
Biomimetic Radar Target Recognition Based on Hypersausage Chains 
 

 

Huan-Huan Zhang and Pei-Yu Chen 
 

The School of Electronic Engineering 

Xidian University, Xi'an, 710071, China  

hhzhang@xidian.edu.cn 

 

 

Abstract ─ A biomimetic radar target recognition 

method is proposed in this paper. From a geometrical 

perspective, the high resolution range profiles of radar 

targets are considered as points in high-dimensional 

feature space. Hypersausage chains are used to cognize 

the low-dimensional manifold embedding in the  

high-dimensional space. The topological framework 

construction algorithm for a hypersausage chain is 

improved and described in detail. A procedure for  

a reasonable selection of the hypersphere radius is  

also involved, which guarantees both acceptable 

generalization capability and excellent rejection capability 

of the classifier. The performance of proposed method is 

compared with the commonly used support vector 

machine (SVM) method with a radial basis function 

kernel or a polynomial kernel. Simulation results show 

that our proposed method outperforms the SVM methods 

in anti-noise capability, generalization capability and 

especially rejection capability. 

 

Index Terms ─ Biomimetic radar target recognition, 

high resolution range profiles, hypersausage chains, 

manifold. 
 

I. INTRODUCTION 
With the widespread application of high resolution 

radars, high resolution range profile (HRRP) of radar 

targets becomes more and more accessible. HRRP 

carries information of target scattering centers distribution 

along the radar pointing direction, which reflects details 

of target structure such as scatterer centers strength, 

scatterer centers position, target size and so on. Therefore, 

HRRP plays an increasingly important role in the field 

of radar automatic target recognition (RATR) [1]–[5]. 

There is a common process flow in a typical radar 

HRRP target recognition system. Provided that the wide 

band electromagnetic scattering field and the raw HRRP 

of the target is obtained, a preprocessing procedure, 

which contains alignment, localization, averaging and 

normalization, will be carried out firstly to improve  

the quality of raw HRRP. Then a feature extraction 

procedure is used to select proper feature vectors for the 

classifier. Four kinds of feature vectors are frequently 

used in existing literature: 1) HRRP after preprocessing 

procedure, this means classification procedure is 

conducted directly after preprocessing. 2) Transformation 

of HRRP, such as differential power spectrum [6], 

bispectrum [7], [8], higher order spectra [9] and so on. 

All of these features can eliminate the sensitivity of the 

HRRP to the translation of target in the range window. 

3) Target structure information extracted from HRRP, 

such as the amplitude of scatterer centers, scatterer centers 

position, target length and so on. 4) Dimensionality 

reduction of HRRP using principal component analysis 

(PCA), linear discriminant analysis (LDA), neighborhood 

preserving projections (NPP) [10] and so on. These 

dimensionality reduction methods can also be used after 

2) or 3). The application of these methods can avoid  

the curse of dimensionality and facilitate the classifiers. 

It can be conclude that the sensitivity of HRRP to 

translation can be eliminated or the dimensionality of 

HRRP vectors can be reduced based on the feature 

vectors in 2) to 4). But some transformation methods and 

dimensionality reduction methods will cause loss of 

information and influence the recognition accuracy.  

So provided that the preprocessing procedure is done 

well enough to eliminate the sensitivity of HRRP to 

translation and the classifier is efficient to handle high 

dimensional data (It can be seen that the proposed 

method is very convenient to deal with high dimensional 

data), we directly use the HRRP after preprocessing 

procedure as feature vectors in this paper. Finally the 

classifier will give the recognition result by using the 

feature vectors. 

Many traditional statistical learning methods have 

been used as classifier in radar target recognition, such 

as neural networks (NN) [11]–[13], genetic programming 

[14], support vector machine (SVM) [15]–[18] and so 

on. These methods always aim at best distinguishing the 

samples of different classes based on their differences in 

feature space. Taking the SVM method as an example, it 

maps the training samples to a higher dimensional space 

and finds a linear separating hyperplane with the 

maximal margin for them. However, people cognize 

things in a very different manner. When you see a new 

thing, your first response is that you are not familiar with 
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it rather than to compare it with things you know. The 

latter is the manner in which traditional statistical 

learning methods do. This reflects that people focus on 

cognizing things whereas traditional statistical learning 

methods are concerned with distinction of things. It is 

not difficult to foresee that the latter will suffer from  

two drawbacks in radar target recognition. First, if 

encountering a new target without learning, it cannot 

realize that the target is not trained. It can only assign it 

to one of the trained target constrainedly, which makes 

the rejection capability of traditional statistical learning 

methods very poor. Second, if a new target needs to be 

learned, we must add its samples to the database and 

retrain samples of all classes. This makes the efficiency 

of traditional statistical learning methods very low when 

training new samples. Imitating the cognitive nature of 

human, a biomimetic pattern recognition method based 

on hypersausage chain was proposed [19]–[21]. In this 

paper, we improve this method and apply it to radar 

target recognition. The experiment results show that  

the proposed method has better anti-noise capability, 

generalization capability and especially rejection 

capability compared with the SVM method. It is worth 

mentioning that the proposed method works in optical 

scattering region. For the radar target recognition method 

in resonance region, there also exist some works which 

focus on discriminating unknown targets from known 

targets [22], [23].  

The remainder of this paper is organized as follows. 

Section II describes the raw HRRP database prepared for 

radar target recognition. In Section III, we introduce the 

biomimetic radar target recognition algorithm based on 

hypersausage chains. Section IV shows the experiments 

and results. Finally, section V gives some conclusions. 

 

II. DATA PREPARATION 
A raw HRRP database is built for five scaled models 

(F15, F117, VFY218, plane model and missile model). 

Physical optical (PO) method [24]–[26] is employed to 

simulate the VV polarization backscattering field of 

them at an elevation angle of 10°. For the computation 

of F15, F117 and VFY218 models, the azimuth angle is 

changed continuously from 0° (nose-on direction) to 90° 

with an interval of 0.4°. For the simulation of the plane 

and missile models, 75 azimuth angles are selected 

randomly from 0° to 90°. In each angle, 201 frequencies 

from 8GHz to 12GHz with a frequency step of 20 MHz 

are calculated, yielding 4GHz bandwidth. Then the  

raw range profiles are obtained by inverse fast Fourier 

transform (FFT). At last, each raw range profile is 

normalized by their maximum and minimum so that 

values of each range profile are scaled to between 0 and 1. 

It can be found through above description the 

database has 226 range profiles for F15, F117, VFY218 

models separately and 75 range profiles for plane, 

missile models separately. In the experiment stage, we 

will only use some range profiles of F15, F117, VFY218 

models to train the classifier and the other range profiles 

will be used to test the performance of the classifier. 

 

    
   (a) VFY218  (b) F15 (c) F117 

                  
 (d) Missile (e) Plane 

 

Fig. 1. Five meshed models. 
 

 
   (a) Range profiles of VFY218 model 

 
   (b) Range profiles of F15 model 

 
   (c) Range profiles of F117 model 

 
Fig. 2. Range profiles of three models. 

 

The five scaled models are shown in Fig. 1. The 

sizes of them are shown in Table 1. By considering the 
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frequency range and the dimensions of the targets, we can 

find that they fall into optical scattering region. The 

normalized range profiles of F15, F117, VFY218 models 

are illustrated in Fig. 2. As evidenced by Fig. 2, the  

range profiles of targets are very sensitive to the azimuth 

angle, which implies that radar HRRP target recognition 

requires plenty of range profiles from various azimuth 

angles to guarantee reliable recognition accuracy. As 

mentioned in the introduction, the above normalized 

range profiles will be used directly as feature vectors for 

the classification experiment in Section IV. 

 

Table 1: The dimensions of five targets 

Targets 
Length 

(m) 

Width 

(m) 

Height 

(m) 

Scaling 

Ratio 

VFY218 3.09 1.78 0.82 4.85 

F15 3.00 2.10 0.66 6.48 

F117 3.00 2.03 0.37 6.69 

Missile 2.99 1.17 1.17 1.00 

Plane 3.00 2.97 0.87 9.53 

 

III. BIOMIMETIC RADAR TARGET 

RECOGNITION BASED ON 

HYPERSAUSAGE CHAINS 

A. Theory and principle 

The theoretical basis of biomimetic pattern 

recognition is the principle of homology-continuity (PHC), 

which points out that samples from the same class 

change gradually and continuous variation sequences 

exist between any two samples of same class. This 

principle implies that biomimetic pattern recognition 

takes advantage of some prior knowledge of samples. It 

is obvious that the radar HRRP feature also obeys this 

principle. So the biomimetic pattern recognition method 

can be applied to radar target recognition problems. In 

the following of this paper, we will use biomimetic radar 

target recognition (BRTR) to call the proposed method. 

For the realization of BRTR, a range profile from 

some class is considered to be a point in high-dimensional 

space. All the range profiles of the same class can be 

represented as a point set. Base on the PHC, neighboring 

points of the point set have strong correlations. This can 

produce observation which lies on low-dimensional 

manifold. So we can use some geometry to cover the 

low-dimensional manifold of a target if we want to 

cognize the target. In the context of radar target 

recognition, we believe that one-dimensional (1D) 

connectivity takes a major role among possible types of 

connectivity. So we consider a manifold resulted from a 

product of a hyper-sphere and a 1D continuous curve, 

where the 1D continuous curve represents the trend  

of the manifold and the hyper-sphere indicates the 

perturbance in other directions. For the sake of efficient 

implementation, a hypersausage chain (shortly HSN 

chain) formed by moving the center of a hypersphere 

along a chain of line segments is used as an 

approximation model to this kind of manifold. It can be 

observed that such a hypersausage chain is composed of 

many sausage-like units, each of which stems from the 

product of a hypersphere with a line segment. This kind 

of sausage-like unit is termed as hyper sausage neuron 

(HSN). The 2D models of HSN chain and HSN are 

illustrated in Fig. 3, where ax  and bx  are the two nodes 

of the line segment, r is the radius of the hypersphere. 

According to the above theory, the main task in the 

training stage of biomimetic radar target recognition is 

to find proper hypersausage chains to cover the low-

dimensional manifold of different classes. This can be 

done in two steps. First, the chain of line segments, 

which is the topological framework of the HSN chain, 

must be constructed. Second, the radius of the hypersphere 

must be determined. III-B and III-C will introduce these 

two steps, respectively. 
 

ax bx

r r

 
 (a) HSN chain (b) HSN 

 

Fig. 3. 2D model of HSN chain and HSN. 

 

B. Topological framework construction algorithm 

First of all, we choose the HRRP vector of the first 

angle as the starting node of the first hyper sausage 

neuron. Then HRRPs of other angles can be sorted based 

on this reference point according to the sorting criterion 

that the mid HRRP vector is more close to the former 

HRRP vector than the latter one among three adjacent 

HRRP vectors. This guarantees that HRRP vectors in the 

high dimensional space change continuously. Using X to 

represent the set of ordered range profiles from some 

target, the aforementioned criterion can be described as: 

    i i-1 i i-1 i+1= , , ,

1, 2, , ,

X d

i Na

  



x x x x x
            (1)  

where ix  represents the ith range profiles.  , x y  

refers to the Euclidean distance between vectors x and y. 

Na denotes the number of range profiles used as training 

data set. The topological framework of the HSN is 

formed by a subset of X whose elements are elaborately 

selected as the nodes of the hypersausage neurons and 

can reflect the trend of all the HRRP vectors in high-

dimensional space. We use S to represent this subset, 

where  iS  s , 11,2, ,i n  ,  1n Na . Because the two 
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nodes of each hypersausage neuron is determined in the 

same manner and the start node of the latter neuron is the 

end node of the former neuron (the start node of the first 

neuron is the first HRRP vector in X, namely 
1x ), we 

will only take one hypersausage neuron as an example  

to introduce the method for its end node selection in  

the following of this section. The whole topological 

framework of the HSN will be constructed after the 

nodes of all hypersausage neurons are determined. The 

entire algorithm will be described at the end of this 

section. 

Assuming that 
j Xx  refers to the start node of  

a neuron, 
1  represents the filter interval, 

2  denotes 

the disturbance tolerance, d is the Euclidean distance 

between current filtered HRRP vector and the start node, 

j+1 j+2 Na
, ,x ,x x  will be filtered sequentially to determine 

its end node. There are three typical cases in the process 

of filtering: 

1) As illustrated in Fig. 4 (a), if the distance d increases 

continually and exceeds 
1 , the current filtered 

HRRP vector will be selected as the end node of the 

neuron. 

2) Figure 4 (b) shows that the distance d decreases in 

the process of increasing and the decreased value is 

smaller than 
2 . This kind of decrease is a slight 

disturbance and does not influence the trends of 

topological framework of the HSN. So it can be 

tolerated and continue to filter the following HRRP 

vectors until d exceeds 1 . 

3) In Figs. 4 (c) and (d), the distance d increases to a 

value smaller than 
1  then decreases continually. If 

the decreasing value is greater than 
2 , the turning 

point will be considered as the end node of the 

neuron, and it is also the start node of next neuron. 

As in [19], the end node of the next neuron will be 

filtered from current HRRP vector for the purpose 

of accelerating computation. But this ignores the 

distribution of HRRP vectors between the turning 

point and current point. If the distribution of  

these points is very complicated, the topological 

framework obtained by original method may not 

describe the trends very well. Taking the case in Fig. 

4 (d) as an example, the first point is the start node 

of current neuron and the second to tenth points will 

be filtered to find the end node of current neuron. 

From the second to fifth point, the distance d is 

increasing all the time but does not exceed 1 . Then 

it decreases but the decreased value does not exceed 

2  from the sixth to ninth point until the tenth point. 

According to [19], the fifth point will be selected as 

the end node of current neuron. Then the filtering 

process will continue from the tenth point to find the 

end node of next neuron and the sixth to ninth points 

are ignored. But it is obvious that the distance 

between the fifth and ninth point exceeds 
1  and the 

ninth point should be selected as the end node of the 

next neuron. So in order to acquire a more accurate 

topological framework, in this paper we choose the 

turning point as the end node of current neuron and 

the start point of the next neuron, meanwhile the end 

node of the next neuron will also be filtered from the 

turning point. 

Based on the above analysis, the entire algorithm  

for the topological framework construction can be 

summarized in Table 2. It is necessary to point out that 

the selection of the filter interval 
1  and disturbance 

tolerance 
2  will affect the recognition effect of proposed 

method. If the nearest distance of all the samples is d1 

and the farthest distance of them is d2, we recommend 

choosing 
1   in the range of  1 2,d d  by using cross-

validation. 
2  is selected between a third and half of 

1 . 
 

1

2

1

2

 
 (a)   (b) 

4

7

9

10

1

2

1

3

2

5

6

8
1

2

 
   (c)  (d) 

 

Fig. 4. Three typical cases in the construction of 

topological framework. The red points represent the 

nodes of current neuron. The black points denote the 

feature vectors not selected as nodes of current neuron. 

 

C. The radius of hypersphere 

The topological framework describes the main trend 

of the HSN chain while the radius of the hypersphere 

decides its coverage area. A larger coverage area means 

better generalization capability of the classifier while a 

smaller one implies better rejection capability. So one 

can strengthen generalization or rejection capability  

by adjust the radius of the hypersphere. An instructive 

procedure for the selection of a proper radius will be 

given in the following of this section. 
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Table 2: The topological framework construction 

algorithm of HSN chain 

Input: The set of ordered HRRP vectors corresponding 

to the HRRP of all angles: 

 i= , 1,2, , .X i Nax  

Output: The set of ordered HRRP vectors forming the 

topological framework of HSN: 

 1 1, 1,2, , , .iS i n n Na  s  

Initialization: 

1. Initialize the first feature vector 
1x  as reference point

bs , set 
b 1=s x . 

2. Save the first HRRP vector to the aforementioned set 

S, set  1S  x . 

3. Initialize 
max s 0 , where 

maxs  represents the farthest 

HRRP vector from the reference point.  

4. Initialize 
max 0d  , where 

maxd  denotes the distance 

between 
maxs  and the reference point. 

5. Initialize i=2, where i refers to the number of next 

HRRP vector to be filtered in set X. 

Find the end node of a neuron and reinitialize:  

1. Filter the ith to Nath HRRP vectors. The ith HRRP 

vector is recorded as s, the Euclidean distance between 

s and the reference point 
bs  is bd  s s . 

2.1 If
max 1d d   , set

max s s ,
maxd d , num=i, 

i=i+1, go to step 1; 

2.2 If maxd d  and
1d  , save s to set S, namely

 S S s , reinitialize 
b =s s , 

max 0s , 
max 0d  , 

i=i+1, go to step 1; 

2.3 If maxd d  and
max 2d d   , i=i+1, go to step 1; 

2.4 If maxd d  and max 2d d   , save maxs  to set S, 

 maxS S s , reinitialize 
b max=s s , 

max 0d  ,

max 0s , i=num, go to step 1. 

 

First of all, the distance between a HRRP vector   

and a HSN is defined as follows: 

  
 

 

 
2 2

, , 0

, , ,

, ,

a a b

a b b a b b a

a a b

p

d p

p otherwise


 




   

  

x x x x x

x x x x x x x x x x

x x x x x

. 

              (2) 

As illustrated in Fig. 3 (b), ax
 
and bx  are the start node 

and end node of the HSN, respectively,  , ,a bp x x x  

represents the projection of ax x  on the unit vector in the 

direction of a bx x and  , , , b a

a b a

b a

p


 


x x
x x x x x

x x
. 

Then the distance between a HRRP vector and the 

HSN chain is defined as the nearest distance between the 

HRRP vector and all the neurons of the HSN chain. 

Finally, Radius can be computed by using different 

methods according to the number of training HRRP 

vectors: 

1) A small number of training HRRP vectors 

Find the farthest three samples from the topological 

framework of HSN chain. Average the distance between 

the framework and them and record it as 
1r . The purpose 

of averaging operation is to relieve the influence of 

outlier. The radius is given as 
1 1r r , where 

1r  is a 

small positive number. 

2) A large number of training HRRP vectors 

According to Section III-B, S refers to the subset 

whose elements construct the topological framework of 

HSN chain. We can use a set = -T X S  to represent the 

remainder of X. The distances between every HRRP 

vector of T and the HSN chain can be computed and they 

constitute a set  
21 2= , , ,T nD d d d . 

2n  is the number of 

HRRP vectors in set 
TD . When 

2n  is large, the elements 

in 
TD  are considered to obey Gaussian distribution, 

namely: 

    
2 221

=
2

d
P d e

 



 
. (3) 

The maximum likelihood estimation of   and   are: 

 
2

12

1
ˆ

n

j

j

d
n




  , (4) 

  
2 2

2

12

1
ˆ ˆ

n

j

j

d
n

 


  . (5) 

The radius 2r  can be calculated by: 

  
2r

2
0

= rx 1P dx  , (6) 

where 
2r  is a very small positive number. 

 

D. Testing method 

By constructing the topological framework and 

selecting proper radius, we can train a HSN chain for 

each target. Then the testing procedure is to judge 

whether a testing HRRP is in the coverage of some 

trained HSN chain. Firstly, we introduce a decision 

function  HSNCf x  to indicate how close a testing HRRP 

x is to a HSN chain: 

    2 2,
2 0.5.

d HSNC r

HSNCf


 
x

x  (7) 

Where  ,d HSNCx  denotes the distance between the 

testing HRRP and a HSN chain. If a testing HRRP x  
is covered by a HSN chain of a target, the distance   

 ,d HSNCx   is smaller than r, this will result that 
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  0HSNCf x . Moreover, the smaller  ,d HSNCx  is, 

the closer  HSNCf x  is to 0.5. On the contrary, if x is 

outside the HSN chain,  HSNCf x  will be less than zero. 

Now the testing method can be concluded as below: 

Assuming that there are N kinds of targets, the HSN 

chain of them are noted as 
1 2 NHSNC HSNC HSNC, , , . 

The decision function  
iHSNCf x   associated with a 

testing HRRP and the ith HSN chain is computed, where 

1,2, ,i N . If all these decision functions are less than 

zero, this means that the testing HRRP belongs to none 

of the above HSN chain. Its corresponding target will be 

considered as unknown and rejected. If there is only one 

decision function greater than zero, the testing HRRP is 

exclusively covered by the corresponding HSN chain. 

The classifier will judge that the testing HRRP comes 

from the corresponding target. There is a troublesome 

case that the testing HRRP is covered by more than one 

HSN chain simultaneously. In this case, there will be 

more than one decision functions greater than zero. 

Based on the idea that the testing HRRP is generally 

more closed to the HSN chain of its corresponding target, 

the classifier will judge that the testing HRRP belongs to 

the target corresponding to the largest decision function 

value. 

 

IV. EXPERIMENTS AND RESULTS 
Several experiments are conducted to examine the 

performance of the proposed BRTR method. The results 

are compared with that of support vector machine 

method [27]. The SVM program is provided by LibSVM 

[28]. The training sets and testing sets of SVM are 

always the same as that of the proposed method. Both the 

polynomial kernel and the radial basis function (RBF) 

kernel are used as the kernel functions of SVM in  

each of the following experiments. The parameters of 

RBF kernel are selected according to the procedure 

recommended in [29] and reasonable results can always 

be obtained. Because the polynomial kernel has more 

parameters than the RBF kernel, it is difficult to select 

optimal parameters for it, which results that the RBF 

kernel usually has a better performance than polynomial 

kernel in our experiments. So we will only show the 

results of SVM with RBF kernel. 

In the following experiment, we use cP  to represent 

correct recognition rate, rP  to denote correct rejection 

rate. The correct recognition rate is the probability of 

correctly classifying a known target. The correct 

rejection rate refers to the percentage of an unknown 

target rejected correctly. Here we use the terms “known” 

and “unknown” to indicate targets in the training database 

and those that are not.  
 

 
  (a) 30dB 

 
  (b) 20dB 

 
  (c) 10dB 

 
  (d) 0dB 

 

Fig. 5. Range profiles of VFY218 model with different 

noise level. 
 

A. Anti-noise capability 

The first experiment is designed to examine the anti-

noise capability of the classifier. The scattered fields of 

VFY218, F15 and F117 models in frequency domain are 

contaminated by independent additive White Gaussian 

noise (AWGN) to achieve the signal to noise ratios 

(SNR) from 0 to 30dB with a 5dB increment. Then the  
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contaminated range profiles are obtained by inverse  

fast Fourier transform and normalized between 0 and  

1. Figure 5 shows the contaminated range profiles of 

VFY218 at the noise levels of 0dB, 10dB, 20dB and 

30dB. It is clear that the small values of range profiles 

are buried in noise when the SNR is low. In this 

experiment, the odd contaminated range profiles of each 

target are chosen as training set while the even ones are 

chosen as testing set, providing 113 different training 

vectors for each target and totally 339 different testing 

vectors at each SNR level. 

The correct recognition rates against various SNR 

are demonstrated in Fig. 6. To obtain a correct recognition 

rate at some SNR, the training and testing processes  

are repeated 100 times with 100 independent AWGN 

realizations. Then the resultant 100 correct recognition 

rates are averaged as the final correct recognition rate 
cP . 

As it can be seen in Fig. 6, the correct recognition 

rate of BRTR method is very similar to that of SVM 

method when the SNR is above 15db. However, for the 

cases of SNR below 15db, the BRTR method slightly 

outperforms the SVM method. So we can conclude that 

the BRTR method is robust to noise and has a better 

performance than SVM method at a low SNR level. 

 

B. Generalization capability 

Generally speaking, the more samples used in 

training stage, the better performance can be achieved in 

testing stage. However, it is impractical to build a huge 

training database for radar target recognition because of 

cost concerns. So a desired classifier should provide 

robust and acceptable accuracy when only limited 

training samples can be obtained.  

In the second experiment, different amounts of 

range profiles from original data set of each model  

are used as training set to examine the generalization 

capability of the classifier. The training set of each target 

is selected from original data set of VFY218, F15 and 

F117 models with the interval varying from 2 to 6.  

And the increment is 1. The rest of range profiles from 

original data set are used as the test set. In other words, 

there are 113, 76, 57, 46, 38 range profiles for the 

training of each target and correspondingly 113×3, 

150×3, 169×3, 180×3, 188×3 range profiles for testing. 

Here the decreasing of the training range profiles means 

increasing the azimuth interval of two neighboring 

training range profiles, which will reduce the correlations 

between training sets and testing sets. 

The experiment results in Fig. 7 show that the 

correct recognition rates of BPTR and SVM method are 

above 96% when the number of training range profiles is 

more than half of the testing range profiles. But when the 

number of training range profiles decreases less than half 

of the testing range profiles, the correct recognition rate 

of SVM method decreases sharply while that of BPTR 

drops relatively slow. So the BPTR method is superior 

to SVM method for small size of training set. In other 

words, the BPTR method has better generalization 

capability than SVM method. 
 

 
 

Fig. 6. Peformance of biomimetic radar target recognition 

method and support vector machine method at different 

levels of SNR. 
 

 
 

Fig. 7. Peformance of biomimetic radar target recognition 

method and support vector machine method when the 

number of training and testing range profiles varies.  
 

 
 

Fig. 8. Rejection capability of biomimetic radar target 

recognition method at different levels of SNR using the 

same training range profiles in the anti-noise capability 

experiment. 
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C. Rejection capability 

Most of the classifiers used for radar target 

recognition are trained and tested with known targets, 

but there exist targets which are not included in the 

training database in reality. Rejection of unknown targets 

is a very challenging problem not only in the field of 

radar HRRP recognition but also in the entire automatic 

target recognition community. Though rejection capability 

of radar automatic target recognition is of great 

importance, it does not attract enough attention. One of 

the most fascinating abilities of our proposed method is 

its rejection capability. 

The third experiment is designed to examine this 

capability of the classifier. The training range profiles in 

the anti-noise experiment at different SNR levels are  

also chosen as the training set in this experiment. The 

150 range profiles of two additional unknown targets 

(plane and missile model) constitute the testing set. It is 

necessary to point out that the parameters 
1  and 

2  are 

also the same as that in anti-noise experiment, which 

guarantees that the proposed method can have good 

rejection capability without sacrificing the anti-noise 

capability. The experiment results in Fig. 8 show that our 

proposed method can achieve over ninety percent correct 

rejection rate, which overcomes the weakness of the 

traditional statistical learning methods. Moreover, it can 

be observed that the rejection performance becomes 

slightly better with lower SNR levels. The reason is that 

when the SNR is high, a HRRP of the two unknown 

targets at some azimuth angle may be similar to some 

HRRP of the known targets since the size of all the 

targets are similar and they share some common features. 

However, when the SNR is very low, the HRRPs will  

be contaminated by noise severely. The similarity of 

HRRPs between the known targets and unknown targets 

will also be weaken. 

All the above experiments are carried out on a PC 

with 2.83 GHz CPU and 8 GHz RAM. The parameters 

1=0.6  and 2 =0.25  for VFY218, F15 and F117 models. 

A large number of training HRRP vectors is assumed and 

2 =0r .001 , resulting in that 2r  equals to 0.66, 0.64 and 

0.54 for VFY218, F15 and F117 models, respectively. 

The average training time of the proposed method and 

the SVM method are 658 ms and 260 ms respectively for 

different SNR levels. The average testing time of them 

are 46 ms and 42 ms, respectively. 
 

V. CONCLUSION 
A biomimetic radar target recognition method  

based on hypersausage chains has been proposed and  

its performance was investigated. Distinct from the 

distinguishing scheme of traditional statistical learning 

methods, the proposed method aims at cognizing targets, 

which is inspired by the cognition nature of human.  

From a geometrical point of view, the HRRP vectors are 

considered to be points in high dimensional space. A 

hypersaugsage chain is utilized to optimally cover the 

points of each target. Three experiments have been 

conducted and the results show that the proposed method 

is more robust to noise and the size of training sets 

compared with the SVM method. Moreover, it is worth 

mentioning that the proposed method has an excellent 

rejection capability which is a basic capability of human. 

This capability is extremely important for a real radar 

target recognition system. An additional advantage of the 

proposed method is that it does not need to retrain all the 

samples in the database when the samples of a new target 

are added to the database, while the traditional statistical 

learning methods must retrain all the samples when any 

new target is included into the database. 
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