007, 0.003=
R h d

  η  be the 

set of variable step values given by Table 2. 100 points 

are randomly sampled in the range of P η and denoted 

as P1,P2,…,P100. Assume the notation ˆ ( )
M

f P  for the 

mean of objective function value of the selected 100 

points. Its expression is given by (12): 

 
100

1
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f f
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Every individual is treated with above process in the 

GA. And the result of optimization is shown in Fig. 3. 

The optimal solution is P = {3.128, 0.583, 0.317}. 

 

 
(a) 

 
(b) 

 

Fig. 3. The result of optimization with robustness 

considered by MCM: (a) objective value and (b) 

parameters’ value. 

 

B. Robustness achieved by SCM 

The cubic polynomials are selected in SCM to 

diminish the deviation of the interval. The three-

dimensional form of the Lagrange interpolation formula 

is given by (13): 

 3 3 3
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As for the TEAM 22, the interpolation formulation 

is formed as: 
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with x, y, z random numbers between [-1,1]. The 

interpolating points are  
1 2 3

15 15
, , , 0,

5 5
I I I  

 
 
 

 

where I can be x, y or z, and the tensor product form is 

15 15 15 15
, 0, , 0,

5 5 5 5
  
   
   
   

. Thus, equation 

(14) can provide the answer.  

Accordingly, 100 values of x, y and z are each 

randomly taken and substituted into (14) to obtain the 

corresponding objective function value .The notation 

ˆ ( )
S

f P  is defined as the mean of the 100 obtained values  
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to represent the objective function value of P given by 

(16): 
100

1

1ˆ ( ) ( )
100

S i

i

f y


 P P . (16) 

The result of optimization is shown in Fig. 4. The 

optimal solution is P = {3.221,0.857,0.206}. 

(a) 

(b) 

Fig. 4. The result of optimization with robustness 

considered by SCM: (a) objective value and (b) 

parameters’ value. 

C. Results and discussion

The rate of change in function value in the robust

interval 0.6D η  is defined as: 

 

 
= ,

std f

mean f


where std(f) is the standard deviation of objective 

function f in the input parameters’ interval while mean(f) 

is the mean of f. 

The “normal” solution that does not consider 

robustness is also calculated. And it is compared with 

the solutions obtained above, as outlined in Table 3. 

Although the “normal” method obtains the smallest 

objective function value, the robustness of results is 

much lower than the other two methods. 

The   value that does not consider robustness is 

the largest when subjected to uncertainty perturbations, 

suggesting that the EM device considering robustness is 

more stable. In contrast, MCM and SCM reaches the 

same level of robustness. At the same time, it is noted 

that the time required by the optimal solution considering 

robustness is greatly increased. But the efficiency of 

achieving robustness by using SCM is improved by 

nearly 72.06%. Thus the SCM is an effective technique 

in terms of accuracy and computational efficiency. 

For the SCM method, the order of the interpolating 

polynomials is set to be cubic in this paper. The cubic 

polynomials can lead to convergence considering both 

computational efficiency and accuracy according to 

[19]. To further justify this setting, several orders of 

interpolating polynomial are applied in the SCM based 

optimization. The results are compared with that of 

MCM, as shown in Fig. 5. The coincidence degree 

between probability distributions of MCM and SCM for 

different orders of interpolation is calculated, as outlined 

in Table 4, which means the accuracy of SCM is improved 

with the rise of order. Meanwhile, the consumed time Tc 

increases in the form of formula (17) with the rise of 

interpolating order where n stands for the number of 

order and p for the number of parameters (p is set to 3 in 

our case). If the time taken for two-point fitting is 

assumed for one unit, the relative times consumed by 

other orders are outlined in Table 4: 

c

p
T n . (17) 

It is noted that the accuracy of SCM decreases when 

interpolating order is higher than five. It is attributed 

to oscillation at the edges of an interval when using 

polynomial interpolation of high degree over a set of 

equispaced interpolation points, which is known as 

Runge's phenomenon. Therefore, the cubic order is 

selected to balance accuracy in the approximation of the 

objective function against Runge's phenomenon and 

computational requirements. 

Table 3: Comparison of robust optimization results obtained by different methods 

Method R[m] h[m] d[m]  Consumed Time[s] 

Normal 3.127 0.548 0.336 7.58% 40078.79 

MCM 3.128 0.583 0.317 6.85% 4709168.56 

SCM 3.221 0.857 0.206 5.04% 1315861.82 
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Table 4: Comparison of robust optimization results 

Orders of interpolation 2 3 4 5 

Coincidence degree of probability distributions (taking the probability 

distribution of MCM as reference) 
80.16% 90.41% 93.98% 95.46% 

Tc (taking the time of two-point interpolation as reference) 1 3.375 8 15.625 

 
 

Fig. 5. Comparison of accuracy for different orders of 

interpolating polynomial. 
 

It is indicated by (13) that the calculation process of 

SCM is related to the number of variables. It may take 

much more time to obtain a robust solution when the 

number of variables increases, which is known as the 

‘curse of dimensionality’ problem. Therefore, SCM needs 

improvements and can be considered in combination 

with dimension reduced method [24] to solve the problem 

of multivariate uncertainty, which is an interesting issue 

to be investigated in future. 
 

V. CONCLUSION 
The uncertainties which exist in design variables 

and design process are taken into account in the 

optimization of EM devices. The SCM is applied to the 

robustness optimization by combing the GA algorithm, 

which exhibits comparable calculation accuracy to 

MCM with much less consumed time. For the TEAM 22 

optimization, the computational efficiency is improved 

by nearly 72.06% using SCM. As a compromise between 

accuracy and efficiency, the order of interpolating 

polynomials for the SCM method is set to cubic. 

Meanwhile, the ‘curse of dimensionality’ problem of 

SCM caused by multivariate uncertainty still needs 

further investigation. 
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