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Abstract ─ A spatial-domain algorithm is introduced for 

generating both isotropic and anisotropic natural rough 

surface models with predetermined statistical properties 

using Savitzky-Golay filter. Unlike the spectral-domain 

methods, the proposed method does not require the 

calculation of two-dimensional inverse Fourier 

transforms which constitute a computational burden for 

generating large ensembles of high-resolution surfaces.  

A comparative analysis between the proposed spatial-

domain method and one of the conventional spectral-

domain methods is presented. The comparison shows 

that the proposed spatial-domain method results in 

substantially improved computational performance.  

The fitness of the generated rough surface to the 

predetermined statistical properties is verified by 

calculating a variogram for numerical measurement of 

the variance and the correlation lengths. To demonstrate 

the importance of generating such a rough surface for 

simulation of electromagnetic polarimetric systems,  

a rough surface with anisotropic statistical properties  

is placed in the near field region of two antennas of 

orthogonal polarizations. It is shown that the self and 

mutual electromagnetic coupling coefficients of the two 

antennas can be used for measuring the orientation of the 

rough surface. 

 

Index Terms ─ Polarimetric SAR, rough surface 

generation, Savitzky-Golay filter. 
  

I. INTRODUCTION 
Many applications make use of electromagnetic 

(EM) scattering from natural surfaces such as earth 

remote sensing via imaging synthetic aperture radar 

(SAR) [1-16]. In such applications it is usually required 

to numerically generate randomly rough surface (RRS) 

models with a predetermined set of statistical properties 

to simulate EM scattering from natural ground surfaces 

[17-21]. One often desires to generate a random surface 

with a particular probability distribution (may be 

Gaussian with a given mean and variance) and with a 

specific spatial correlation length. In such simulations  

it may be an objective to find the relation between  

the polarization of the backscattered field and the 

geometrical and electrical properties of the imaged 

ground surface. The presented work is concerned with 

the generation of rough surface that is realistic in 

simulating natural ground surface and to assess the 

backscattered field due to incident EM waves. The 

purpose of such a study is to find the relation between 

the polarization properties of the EM scattering from 

such surfaces and the geometrical characteristics of  

the rough surface itself. The main goal is to arrive at 

numerical results that may be useful for understanding 

the land images taken by fully polarimetric SAR 

systems. 

The conventional techniques used for generating 

rough surface models depend on the surface generation 

in the spectral domain and then the application of the 

inverse discrete Fourier transformation (IDFT) to get  

the rough surface heights in the spatial domain [22-24]. 

However, in some other methods [18], the random 

surfaces are generated numerically with an arbitrary 

predetermined distribution function and correlation 

function of surface roughness. This leads to discretize 

the surface into a large number of segments, which can 

be considered uncorrelated roughness (white noise). The 

resulting profile is then smoothed to get the final model 

of the rough surface. All these methods arrive at a  

model for the required random rough surface with good 

accuracy of the resulting statistical parameters but, 

however, a great numerical effort is required and the 

assessment of the agreement with the required statistical 

properties should be explicitly done in subsequent 

operations. 
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The present work introduces a spatial-domain 

technique for generating anisotropic spatially-correlated 

random rough surface with predetermined statistical 

properties (mean height, root-mean-square height and 

correlation length). This technique applies the Savitzky-

Golay filter (SGF) to realize the required correlation 

lengths between the adjacent heights in two perpendicular 

directions (𝑥 and 𝑦). It depends on the generation of a 

two-dimensional array of uncorrelated Gaussian random 

numbers that represent surface heights, which are further 

refined by linear interpolation to get higher resolution of 

the rough surface points. The SGF is then applied with 

appropriate smoothing factor and window size to get the 

surface heights correlated with the desired correlation 

lengths in both 𝑥 and 𝑦 directions. Due to the application 

of SGF the mean value and the variance of the resulting 

spatially correlated array of random numbers may be 

different from those predetermined values. For this 

purpose, the mean value of the resulting array is set to 

the required value by adding a constant value to the array 

elements. Also, the array elements are rescaled to get the 

desired root-mean-squared height.  

The method proposed in the present work to 

generate a random rough surface directly in the spatial 

domain does not need the heavy mathematical procedures 

including two-dimensional inverse Fourier transform for 

high resolution surface models or convolutional integrals 

required in the other techniques. Moreover, it is simple 

and capable of generating both isotropic and anisotropic 

rough surfaces with the predetermined statistical 

parameters. Furthermore, it insures the fitness of the 

resulting spatially correlated rough surface to the desired 

Gaussian distribution and the required statistical 

properties within a predetermined acceptable error by 

achieving histogram and variogram measurements.  

The present work demonstrates the importance of 

generating such rough surfaces for EM simulation of  

the fully polarimetric land imaging synthetic aperture 

radar systems, and its dependence on the polarization 

properties of the EM field backscattered from natural 

rough surfaces.  

In the following sections of this paper the statistical 

properties of the natural rough surfaces, including 

ergodicity, isotropy and anisotropy, are discussed. The 

computational procedure of applying the proposed 

spatial-domain SGF correlation method is described in 

detail. Also, one of the conventional spectral-domain 

methods that are commonly used to generate Gaussian 

rough surface models is described in Appendix A. The 

numerical results are presented and discussion where a 

variety of random rough surfaces with various statistical 

properties are generated. The polarization of the near 

field backscattered by a rough surface is studied. The 

dependence of the co-polarized and cross-polarized 

components of the backscattered field on the geometrical 

and statistical parameters of the surface is investigated 

and discussed. To demonstrate the improved 

computational performance achieved by the proposed 

method, a comparative analysis with the conventional 

spectral-domain technique is presented. The rate of 

convergence of ensemble averaged coefficients of EM 

scattering from the generated RSS with the ensemble is 

investigated and discussed. 
 

II. STATISTICAL PROPERTIES OF 

NATURAL RANDOM ROUGH SURFACES 
The statistical distribution of the heights of the 

points on a natural rough surface is most commonly 

described by a Gaussian probability distribution function 

with zero mean, which is expressed as: 

𝑔(𝑧) =
1

𝜎√2𝜋
 exp (−

𝑧2

2𝜎2
),              (1) 

where 𝑧 represents the height of a point on the surface, 𝜎 

is the standard deviation  

The root-mean-squared height, ℎ𝑟𝑚𝑠, of such a 

rough surface is equal to 𝜎 and is often used to give an 

indication of the “degree of roughness”.  

Another important parameter that describes the 

spatial distribution of the surface heights is the spatial 

correlation function between adjacent points on the 

surface. For two points at horizontal locations 𝐫 and 𝐫́, 
respectively, the height-height correlation function is 

defined as, 

           𝐶𝑧𝑧(𝐫, 𝐫́) = 〈𝑧(𝐫)𝑧
′(𝐫́)〉 =

       ∫ ∫ 𝑧 𝑧′ 𝑝(𝐫, 𝑧, 𝐫́, 𝑧́) 𝑑𝑧 𝑑𝑧́
∞

−∞

∞

−∞
,                 (2) 

where, 

   𝐫 = 𝑥 𝐚̂x + 𝑦 𝐚̂y,              (3) 

where 𝑥 and 𝑦 are the horizontal coordinates of the point 

on the rough surface. 

 

A. Ergodicity, isotropy and anisotropy of the rough 

surface and the spatial correlation function 

In statistics, the term "ergodic" describes a random 

process for which the global average of one sequence  

of events is the same as the ensemble average. If the 

ensemble average is dependent on the ensemble chosen, 

(i.e. the mean varies from ensemble to ensemble), then 

the random process is not ergodic. It happens frequently 

that each realization of the ensemble carries the same 

statistical information about the homogeneous random 

process as every other realization. The spatial averages 

calculated for any realization are then all equal and 

coincide with the ensemble average. The homogeneous 

random process is then said to be an ergodic process. 

A rough surface is called homogeneous if the 

characteristics of the surface height distribution over the 

horizontal dimensions do not change with the horizontal 

location on the surface. Consequently, the height-height 

correlation between two points on the surface will 

depend only on the vector difference, 𝐫 − 𝐫́, between  

the horizontal locations, 𝐫 and 𝐫́, of the two points. The 
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rough surface is called isotropic if it has the same 

characteristics along any direction. For a homogeneous 

isotropic rough surface, the random process will be 

"isotropically ergodic" in all the directions. However, 

some homogenous rough surfaces have their height-

height correlation function dependent on the horizontal 

direction; such a rough surface is “directionally 

homogeneous” and, consequently, the random process 

for the surface heights is “directionally ergodic”. 

For isotropic homogeneous rough surface, the 

height-height correlation function depends only on the 

scalar horizontal distance between the two points. For 

directionally homogenous anisotropic rough surface the 

height-height correlation function depends on the vector 

distance between the two points and the expression (2) 

for the correlation function can be written as: 

𝐶𝑧𝑧(𝐫, 𝐫′) = 𝐶𝑧𝑧(𝑑𝑥 , 𝑑𝑦) 

            = ∫ ∫ 𝑧 𝑧′ 𝑝(𝑧, 𝑧′, 𝑑𝑥 , 𝑑𝑦)
∞

−∞

 𝑑𝑧 𝑑𝑧′,             (4)
∞

−∞

 

where, 

                      𝑑𝑥 = |𝑥 − 𝑥́|, 𝑑𝑦 = |𝑦 − 𝑦́|.                 (5) 
 

B. Two-point height-height probability distribution 

function 

The common types of natural rough surfaces have  

a Gaussian two-point joint probability distribution 

function for the heights of any two points on the surface 

of horizontal separations (𝑑𝑥 , 𝑑𝑦). 

The correlation length can be qualitatively defined 

as the maximum length over which two points are 

correlated. For directionally homogenous anisotropic 

rough surface, the Gaussian height-height probability 

density function can be expressed as follows: 

𝑝(𝑧, 𝑧′, 𝑑𝑥, 𝑑𝑦) =
1

2𝜋√𝜎4 − 𝐶𝑧𝑧
2 (𝑑𝑥 , 𝑑𝑦)

 

exp (−
𝜎2(𝑧2 + 𝑧′

2
) − 2𝑧𝑧′𝐶𝑧𝑧(𝑑𝑥 , 𝑑𝑦)

2𝜎4 − 2𝐶𝑧𝑧
2 (𝑑𝑥, 𝑑𝑦)

) , 

(6) 

 

where 𝐶𝑧𝑧(𝑑𝑥 , 𝑑𝑦) is the correlation function whose 

definition is given by (4). The power exponential, or 

Gaussian, correlation function can be expressed as: 

where 𝑙𝑐𝑥 and 𝑙𝑐𝑦  are the correlation lengths in the 𝑥 and 

𝑦 directions, respectively. 
 

III. SPATIAL CORRELATION OF 

UNCORRELATED RANDOM NUMBERS 

USING SGF 
As the most important and critical process for 

creating a natural model of rough surface is to correlate 

the heights of the adjacent points of a two-dimensional 

array with the required correlation length, this section is 

dedicated for the description of the application of SGF 

[25] on a one-dimension of set of uncorrelated random 

numbers. The generalization of the method to correlate a 

two-dimensional set is then described. 

The concept of smoothing can be thought of as 

removing the effect of noise (spatially uncorrelated 

random values) from a set of measured values. This can 

simply be achieved by replacing each data point by the 

average of the surrounding points, because nearby points 

measure values almost close to each other, so averaging 

will reduce the effect of the noise. 

SGF belongs to the category of digital filters. It is a 

well-adapted low pass filter used for smoothing data. 

SGF is used to smooth data in the domain of the data 

generation, it doesn’t require to Fourier transform the 

data to another domain to remove undesired components 

and transform back.   

For correlating a set of random numbers that 

represent the values of a random function 𝑧(𝑥) at equally 

spaced distances along x-direction, a digital filter is 

applied to the data values 𝑧𝑖 ≡ 𝑧(𝑥𝑖), where 𝑥𝑖 ≡ 𝑥𝑜 +
𝑖∆ and ∆ is a constant spacing between points, 𝑖 = ⋯−
2,−1,0,1,2,⋯. The simplest type of digital filter is the 

one that replaces each 𝑧𝑖 by a linear combination 𝑍i of 

itself and the neighboring points, that is,  

  𝑍𝑖 = ∑ 𝑐𝑛𝑧𝑖+𝑛
𝑛𝑅
𝑛=−𝑛𝐿

 ,                 (8) 

where 𝑛𝐿 is the number of the random values on the left 

of 𝑧𝑖, the desired value to be replace, and  𝑛𝑅 is the 

number of data points to the right of it; cn is the weights 

of averaging. Here it is assumed that we have a moving 

window of length 𝑛𝐿 + 𝑛𝑅 + 1 to sequentially scan  

the values of the vector z. In each step it replaces the 

value of the function 𝑧(𝑥) = 𝑧𝑖 at the center point of  

the window by the weighted average of itself and the 

neighbouring points. 

To understand the SGF, let’s start by considering the 

simplest case where all the points have the same weight 

in equation (8), i.e., 𝑐𝑛 = 1/ (𝑛𝐿 + 𝑛𝑅 + 1). If the 

function 𝑧 (𝑥) representing these set of points 

(−𝑛𝐿 𝑡𝑜 𝑛𝑅) is constant or is changing linearly with its 

argument 𝑥 (increasing or decreasing), then no bias is 

introduced in the resulting 𝑧 after applying the averaging 

filter. Under this condition, the moving average technique 

will preserve the zero-order and the first order harmonic 

of 𝑧. However, if the function 𝑧 has significant second 

or higher order components, these harmonics will be 

significantly affected or almost removed by applying  

a moving average filter. In case these higher order 

harmonics are of physical interest, then the application 

of such a moving averaging window filter will result  

in significant loss of information which may be 

unacceptable. The idea of SGF is to find coefficients 

𝑐𝑛 that preserve higher moments. Equivalently, the idea 

is to approximate the underlying function within the 

moving window not by a constant (whose estimate is the 

𝐶𝑧𝑧(𝑑) = 𝜎
2exp (−(

𝑑𝑥
2

𝑙𝑐𝑥
2
+
𝑑𝑦
2

𝑙𝑐𝑦
2
)) ,   (7) 
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average), but by a polynomial of higher order, typically 

quadratic, cubic or quartic. For each point 𝑍𝑖 a polynomial 

is least-squares fitted to all 𝑛𝐿 + 𝑛𝑅 + 1 points in the 

moving window, and then 𝑍𝑖  is set to be the value of  

that polynomial at position 𝑖. Simply, the quadratic 

polynomial will preserve the second order harmonic and 

the cubic will preserve the third order one and so forth. 

The smoothing polynomial is found using least square 

fitting which minimizes the sum of squared differences 

between an observed value, and the fitted value provided 

by the filter model. 

For a two-dimensional RRS extending in 𝑥- and 𝑦-

directions, the height 𝑧(𝑥, 𝑦) at each point represents the 

height function in the 𝑧-direction. The height 𝑧 is the 

function to be smoothed by the SGF. In this case the 

above procedure is applied on each row of the surface 

points and then applied on each column consecutively. 

Applying SGF to the generated Gaussian random heights 

constituting a rough surface will create a correlation 

between the heights of the neighbouring points for the 

surface. The aim is to correlate the surface points with a 

desired correlation length and preserve the Gaussian 

probability density function of the surface heights. 
 

IV. PROCEDURE OF GENERATION OF 

SPATIALLY CORRELATED GAUSSIAN 

ROUGH SURFACE 
The main idea behind the method presented here for 

generating a spatially correlated Gaussian rough surface 

is to spatially correlate the adjacent elements of two-

dimensional array of uncorrelated Gaussian numbers  

so as to satisfy the required statistical parameters of  

a natural rough surface as described in Section II. The 

properties of the resulting array after correlation shall 

satisfy the following requirements:  

- Gaussian distribution of the surface heights, 𝑔(𝑧), 
- zero mean, 𝜇 = 0, 

- The standard deviation is equal to the required root-

mean-squared height, 𝜎 = ℎ𝑟𝑚𝑠, 
- The required spatial correlation lengths (𝑙𝑐𝑥 and 𝑙𝑐𝑦  in 

𝑥 and 𝑦 directions, respectively), 

- The required height-height correlations function, 

𝐶𝑧𝑧(𝑑𝑥 , 𝑑𝑦), and, finally, 

- The required two-point joint probability distribution 

function for the surface heights 𝑝(𝑧, 𝑧′, 𝑑𝑥 , 𝑑𝑦). 

The procedure for the process of generating spatially 

correlated Gaussian rough surface is described in some 

detail in the following subsections. 
 

A. Generation of two-dimensional uncorrelated 

Gaussian random data 

Two-dimensional arrays of spatially uncorrelated 

random numbers can be generated to satisfy a set of 

predetermined statistical parameters such as a specific 

probability distribution, mean value and variance. Various 

generation methods are available in literature [26-28] 

and can be used to generate such two-dimensional 

arrays. To generate a realistic model for a natural ground 

surface, the first step of the procedure is to generate  

two-dimensional (𝑀 × 𝑁) array of Gaussian random 

numbers so as to fit the desired Gaussian probability 

density function. Let this two-dimensional array of 

uncorrelated random numbers be 𝐺(𝑀,𝑁): 

𝐺(𝑀,𝑁) = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑅𝑛𝑑𝐺𝑒𝑛(𝜇 = 0, 𝜎
= ℎ𝑟𝑚𝑠, 𝑀, 𝑁). 

(9) 

 

B. Refinement of the uncorrelated Gaussian random 

data 

To get improved resolution of the uncorrelated 

random number array and to get it more suitable for 

subsequent application of the SGF, the generated array 

is refined by linear interpolation to insert an element 

between each two successive elements of the random 

number array. This refinement is carried out in both  

rows (𝑥) and columns (𝑦) directions. The dimensions of 

the refined array for the heights of the rough surface 

are (2𝑀 × 2𝑁). Let the output array of this stage, or the 

refined version of 𝐺(𝑀,𝑁) be 𝐺(2𝑀, 2𝑁); this can be 

expressed as: 

𝐺(2𝑀, 2𝑁) = 𝑅𝑒𝑓𝑖𝑛𝑒{𝐺(𝑀,𝑁) }. (10) 

 

C. Application of SGF 

For correlating the heights of the adjacent points  

of 𝐺 the SGF, described in Section III, is applied as  

a smoothing window of length 𝑊 points moving 

sequentially on the array elements to scan the rows and 

then to scan the columns, thereby correlating all the 

sequential points lying within the window on both rows 

and columns. Thus, the SGF acts as a correlator for each 

group of 𝑊 neighbouring array elements. This process 

can be described by the following equation: 

𝐺(2𝑀, 2𝑁) = 𝑆𝐺𝐹{𝐺(2𝑀, 2𝑁,𝑊,𝑊) }. (11) 

It is clear that the output of the SGF, 𝐺(2𝑀, 2𝑁), is 

a two-dimensional array of correlated random numbers 

with correlation length of 𝑊 points in both the row (𝑥) 

and column (𝑦) directions. In this manner, the resulting 

rough surface has (𝑊 − 1) segments per correlation 

length in both 𝑥 and 𝑦 directions. The entire surface has 

resolution of (2𝑀 − 1) and (2𝑁 − 1) segments along 

the 𝑥 and 𝑦 directions, respectively. It is convenient to 

set (2𝑀 − 1) as well as (2𝑁 − 1) to be integer multiples 

of (𝑊 − 1). 
If one sets the horizontal separations between the 

successive surface rows and columns to ∆𝑥 and ∆𝑦, 

respectively, the resulting correlation lengths will be 

𝑙𝑐𝑥 = (𝑊 − 1)∆𝑥  and 𝑙𝑐𝑦 = (𝑊 − 1)∆𝑦. It should be 

noted that ∆𝑥 and ∆𝑦 can be arbitrarily set to get the 

predetermined values of 𝑙𝑐𝑥 and 𝑙𝑐𝑦 . In this way, the 
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width and length of the entire rough surface are 𝐿𝑥 =
 (2𝑀 − 1)∆𝑥 and 𝐿𝑦 = (2𝑁 − 1) ∆𝑦.  

For accurate results of EM scattering, the number of 

segments per correlation length should be large enough, 

i.e., 𝑊 − 1 ≫ 1. In the same time, the electrical length 

of one segment should be small enough, i.e., ∆𝑥 ≪ 𝜆 and 

 ∆𝑦 ≪ 𝜆, where 𝜆 is the free space wavelength. 

  

D. Preserving the required mean and standard 

deviation of resultant rough surface 

Due to the refinement and the application of SGF 

processes to the uncorrelated two-dimensional Gaussian 

numbers as described in Sections IV.B and IV.C,  

both the mean value and the standard deviation of the 

resulting may become different from the target values 

required for the final heights of the rough surface.  

Let the mean value and the variance of 𝐺 be: 

𝜇𝑆 = 𝑀𝑒𝑎𝑛(𝐺),  (12) 

𝜎𝑆
2 = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝐺) .   (13) 

To preserve zero mean of the finally generated 

rough surface, the mean value 𝜇𝑆 is subtracted from each 

element of the array 𝐺. The resulting array is then scaled 

by a factor ℎ𝑟𝑚𝑠/𝜎𝑆 to get the final value of the standard 

deviation equal to the target value, ℎ𝑟𝑚𝑠. This process 

can be described as follows: 

𝑧(2𝑀, 2𝑁) =
ℎ𝑟𝑚𝑠

𝜎𝑆
 (𝐺 − 𝜇𝑆). (14) 

 

E. Variogram for measuring the statistical properties 

of the final rough surface 

To check the fitness of the resulting spatially 

correlated rough surface to the predetermined statistical 

properties, a variogarm is calculated for numerical 

measurement of the variance ℎ𝑟𝑚𝑠
2  and the correlation 

lengths 𝑙𝑐𝑥 and 𝑙𝑐𝑦  in 𝑥 and 𝑦 directions, respectively. 

The variogram is an indication for of how the spatial data 

are related with distance, therefore it's a measure of  

the correlation length 𝑙𝑐 in a specific direction. The 

variogram for lag vector h is defined as the average 

squared difference of values separated approximately by 

h and is expressed as follows: 

   𝛾(𝐡) =
1

𝑁(𝐡)
∑[𝑧(𝐫∝ + 𝐡) − 𝑧(𝐫∝)]

2

𝑁(𝐡)

∝=1

, (15) 

where, 𝐡 = ℎ𝑥 𝐚̂𝑥 + ℎ𝑦 𝐚̂𝑦 is the lag vector representing 

the vector separation between two spatial locations,  

𝐫 = 𝑥 𝐚̂𝑥 + 𝑦 𝐚̂𝑦 is the horizontal vector of spatial 

coordinates, 𝑧(𝐫∝) is the (height) variable under 

consideration as a function of the spatial location 𝐫∝, 

𝑧(𝐫∝ + 𝐡) is lagged version of variable under 

consideration, 𝑁(𝐡) is the count of all pairs of points 

having vector separation h. 

Figure 1 shows a model plot of the variogram 

against the lag distance ℎ. After a long enough lag 

distance the plotted curve becomes constant and equal to 

the variance and the random data are no more correlated. 

The correlation length 𝑙𝑐 (in the direction of 𝐡) is the lag 

distance at which the variogram reaches about 63% of 

the variance whereas the range (3𝑙𝑐) is the lag distance 

at which the variogram reaches about 95% of the 

variance. 

By setting 𝐡 = ℎ𝑥 𝐚̂𝑥, the variogram can be plotted 

and fitted to the following exponential function from 

which one can deduce the correlation length in the 𝑥 

direction: 

𝛾(ℎ𝑥) = ℎ𝑟𝑚𝑠
2 (1 − 𝑒−ℎ𝑥/𝑙𝑐𝑥).    (16) 

Similarly, by setting ℎ = ℎ𝑦 𝐚̂𝑦, the variogram can 

be plotted and fitted to the following exponential 

function from which one can deduce the correlation 

length in the 𝑦 direction: 

𝛾(ℎ𝑦) = ℎ𝑟𝑚𝑠
2 (1 − 𝑒−ℎ𝑦/𝑙𝑐𝑦).  (17) 

 

 

Fig. 1. Variogram of the rough surface model. 

 

V. POLARIZATION CHARACTERISTICS 

OF THE SCATTERED NEAR FIELD  
To demonstrate the importance of generating a 

random rough surface for the simulation of 

electromagnetic polarimetric systems, an anisotropic 

rough surface with predetermined statistical properties is 

placed in the near field region of two coplanar linearly 

polarized antennas of orthogonal polarizations.  

The antenna arrangement is shown in Fig. 2. To 

account for the vertical and horizontal polarizations of 

the backscattered field, two orthogonal dipoles (crossed 

dipoles) are used as transmitter/receiver. One of the two 

dipoles is vertically oriented whereas the other one is 

horizontally oriented.  

The crossed dipole antennas are designed to get a 

perfect impedance matching for negligible reflection 

coefficient. The generated rough surface has a perfectly 

electric conducting material. It is shown that the self and 

mutual electromagnetic coupling coefficients of the two 

antennas can be used for measuring the orientation of the 

rough surface. 

Let 𝐸𝑣𝑡 and 𝐸𝑣𝑟  be the transmitted and received  

Lag distance (h) 

63% Sill 

𝑙𝑐 

No correlation 

95% Sill 

Range=3𝑙𝑐 

Sill 
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electric fields, respectively, at the port of the vertical 

dipole and let 𝐸ℎ𝑡  and 𝐸ℎ𝑟  be the transmitted and 

received electric fields, respectively, at the port of the 

horizontal dipole. 

 
 

Fig. 2. The configuration of the antenna system used to 

study the polarization characteristics of the near field 

scattered from the rough surface. 

 

The edges bounding the rough surface due to the 

geometrical truncation are not found in the real (natural) 

surfaces. For an incident plane wave the entire rough 

surface including its truncation edges will be illuminated; 

in this case, the edges would significantly contribute  

to the EM scattering. Therefore, a Gaussian beam may 

be a solution to avoid the surface edge contribution. 

However, in the present work another solution is 

employed to avoid such unwanted effect. The dipoles 

used to calculate the (near zone) scattering parameters 

are very short relative to the rough surface dimensions. 

Moreover, they are placed near the center of the 

truncated rough surface (i.e., far from the edges) which 

causes the interaction between the dipoles and the rough 

surface edges to be very weak and of insignificant 

contribution to the scattering parameters calculated at the 

antenna ports. 

Let the port of the vertical dipole be denoted as (1) 

and the horizontal one as (2). To calculate the co-

polarized component of the field backscattered from the 

arbitrary surface we consider the following parameters, 

𝑆𝑣𝑣 ≡ 𝑆11 =
𝐸𝑣𝑟(1)

𝐸𝑣𝑡
|
𝐸ℎ𝑡=0

,   (18) 

where 𝐸𝑣𝑟(1) is the electric field received by the vertical 

dipole when the same dipole is acting as a transmitter: 

𝑆ℎℎ ≡ 𝑆22 =
𝐸ℎ𝑟(2)

𝐸ℎ𝑡
|
𝐸𝑣𝑡=0

,   (19) 

where 𝐸ℎ𝑟(2) is the electric field received by the 

horizontal dipole when the same dipole is acting as a 

transmitter. Also, to calculate the cross-polarized 

component of the backscattered field we consider the 

following parameters: 

𝑆ℎ𝑣 ≡ 𝑆21 =
𝐸ℎ𝑟(1)

𝐸𝑣𝑡
|
𝐸ℎ𝑡=0

,   (20) 

where 𝐸ℎ𝑟(1) is the electric field received by the 

horizontal dipole when the vertical dipole is acting as a 

transmitter. 

𝑆𝑣ℎ ≡ 𝑆12 =
𝐸𝑣𝑟(2)

𝐸ℎ𝑡
|
𝐸𝑣𝑡=0

,   (21) 

where 𝐸𝑣𝑟(2) is the electric field received by the vertical 

dipole when the horizontal dipole is acting as a 

transmitter. 

 

VI. RESULTS AND DISCUSSION  
The presentation of the numerical results in this 

section aim to investigate the theoretical and procedural 

issues discussed in the previous sections. The capability 

of the algorithm developed for applying SGF to generate 

a random rough surface which maintains the target 

statistical parameters as required is numerically 

investigated. The numerical results concerned with the 

generation of a variety of both isotropic and anisotropic 

rough surfaces with various statistical parameters such 

the correlation lengths in 𝑥 and 𝑦 directions are presented. 

Other results are presented to verify that the generated 

rough surface realizes the target statistical parameters 

such as the overall Gaussian distribution of the surface 

heights, the correlation lengths in the different directions, 

the root-mean-squared height, the two-point height-height 

joint probability density function and the correlation 

function. Finally, the numerical results concerned with 

the polarization properties of the scattered field from 

rough surface are demonstrated for the purpose of 

relating the properties of the backscattered field to the 

statistical properties of the RRS itself.  

 

A. Application of SGF to spatially correlate two-

dimensional random data 

As described in Section 4.1, the first step of 

generating a spatially correlated random rough surface 

with the desired statistical properties is to generate a  

𝑀 × 𝑁 array of uncorrelated Gaussian random numbers 

with zero mean and unity variance. These random 

numbers can be considered as the heights of a spatially 

uncorrelated rough surface. The Matlab “normrnd()” 

function is used to generate 100 × 100 array of 

uncorrelated random numbers. A three-dimensional plot 

of such an array with 𝑀 = 𝑁 = 100 is shown in Fig. 3. 

These random numbers are 10,000 data samples of 

spatially uncorrelated heights, which are to be subjected 

to the procedure described in Section IV.C to generate 

the spatially correlated rough surface with the desired 

statistical properties. 
As described in Section IV.B, the resolution of the 

uncorrelated two-dimensional array presented in Fig. 3 

is doubled by inserting an extra point between each  

two successive points of the original array by linear 
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interpolation to obtain a two-dimensional array of 200 ×
200 elements. To get a spatially correlated rough surface 

of size 200 × 200 points with 18 points correlation 

length, the SGF with a smoothing window of 18-point 

length is applied to correlate the random numbers on 

each row and column as described in Section IV.C. 

Figure 4 shows the resulting spatially correlated 

Gaussian random rough surface with 𝜇 = 0, ℎ𝑟𝑚𝑠 = 1.0, 

and 𝑙𝑐𝑥 = 𝑙𝑐𝑦 = 18 points. Figure 5 presents a 

comparison between the spatially correlated rough 

surface (after the application of SGF correlation method) 

and the uncorrelated random numbers for 100 points 

lying on the central row of the two-dimensional array. 

 

 
 
Fig. 3. Plot of two-dimensional array of 100 × 100 

uncorrelated Gaussian random numbers with zero mean 

and unity standard deviation. 

 

 
 
Fig. 4. Plot of the spatially correlated rough surface 

generated by applying the procedure described in 

Section IV to the uncorrelated Gaussian array presented 

in Fig. 3. 

 

 
 

Fig. 5. Comparison between the spatially correlated 

rough surface and the uncorrelated random numbers for 

100 points lying on the central row of the two-

dimensional array. 

The correlation length can be numerically measured 

using the variogram as described in Section IV.E. The 

measured variogram of the generated RRS is plotted as 

shown in Fig. 6. The fitted curve for the variogram gives 

a correlation length of 18 points, which is exactly as 

desired. This indicates the accuracy and efficiency of the 

proposed method for generating a rough surface with 

predetermined statistical properties. 
 

 
 

Fig. 6. Variogram of the spatially correlated rough 

surface generated by the SGF correlation method. 
 

B. Comparative analysis between the spectral and 

spatial domain techniques of rough surface generation 

Numerical comparisons between the proposed 

spatial-domain method and the conventional spectral-

domain methods of generating RRS are presented. The 

following comparisons are concerned with accuracy  

of the statistical parameters of the generated RRS and 

some computational performance metrics such as the 

computational time and memory space requirements. 
 

B.1 Fitness of the generated rough surface to the 

predetermined statistical model 

One-dimensional 100-point resolution rough surfaces 

generated by the proposed spatial-domain method and 

the conventional spectral-domain method are presented 

in Fig. 7 (a) and Fig. 7 (b), respectively.  
 

 
  (a) Spatial-domain technique 

 
  (b) Spectral-domain technique 
 

Fig. 7. One-dimensional rough surfaces generated by the 

spatial-domain and the spectral-domain methods. 
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Three-dimensional plots of 20 × 20 cm rough 

surfaces generated using both the spatial and spectral 

domain techniques are presented in Fig. 8 (a) and Fig. 8 

(b), respectively. Both surfaces are isotropic with 𝑙𝑐𝑥 =
 𝑙𝑐𝑦 = 2 cm. Figure 9 presents anisotropic rough surfaces 

generated using both techniques with 𝑙𝑐𝑥 = 0.2𝑙𝑐𝑦 =

2 cm. The corresponding variograms of the two rough 

surfaces are plotted in Fig. 10. Comparing the variograms 

of the two surfaces shows that both the spatial-domain 

and spectral-domain methods are successful in generating 

rough surfaces that accurately satisfy the predetermined 

statistical properties. 
 

 
(a) Spatial-domain technique 

 
(b) Spectral-domain technique 

 

Fig. 8. Rough surfaces of dimensions 20 × 20 cm 

generated using the spatial and spectral methods, 𝑙𝑐𝑥 =
 𝑙𝑐𝑦 = 2 cm. 
 

 
(a) Spatial-domain technique 

 
(b) Spectral-domain technique 

 

Fig. 9. Rough surfaces of dimensions 20 × 20 cm 

generated using the spatial and spectral methods, 𝑙𝑐𝑥 =
 0.2𝑙𝑐𝑦 = 2 cm 

B.2. Computational performance 

To generate a surface of 𝑁 × 𝑁 discrete points using 

the spectral domain method described in Appendix A, 

one has to compute a two-dimensional (𝑁 × 𝑁) IDFT. 

For large values of 𝑁, this takes a substantially larger 

computational time than that taken by the proposed 

spatial-domain method to generate the same surface. 

For the sake of comparing the computational 

performance of the proposed spatial domain technique to 

that of the conventional spectral domain one, a 10 ×
10 𝑐𝑚 rough surface with statistical parameters: 𝑙𝑐𝑥 =
𝑙𝑐𝑦 = 1 cm, 𝜎 = 1 cm and  𝜇 = 0, has been generated 

using both of them. The surface dimensions are 𝑁 × 𝑁 

points; a higher value of 𝑁 produces a surface of higher 

resolution. 
 

 
(a) Spatial-domain technique 

 
(b) Spectral-domain technique 

 

Fig. 10. Variograms of the spatially correlated rough 

surfaces generated by the proposed SGF correlation 

method and the spectral-domain method. 

 
B.2.1. Improved computational time 

The computational time required to generate a 

square random surface of 𝑁 × 𝑁 points (using a specific 

computer) is plotted against  𝑁 as shown in Fig. 11  

for both the spectral-domain and the spatial-domain 

methods. It is clear that the spatial-domain method takes 

substantially less time than that taken by the spectral 

domain method.  

Figure 12 shows a plot of the percentage of the 

computational time taken by the proposed spatial-

domain method relative to that taken by the spectral-

domain method. It is clear that the computational time is 

reduced by about 20%-35% when compared to the time 
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taken by the spectral domain method depending on the 

surface resolution. 
 

 
 

Fig. 11. Computational time required for generating 

square rough surface of dimensions 𝑁 × 𝑁 points. 
 

 
 

Fig. 12. Percentage of computational time taken by the 

proposed spatial domain method relative to that taken by 

the spectral domain method. 
 

B.2. Improved memory space 

According to the algorithm of the spectral-domain 

method as described in Appendix A, the two-dimensional 

complex arrays 𝐹(𝑘𝑝, 𝑘𝑞) and its inverse Fourier transform 

𝑓(𝑥𝑚, 𝑦𝑛) require a storage capacity of 2 × (𝑁 × 𝑁) ×
16 bytes. According to the algorithm of the spatial-

domain method as described in Section VI, the two-

dimensional array 𝐺 requires a storage capacity of 
(𝑁 × 𝑁) × 8 bytes. This means that the percentage of 

the memory space reduction due to the application of the 

spatial domain method instead of the spectral domain 

method can be expressed as: 

𝑀𝑒𝑚𝑜𝑟𝑦 𝑆𝑝𝑎𝑐𝑒 𝑅𝑒𝑑𝑢𝑡𝑖𝑜𝑛 (%) 

= 
(𝑁×𝑁)×8

2×(𝑁×𝑁)×16
× 100 % = 25 %.  (22) 

 

C. Polarization characteristics of the near field 

scattered from finite rough surfaces 

The aim of this section is to find the relation 

between the polarization characteristics of the near field 

scattered from a rough surface and the geometrical and 

statistical properties of the surface. For this purpose, and 

before going into a deep study of the rough surface 

response to EM waves, we study the polarization 

characteristics of the near field scattered from a square 

conducting sheet whose heights are given as sinusoidal 

variation in one direction (𝑥) and constant with the other 

direction (𝑦). For polarimetry, a crossed-dipole antenna 

arrangement is used for transmission and reception. For 

accurate polarimetry, both of the crossed dipoles should  

be designed to have perfectly matched impedance. 
 

C.1. Crossed-dipole antenna characteristics 

This section is concerned with the design of the 

crossed-dipole antenna arrangement to get perfect 

impedance matching for accurate estimation of the EM 

polarization properties of the field scattered from the 

surface under consideration. This antenna arrangement 

consists of co-planar vertical and horizontal dipoles as 

shown in Fig. 13. Each dipole has a length 𝑙, diameter 𝑑 

and excitation gap width 𝑔. The main goal is to get the 

optimum values of  𝑙, 𝑑 and g for minimum return loss at 

the dipole antenna ports. 

The dipole parameters are set to 𝑙 =  2.7 𝑐𝑚, 𝑑 =
𝑙/20 and 𝑔 = 𝑙/18. The numerical results for the 

variation of the input impedance of this dipole with the 

frequency are presented in Fig. 14. It is shown that the 

imaginary part of the input impedance is zero at a 

frequency of 4343 MHz where the real part is about 

44 Ω. To obtain perfect matching of the dipole antenna 

the operation should be achieved at this frequency with 

𝑍0 set to 44 Ω in the numerical simulation. Figure 14 

shows a plot of the reflection coefficient, 𝑆11, against the 

frequency. It is shown that  𝑆11 has a minimum value of 

−47 dB at a frequency of 4343 MHz. 
 

 
 

Fig. 13. The crossed-dipole antenna arrangement. 
 

 

 
 

Fig. 14. Variation of the dipole input impedance and  

the reflection coefficient  𝑆11 with the frequency; 𝑙 =
 2.7 cm, 𝑑 = 𝑙/20 and 𝑔 = 𝑙/18. 

𝑙 

𝑑 

𝑔 

𝑙 
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C.2. Mutual coupling between sinusoidal surface and 

a nearby antenna 

A surface taking the shape of sinusoidal wave is 

generated with a wave length of 𝜆𝑠 and is placed in the 

𝑥𝑦 plane. The heights of the points of this surface are 

described by the equation, 

𝑧(𝑥) = 𝐴 sin (
2𝜋𝑥

𝜆𝑠
) ,   (22) 

where 𝐴 is the amplitude of the sinusoidal height 

variations. The surface dimensions are set to 20 ×
20 cm,  𝐴 = 0.8 cm and 𝜆𝑠 = 1.7 cm. 

As shown in Fig. 15, the crossed dipole antennas 

described in section V are located at a distance 𝐿𝑥 =
1.72 cm from the sinusoidal sheet. The plane of the 

crossed dipoles is parallel to the sheet. The scattering 

parameters required to study the polarization 

characteristics of the near field are calculated as 

described in section V. For convenience, the 𝑦-oriented 

dipole will be referred-to as the vertical dipole whereas 

the 𝑥-oriented dipole will be referred-to as the horizontal 

one. For demonstrating the dependence of the 

backscattered field on the orientation of the sinusoidal 

sheet the scattering parameters are calculated while the 

surface rotates from 0° to 90° about the z-axis. 
 

 
 

Fig. 15. The crossed dipole antennas are placed facing 

the center of the sinusoidal sheet. 

 

The co-polarized scattering parameters 𝑆11 and 𝑆22  
and the cross-polarized scattering parameters 𝑆12 and  

𝑆21  are plotted with the angle of rotation (𝜃) of the 

sinusoidal sheet. As shown in Fig. 16, the scattering 

parameter of the vertical dipole 𝑆11  has a value of 

−7.4 dB at 𝜃 = 0° where the vertical dipole is parallel to 

the straight lines of the sinusoidal sheet. With increasing 

the angle of rotation, the scattering parameter 𝑆11  
decreases reaching a minimum value of −11 dB at 𝜃 =
90° where this dipole is perpendicular to the straight 

lines of the sinusoidal sheet. Similarly, the scattering 

parameter 𝑆22  reaches a maximum value of −7.2 dB at 

𝜃 = 90°  and a minimum value of −11 dB at 𝜃 = 0°. 

As shown in Fig. 16, the cross-polarized parameters 

𝑆12  and 𝑆21  have their minimum values (−69.8 dB) at 

𝜃 = 0°  and 𝜃 = 90°, i.e., when one of the dipoles is 

parallel to the straight lines of the sinusoidal sheet. They 

reach their maximum values (−15 dB) at θ = 45°, i.e., 

when the straight lines of the sinusoidal sheet make an 

angle of  45° with each dipole. 

In conclusion, the orientation of the sinusoidal sheet 

around the 𝑧-axis can be indicated by the scattering 

parameters 𝑆11, 𝑆22 , 𝑆21 and 𝑆12 , and hence these 

scattering parameters can be used as polarimetric 

parameters for scatterers having geometrical shape 

similar to the sinusoidal sheet. 
 

 
 

Fig. 16. Variation of the scattering parameters (𝑆11 , 𝑆22 , 
𝑆21 and 𝑆12 ) with the rotational angle of the sinusoidal 

surface around 𝑧-axis. 
 

C.3. Ensemble size for converging backscattering 

coefficients 

The purpose of the following discussion is to 

investigate the rate of convergence of the coefficients of 

backscattering from rough surfaces generated using both 

the spectral-domain and the spatial-domain methods 

with increasing the ensemble size (number of sample 

rough surfaces over which the results are averaged). 

More precisely, it is required to get the minimum size of 

the ensemble to get converging results. 

For this purpose, a crossed-dipole antenna with 

same parameters as described in Section VI.C.1 is placed 

at a distance 𝑳 = 𝟏. 𝟕𝟐 𝐜𝐦 from a 𝟐𝟎 × 𝟐𝟎 cm rough 

surface of the statistical parameters: 𝒍𝒄𝒙 = 𝒍𝒄𝒚 = 𝟏. 𝟖 𝐜𝐦, 

𝒉𝒓𝒎𝒔 =  𝟎. 𝟓 𝐜𝐦. The scattering parameters 𝑺𝟏𝟏  and 

𝑺𝟐𝟐  representing copolarized bacscattered EM field are 

investigated at 𝒇 = 𝟒𝟑𝟒𝟑 𝐌𝐇𝐳.  

The results for the variation of the averaged 𝑆11  and 

𝑆22  with the ensemble size using the spectral and spatial 

domain methods are presented in Fig. 17 and Fig. 18, 

respectively. It is clear that both methods are fast 

convergent and a minimum ensemble size of 5 is fairly 

acceptable for both of them. 
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Ensemble Size 

 

Fig. 17. Convergence of 𝑆11  and 𝑆22 with increasing the 

ensemble size of rough surfaces generated using the 

spectral domain method. 

 

 
Ensemble Size 

 

Fig. 18. Convergence of 𝑆11  and 𝑆22 with increasing the 

ensemble size of rough surfaces generated using the 

spatial domain method. 

 

C.4. Polarization characteristics of the mutual 

coupling between rough surfaces and nearby antennas 

In this section we study the EM scattering from 

various anisotropic rough surfaces; each with a 

correlation length in one direction relatively larger than 

that in the perpendicular direction, for example, 𝑙𝑐𝑦 >

𝑙𝑐𝑥 . It is expected that the larger the ratio 𝑙𝑐𝑦/𝑙𝑐𝑥 , the 

closer the polarization characteristics of the near field 

scattered from the rough surface to that of the sinusoidal 

sheet studied in Section VI.C.2. 

For this purpose, we demonstrate anisotropic rough 

surfaces with various ratios of the correlation lengths: 

𝑙𝑐𝑦 /𝑙𝑐𝑥 = 20,10, 5, 1; each with dimensions 20 × 20 

cm. The geometrical models of these rough surfaces  

are presented in Fig. 19. The scattering parameters 

concerning the co-polarization and cross polarization of 

the backscattered field are compared to those obtained 

for the sinusoidal surface, which are presented in Section 

VI.C.2.  

Figure 20 shows the variation of the co-polarized 

and cross-polarized scattering parameters with the 

rotational angle 𝜃, from 𝜃 = 0°  to 𝜃 = 90° for each of 

the rough surfaces described above. 

In Fig. 20 (a) it is clear that, for the rough surface 

with 𝑙𝑐𝑦 /𝑙𝑐𝑥 = 20, the variations of both the co-

polarized and cross-polarized scattering parameters with 

the rotational angle 𝜃 are closer to the behavior of those 

parameters for the sinusoidal sheet presented in Fig. 16. 

The maximum difference between 𝑆11 and 𝑆22 occurs at 

𝜃 = 0°  and 𝜃 = 90°  where it is equal to about ±2.5 dB. 
 

 
(a) Rough surface with 𝑙𝑐𝑦 = 20 𝑙𝑐𝑥  

 
(b) Rough surface with 𝑙𝑐𝑦 = 10 𝑙𝑐𝑥 

 
(c) Rough surface with 𝑙𝑐𝑦 = 5 𝑙𝑐𝑥  

 
(d) Rough surface with 𝑙𝑐𝑦 = 𝑙𝑐𝑥 

 

Fig. 19. The generated rough surfaces with different 

correlation lengths. 
 

For such a rough surface, the cross-polarized 

scattering parameters 𝑆12  and 𝑆21  have their minimum 

values (about −40 dB) near 𝜃 = 0°  and 𝜃 = 90°, i.e., 

when one of the dipoles is approximately parallel to the 

direction of the larger correlation length. They reach 

their maximum values (about−23 dB) near 𝜃 = 45°, 
i.e., when each dipole makes an angle of about 45° with 

the direction of larger correlation length. This makes 

ACES JOURNAL, Vol. 34, No. 1, January 2019158



 

analogy with the same results concerning the sinusoidal 

sheet, presented in Fig. 16. 
 

 
(a) 𝑙𝑐𝑦 /𝑙𝑐𝑥 = 20 

 
(b) 𝑙𝑐𝑦 /𝑙𝑐𝑥 = 10 

 
(c) 𝑙𝑐𝑦 /𝑙𝑐𝑥 = 5 

 
(d) 𝑙𝑐𝑦 /𝑙𝑐𝑥 = 1 

 

Fig. 20. Variation of the scattering parameters with  

the rotational angle of the rough surface around 𝒛 

considering the backscattered field from a  𝟐𝟎 × 𝟐𝟎 cm 

rough surface of 𝐥𝐜𝐱 = 𝟎. 𝟖𝟓 𝐜𝐦, 𝐡𝐫𝐦𝐬 =  𝟎. 𝟒 𝐜𝐦. 

For the rough surfaces with lower ratios (𝑙𝑐𝑦 /𝑙𝑐𝑥), 

the behaviour of both the co-polarized and cross-polarized 

scattering parameters with varying the rotational angle 𝜃 

are significantly different from those of the sinusoidal 

sheet. For isotropic rough surface (𝑙𝑐𝑦 = 𝑙𝑐𝑥), as shown 

in Fig. 20 (d), the parameters 𝑆11 and 𝑆22 are very close 

to each other indicating very weak polarization 

discrimination of the EM backscattering from such a 

surface. 

 

VII. SUMMARY AND CONCLUSION 
A computationally efficient and inexpensive spatial-

domain technique for generating spatially-correlated 

random rough surface with predetermined statistical 

properties using the SGF is described and examined  

by generating a variety of random rough surfaces with 

various statistical properties. It is shown that the 

generated rough surfaces fit the required Gaussian 

distribution and the other statistical properties including 

the mean value, the root-mean-squared height and the 

correlation lengths in the different directions with 

accuracy not less than 97%.  

The importance of generating such rough surfaces 

for simulating the fully polarimetric land imaging 

systems are demonstrated by investigating the polarization 

properties of the near field scattered by various isotropic 

and anisotropic rough surfaces.  

It is shown that the cross-polarized component of 

the near field scattered from anisotropic rough surfaces 

is significantly increased especially when the correlation 

length in one direction along the rough surface is much 

larger than that in the perpendicular direction. 

For a rough surface with 𝑙𝑐𝑦 ≫ 𝑙𝑐𝑥 , the cross-

polarized component of the backscattered field has its 

minimum value near 𝜃 = 0°  and 𝜃 = 90°, i.e., when one 

of the dipoles is approximately parallel to the direction 

of the larger correlation length. They reach their 

maximum values near 𝜃 = 45°, i.e., when each dipole 

makes an angle of about 45° with the direction of larger 

correlation length. 
 

APPENDIX A. SPECTRAL-DOMAIN 

METHOD OF ROUGH SURFACE 

GENERATION 
To generate a random rough surface of dimensions 

𝐿 × 𝐿 with resolution 𝑁 × 𝑁 discrete segments, the 

spectral-domain-method obtains the surface heights 

𝑧𝑚𝑛 = 𝑓(𝑥𝑚, 𝑦𝑛) by calculating the following IDFT for 

each point (𝑥𝑚 , 𝑦𝑛);  𝑚, 𝑛 = 1,2, . . , 𝑁 of a uniform 

horizontal two-dimensional grid [22]: 

𝑓(𝑥𝑚 , 𝑦𝑛)

=  
1

𝐿2
∑ ∑ 𝐹(𝑘𝑝, 𝑘𝑞)

𝑁
2
−1

𝑞=−
𝑁
2

𝑒𝑗(𝑘𝑝𝑥+𝑘𝑞𝑦)

𝑁
2
−1

𝑝=−
𝑁
2

, 
    (A.1) 
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where, 

𝐹(𝑘𝑝, 𝑘𝑞) = 2𝜋𝐿√𝑊(𝑘𝑝, 𝑘𝑞) 

{
 

  
𝑁(0,1) + 𝑗𝑁(0,1)

√2
, 𝑝, 𝑞 ≠ 0,

𝑁

2

𝑁(0,1), 𝑝, 𝑞 = 0,
𝑁

2

𝐿, 

(A.2) 

where 𝑘𝑝 and 𝑘𝑞 are the discrete set of spatial frequencies 

and are expressed as: 

𝑘𝑝 =
2𝜋𝑝

𝐿
, 𝑘𝑞 =

2𝜋𝑞

𝐿
, (A.3) 

𝑊(𝑘𝑝, 𝑘𝑞) is the power spectral density function of the 

surface and is expressed as: 

𝑊(𝑘𝑝, 𝑘𝑞) =
𝑙𝑐𝑥  𝑙𝑐𝑦  ℎ𝑟𝑚𝑠

4𝜋
 e 

1
4(−𝑘𝑝

2𝑙𝑐𝑥
2 −𝑘𝑞

2𝑙𝑐𝑦
2 ). (A.4) 

For 𝑓(𝑥, 𝑦) to be real the following condition 

should be satisfied: 

𝐹(𝑘𝑝, 𝑘𝑞) = 𝐹
∗(−𝑘𝑝, −𝑘𝑞). (A.5) 
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