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Abstract ─ A coupled line cross-shaped resonator

(CLCSR) is proposed, which consists of four parallel 

coupled lines. By using even- and odd-mode approach, 

this resonator is characterized and designed to build up a 

wide band-pass filter. There are three transmission poles 

in the pass-band and two transmission zeros out of 

the pass-band. The positions of the transmission zeros 

are fixed. The transmission poles are determined and 

adjusted by the parameters: 1z , 2z , 1k , and 2k . Then two

coupled line cross-shaped resonators are cascaded to 

realize a wide band-pass filter. The sharper selectivity 

and better performance can be obtained by cascading 

two CLCSRs. Good S-parameters are achieved as 

demonstrated in both simulated and measured results.  

Index Terms ─ Band-pass filter, coupled line cross-

shaped resonator, transmission pole, transmission zero. 

I. INTRODUCTION
The multi-mode resonator wide band-pass filter 

(BPF) design has become a research hotspot due to its 

simple filter topology, compact physical size and simple 

design process. In Ref. [1], an ultra-wideband BPF 

is designed with a cross-shaped resonator. An ultra-

wideband BPF with the capacitively coupled stub-loaded 

resonator is introduced in Ref. [2]. Reference [3] 

proposes a differential wideband BPF which consists 

of slot-line multimode resonators. Cheng proposes a 

wideband BPF with reconfigurable bandwidth function 

[4]. The wideband BPF is composed of a parallel-

coupled line structure and a cross-shaped resonator. In 

Refs. [5-11], some structures are added to the cross-

shaped resonator, such as coupled lines, short stubs. 

Those band-pass filters provide better ideas for this 

study. There are many studies based on cross-shaped 

resonators. However, the performance of the ordinary 

cross-shaped resonators is poor, and the frequency 

selectivity of the filters needs to be improved.  

In this paper, a new coupled line cross-shaped 

resonator filter is proposed. The input impedance of its 

equivalent circuit can be calculated through the odd-even 

mode method. The proposed filter is miniaturized by 

bending parallel coupled lines. In order to increase the 

bandwidth and improve the out-of-band performance, 

two CLCSRs are cascaded in the wideband BPF design. 

The simulated results are basically consistent with the 

measured ones. Compared with single cross-shaped 

resonator, the frequency selectivity of the cascaded 

CLCSR BPF is improved.  

II. BAND-PASS FILTER DESIGN
Figure 1 (a) shows the proposed BPF which is 

composed of single CLCSR. The CLCSR consists of 

four parallel coupled lines. They are connected at the 

middle node position. The proposed BPF circuit is 

a symmetric structure. The odd mode characteristic 

impedance and even mode characteristic impedance 

of the parallel coupled lines are denoted as

1 1 1 11 1cez z k k   , 1 1 1 11 1coz z k k   . The odd

mode characteristic impedance and even mode 

characteristic impedance of the other two coupled 

lines are denoted as 2 2 2 21 1cez z k k   ,

2 2 2 21 1coz z k k   . The electrical length of all 

coupled lines is θ. 

The odd mode circuit is shown in Fig. 1 (b) and the 

even mode circuit is shown in Fig. (c). The normalized 

impedance parameters 
1 1 0/z Z Z and

2 2 0/z Z Z are 
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used in the even-odd mode circuit. The input impedances

 ine o
z  can be derived from formula (1) and (2) in Ref 

[12]. According to the odd-even mode circuit, the even 

mode load impedance is in formula (2) and the odd mode 

load impedance is in formula (3): 
2 2 2 2

( ) 1 1 1 ( ) 1 1 1

( )
2

( ) 1 1 1 1

(1 ) (1 ) tan tan 1

(2 tan 1 (1 ))(1 )

Le o Le o

ine o

Le o

z z k k z z jz k
z

j z k z k k

 



    


   
,(1) 

2

2 2

2

1

2 tan( )(1 )
Le

z k
z

j k





, (2) 

 0Loz  . (3) 

Fig. 1. (a) Ideal circuit of the CLCSR BPF, (b) odd-mode 

equivalent circuit, and (c) even-mode equivalent circuit. 

In a symmetric two-port network, the normalized 

frequency response is 
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When   is equal to  , the corresponding 

frequency is 
0f , as shown in formula (6). When 21s  is 

equal to zero, the transmission zeros of the CLCSR BPF 

can be obtained. The transmission zeros 
z1f and

2zf are 

shown in formula (7a) and (7b). The positions of the 

CLCSR BPF’s transmission zeros can be adjusted 

through the 
0f : 
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When 11s  is equal to zero, the transmission poles 

of the CLCSR BPF can be obtained. The calculated 

results of the transmission poles are as shown in formula 

(8) and (9):
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The transmission poles 
1pf and

3pf are symmetric 

about the 
0f . There are two transmission zeros out of the 

pass-band and three transmission poles in the pass-band. 

The zero-pole distribution of the ideal CLCSR BPF is 

shown in Fig. 2. 

Fig. 2. Zero-pole distribution of the CLCSR BPF’s 

circuit. 

In Fig. 2, the relationship between the transmission 

poles and the transmission zeros in the frequency range 

is: 

1 1 2 3 2z p p p zf f f f f    .  (12) 

The influence of the design parameters on the 

return loss of the CLCSR BPF is given in Fig. 3. When 

one parameter changes, the other parameters remain 

unchanging. The transmission poles 
1p

f  and 
3p

f  are far 

away from each other when one parameter increases. 

In Fig. 3 (a), with the increases of 1k , the return loss 

decreases and the frequency selectivity is improved. The 

bandwidth increases and the return loss decreases with 

the increases of 2k in Fig. 3 (b). In Fig. 3 (c), the 

frequency selectivity is improved and the return loss 

decreases with the increase of 1z . In Fig. 3 (d), the

bandwidth increases and the return loss decreases with 

the increase of 2z . 

The physical structure parameters of the coupled lines 
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can be calculated based on Z and k. The characteristic 

impedance Z is smaller when the width of the coupled line 

is wider. When the gap between the coupled lines is wider, 

the value of k is usually smaller. Thus, the design 

parameters are selected as 
1 2 0.6k k  , 

1 2 1.5z z  . 

 

 

 

 

 
 

Fig. 3. The influence of 1z , 2z , 1k , and 2k  on the return 

loss of the CLCSR BPF: (a) 1z ; (b) 
2z ; (c) 

1k ; (d) 2k . 

 

III. RESULT AND DISCUSSION 
The final size of the CLCSR BPF is shown in Fig. 4 

(a) and the photograph of the CLCSR BPF is shown  

in Fig. 4 (b).The coupled lines are bended for filter 

miniaturization. The resonant frequencies of the CLCSR 

BPF are simulated by using ANSYS HFSS. The EM 

method in simulation is finite element method. The 

CLCSR BPF is designed on Rogers RT5880 microwave 

dielectric board (h = 0.508 mm, 
re = 2.2, tan = 0.0009). 

The line width g=1.54mm is chosen for the characteristic 

impedance of 50Ω for the input/output microstrip line. 

The characteristic impedance of SMA connector is 50Ω 

which matches the microstrip line. 
 

 
 

Fig. 4. (a) The CLCSR BPF structure parameters (a=14.1, 

b=7.19, c=5, d=0.255, e=0.15, g=1.54, h=6.58, l=0.2, 

Unit: mm), (b) photograph of the CLCSR BPF. 
 

Figure 5 shows the simulated and measured results 

of the CLCSR BPF. The measured results are obtained 

with Agilent N5230C vector network analyzer. As shown 

in Fig. 5, the measured results almost agree well with the 

simulation ones. The absolute bandwidth of the CLCSR 

BPF is 1.6 GHz, which is from 3.2 to 4.8 GHz. The return 
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loss is bigger than 12dB in the whole pass-band. In 

addition, the stop-band rejection is better than 14dB from 

2 to 3.2 GHz. Moreover the stop-band rejection is better 

than 12 dB from 4.8 to 7 GHz.  

In order to improve the out-of-band performance 

and expand the pass-band frequency range, two CLCSRs 

are cascaded in wide-band BPF design. Figure 6 (a) 

shows the equivalent circuit of the cascaded CLCSR 

BPF. The cascaded CLCSR BPF structure parameters 

are slightly different from the CLCSR BPF in Fig. 1. The 

cascaded CLCSR BPF layout is shown in Fig. 6 (b) and 

the photograph of the cascaded CLCSR BPF is shown in 

Fig. 6 (c). 
 

 
 

Fig. 5. Simulated and measured results of the CLCSR 

BPF. 
 

 
 

Fig. 6. (a) Ideal circuit diagram for the cascaded CLCSR 

BPF, (b) actual size of the cascaded CLCSR BPF circuit 

(a=1.54, b=0.15, c=1.05, d=43.12, e=10.78, f=5.92, 

g=16.66, h=4.9, i=0.7, j=0.2, k=4.5, Unit: mm), (c) 

photograph of the cascaded CLCSR BPF. 

The simulated and measured results of the cascaded 

CLCSR BPF are shown in Fig. 7. The absolute bandwidth 

of the cascaded CLCSR BPF is 2 GHz from 4.2 to 6.2 

GHz. The return loss is bigger than 12dB in the pass-

band. The out-of-band rejection levels are greater than 

20 dB. The simulated results are basically consistent 

with the measured ones. The frequency discrepancy 

between the simulated and measured results is due to the 

machining error and the material parameters difference. 

The material parameters include the dielectric constant 

and the thickness of dielectric plate. The discrepancy of 

the return loss and the insertion loss is due to the 

conductor loss, the dielectric loss and the radiation loss. 

There are a few errors in the simulated and measured 

results, which also makes the simulated results different 

from the measured ones. 
 

 
 

Fig. 7. Simulated and measured results of the cascaded 

CLCSR BPF. 
 

Table 1 compares the proposed works with some 

previous works. Obviously, the proposed filters have 

some advantages, such as wide bandwidth, compact size 

and high performance. 
 

IV. CONCLUSION 
In this paper, a CLCSR is proposed, which consists 

of four parallel coupled lines. By using the odd-even 

mode method, the CLCSR is analyzed and designed to 

construct a wide-band BPF. The cascaded CLCSR BPF 

is designed by cascading CLCSRs. Finally, the CLCSR 

BPF and the cascaded CLCSR BPF are simulated, 

fabricated and measured. The simulated and measured 

results for two proposed wide-band BPFs are basically 

the same. 
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Table 1: Compares the proposed works with some previous works 

Reference Center Frequency TZs/TPs Insertion Loss Return Loss Size ( *g g  ) 

Ref. [1] 

Ref. [2] 

Ref. [3] 

Ref. [4] 

Ref. [5] 

CLCSR BPF 

Cascaded CLCSR BPF 

6.65 

6.85 

2.6 

5.7 

1.75 

4 

5.2 

2/4 

4/5 

Not give 

2/3 

Not give 

2/3 

2/5 

0.35 

0.6 

0.5 

1.4 

1.5 

0.4 

1.1 

>20 

>14 

>10 

>10 

Not give 

>12 

>12 

0.5*0.79 

0.38*1.14 

1.4*1.4 

0.18*0.18 

0.38*0.17 

0.15*0.15 

0.19*0.15 
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