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Abstract ─ As important parts of modern communication 

systems, microwave devices play a decisive role in 

communication quality. When optimizing the complex 

microwave devices, the global optimization algorithm  

is generally used exploiting full-wave electromagnetic 

simulation software. The full-wave electromagnetic 

simulation software evaluates the performance of the 

microwave device. Based on this evaluation result, the 

global optimization algorithm is used to design the 

microwave device. This ordinary method can achieve 

high accuracy, but the main disadvantage is time-

consuming. It takes a long time and sometimes takes 

days or even weeks. In order to improve the efficiency 

of the optimization of microwave devices, this research 

presents a method called fitness-estimation-based particle 

swarm optimization (fePSO). According to the explicit 

evolution formula of particle swarm optimization (PSO), 

the particles fitness predictive model is constructed. 

From the third generation, the fitness value is estimated 

by the predictive model, so as to replace the time-

consuming full-wave electromagnetic simulation when 

optimizing complex microwave devices. Thereby it can 

greatly reduce the evaluation time of the fitness, shorten 

the entire optimization process, and improve the design 

efficiency. This method is validated by optimizing Yagi 

microstrip antenna (MSA) and hairpin SIR band-pass 

filter. The results show that the efficiency can be 

increased by about 90% with the assurance of design 

accuracy, so the purpose of rapid optimization has been 

achieved. 

 

Index Terms ─ Antenna, filter, particle swarm 

optimization. 
 

I. INTRODUCTION 
With the rapid development of modern 

communication systems, microwave devices, as an 

important part of communication systems, play an 

important role in civil and military communications. 

Therefore, the demand for various microwave devices 

with complex structures is also growing. In order to meet 

the needs of development of microwave devices, it is an 

important research area to improve the performance  

of microwave devices through optimization. When 

optimizing complex microwave devices, global 

optimization algorithms are used exploiting full-wave 

electromagnetic simulation software [1]. The commonly 

used global optimization algorithms include genetic 

algorithm (GA) [2], particle swarm optimization (PSO) 

[3], etc. The commonly used full-wave electromagnetic 

simulation softwares include High Frequency Structure 

Simulator (HFSS), IE3D, Computer Simulation 

Technology (CST), etc. In this process, full-wave 

electromagnetic simulation software evaluates the 

performance of microwave devices. The evaluation 

result is as fitness of global optimization algorithm to 

design microwave devices. Although this method can 

achieve high precision, it is very time-consuming. It may 

take days or even weeks to design a microwave device 

that meets the design specifications, and it has high 

requirements for the computer performance. Therefore, 

it has some limitations when designing complex 

microwave devices. Under this research background, 

how to reduce the computing time to design microwave 

devices has become a hot topic. 

In order to solve this problem, machine learning 

methods have been applied in designing and optimizing 

microwave devices. Through constructing surrogate 

models and reducing the evaluation number of full-wave 

electromagnetic simulation, the methods can decrease 

the optimizing time. Currently, the most common and 

popular methods are artificial neural network (ANN), 

support vector machine (SVM) and Gaussian process 

(GP), etc. Zhang described the design process of radio 

frequency and microwave devices from theory to 

practice using ANN in [4]. In [5], ANN was proposed to 

predict the resonant frequency of a single-feed corner-

sliced circularly polarized microstrip antenna (MSA). In 

[6], the authors used the particle behavior parallelization 

of PSO to accelerate ANN training, and modeled the 

resonant frequency of rectangular MSA under compute 

unified device architecture (CUDA). Yi et al. in [7] 

proposed a knowledge-based neural network (KBNN) 

based on Advanced Design System (ADS) and applied  
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it to design filters. Angiulli proposed SVM-based 

microwave device modeling in [8]. Al Sharkawy et al. in 

[9] proposed a new CAD system for the detection of 

breast cancer in mammograms. The discrete wavelet 

transform (DWT), the contourlet transform, and the 

principal component analysis (PCA) were all used  

for feature extraction; while the SVM was used for 

classification. Sun et al. in [10] proposed a SVM 

combined with a hybrid kernel function (HKF) for 

accurately modeling the resonant frequencies of the 

compact microstrip antenna (MSA). Kayabasi in [11] 

presented a SVM based analysis and synthesis models 

for the equilateral triangular ring microstrip antennas 

(ETRMAs) that operated at ultrahigh band applications. 

Villier modeled ultra-wideband and dual-frequency 

coplanar waveguides fed slot antennas using GP [12-13]. 

Chen et al. in [14] proposed a KBNN based on GP and 

applied it to design microstrip antenna. In general, the 

construction of these prediction models consists of two 

parts, sampling and modeling. These prediction models 

usually don’t have a direct formula, so it is not built by 

looking for model parameters. Instead, it approximates 

the function by learning a large number of samples. The 

correctness of the model has a great relationship with  

the sample selection. As the dimension increases, the 

difficulty of constructing a prediction model also 

increases. ANN training requires a large number of 

samples and the model structure is not easy to be 

determined, and it usually suffers problems of over-

fitting or under-fitting. For SVM and GP, it is difficult  

to find a suitable kernel function and optimal hyper 

parameters. 

The fitness inheritance method is another approach 

to predict the fitness, that is, the fitness of the children 

inherits that of the parents in a certain way. In [15], 

Smith proposed that in the evolutionary process of GA, 

inherited fitness could be used instead of the true fitness. 

The fitness of some individuals in the population was 

directly assigned to the average value of their parents’ 

fitness, reducing the actual evaluation of the number of 

evaluations. Salami and Hendtlass [16] proposed a fast 

evolutionary algorithm. The fitness of the offspring was 

directly assigned by the weighted average of the fitness 

of the parent. Sun [17] proposed a fitness inheritance and 

estimation technique to reduce the number of fitness 

evaluations by using different linear combinations of 

historical location fitness and directly assigning recent 

historical location fitness. Xiao [18] proposed a novel 

fitness estimation based particle swarm optimization 

algorithm with an adaptive penalty function approach 

(FEPSO-AP) to handle the problem of expensive 

computational cost of truss analysis. Cui [19] proposed a 

fast PSO algorithm based on the change of particle 

velocity and position. Only when the confidence of the 

particle fitness was lower than a certain threshold, the 

true fitness was needed to calculate. Different from the 

sample prediction model, the inheritance prediction 

model does not need a large number of sample selection, 

it can save a large number of sample acquisition time. 

Simultaneously, it can avoid the prediction model error 

caused by the improper sampling.  

As we all know, PSO is a typical swarm intelligence 

optimization algorithm that is simulated bird swarm  

in search of food processes, which was proposed by 

Kennedy, a social psychologist, and Eberhart, an electrical 

engineer [1, 20-21]. The theory is that collaboration 

among the particles generates group intelligence to guide 

search. PSO considers each individual as a particle 

without weight and volume in space and flies at a certain 

speed in the search space with reference to the flight 

experience of the group and the flight experience of the 

particle itself. As an effective parallel search method, the 

algorithm preserves the global search strategy based on 

population, and does not need to rely on the feature 

information of the problem itself. It adopts a simple 

velocity-shift evolution model to avoid complicated 

genetic operations. PSO has the advantages of simple 

operation, fewer parameters to be adjusted and faster 

convergence, which are quite effective for the 

optimization of nonlinear problems, combinatorial 

problems and hybrid nonlinear problems [22]. PSO 

algorithm has many successful applications in designing 

microwave devices, such as filters [23-25] and antennas 

[26-27]. The evolutionary process of PSO is an iterative 

optimization process. As the number of iterations 

increases, individuals in the population gradually 

converge to the optimal solution of the problem. If the 

individual fitness prediction model can be constructed 

according to the characteristics of the algorithm, not only 

the time consumption of sampling can be avoided, but 

also the optimization ability of the algorithm can be kept 

while greatly reducing the calculation times of the real 

fitness. Therefore, based on the PSO evolutionary 

formula, this paper constructs a PSO algorithm with 

predictive mechanism to design complex microwave 

devices with high efficiency. 

The specific content of this paper is structured  

as follows. Section II presents a brief introduction of  

the standard PSO and theory of the proposed fitness-

estimation-based PSO (fePSO). In Section III, the method 

is introduced in the optimization of microstrip Yagi 

MSA. In Section IV, the method is introduced in the 

optimization of hairpin-type SIR band-pass filter. Finally, 

summarizes are provided in section V. 

 
II. THE FePSO ALGORITHM 

A. Standard PSO algorithm 

In PSO, the state vector of each particle usually 

contains the position and velocity. At the beginning of the 

search, the state of particles is given randomly within the 

search range. During the search there are two important 
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pieces of information that be retained, one is the best 

location named pbest for each particle, the other is the best 

location named gbest for the entire population. The best 

location is measured by fitness function. Each particle is 

driven toward its best location and the optimal location of 

the population. There are fewer parameters to be adjusted, 

but these parameters directly affect the performance and 

convergence. One of the parameters is the inertia weight 

factor  . A large   can jump out of the local optimum, 

which is in favor of looking for the global optimum.  

A small   is beneficial to the local optimization and 

accelerates the convergence of the algorithm. 

The PSO can be described in mathematical language. 

Assuming that the particles search space is n-dimension, 

and the entire particle swarm  1 2, , ,
T

mx x xx contains 

m particles. The location of the particle i is

 ,1 ,2 ,, , ,
T

i i i i nx x xx . At this time, the particle velocity 

is  ,1 ,2 ,, , ,
T

i i i i nv v vv  and the best individual particle  

is  ,1 ,2 ,, , ,
T

i i i i np p pp  . hhen particles find the best 

individual locations and the global best location, we can 

use equation (1) and (2) to update their velocity and 

positions: 
( 1) ( ) ( )

, , 1 , ,

( ) ( )

2 , ,

()( )

()( )

k k k k

i d i d i d i d

k k

i d i d

v v c rand pbest x

c rand gbest x

   

 
,          (1) 

( 1) ( ) ( 1)

, , ,

k k k

i d i d i dx x v   ,                         (2) 

where 1c   and 2c   are accelerating constants; ()rand   is 

used to generate a random number between (0,1); 
( )

,

k

i dv  and

( )

,

k

i dx  are the velocity and positions of the dth dimension of 

particle i in the k iteration; 
( )

,

k

i dpbest  is the best individual 

position of a particle and 
( )

,

k

i dgbest  is the best position of 

the global particles. 

 
B. The description of the proposed fePSO algorithm 

For particle i in the population, the standard PSO 

velocity update formula (1) is substituted into the position 

update formula (2), we have: 
( 1) ( ) ( )

, , ,

( )

1 , ,

( ) ( )

2 , ,

()( )

()( )

k k k

i d i d i d

k k

i d i d

k k

i d i d

x x v

c rand pbest x

c rand gbest x

  

 

 

.              (3) 

From (2), we know that: 
( ) ( 1) ( )

, , ,

k k k

i d i d i dx x v  .                        (4) 

Thus,  
( ) ( ) ( 1)

, , ,

k k k

i d i d i dv x x   .                         (5) 

Substituting (5) into (3), after rearrangement, it 

becomes: 

( 1) ( )

, 1 2 ,

( 1) ( )

, 1 ,

( )

2 ,

(1 () ())

()

()

k k

i d i d

k k

i d i d

k

i d

x c rand c rand x

x c rand pbest

c rand gbest









   

 



.        (6) 

From (6), we know that the (k+1)-th generation 

position 
( 1)

,

k

i dx 
  of particle i can be obtained by linear 

combination of 
( )

,

k

i dx  , 
( 1)

,

k

i dx 
 , 

( )

,

k

i dpbest   and
( )

,

k

i dgbest  . 

Thus, the (k+1)-th generation fitness  ( 1)

,

k

i df x   of particle 

i can be obtained by these four locations fitness linearly 

weighted, where weight coefficients can be determined by 

the distances from the (k+1)-th generation position 
( 1)

,

k

i dx 
 

of particle i to 
( )

,

k

i dx  , 
( 1)

,

k

i d


x  , 

( )

,

k

i dpbest   and 
( )

,

k

i dgbest  . 

Suppose ( )k

id  , ( 1)k

id   , ( )k

ipd   and ( )k

igd  , respectively, denote 

the distances from the (k+1)-th generation position 
( 1)

,

k

i dx 
 

of particle i to 
( )

,

k

i dx , 
( 1)

,

k

i d


x  ,

( )

,

k

i dpbest  and
( )

,

k

i dgbest . The 

(k+1)-th generation fitness  ( 1)

,

k

i df x   of particle i can be 

calculated as follows: 

( 1) ( ) ( 1)

, , ,( ) ( 1)

( )

,( )

( )

,( )

1 1 1 1
( ) ( ) ( )

1 1
( )

1 1
( )

k k k

i d i d i dk k

i i

k

i dk

ip

k

i dk

ig

f x f x f x
d d

f pbest
d

f gbest
d

 





 


 





,    (7)      

where 

( ) ( 1) ( ) ( )

1 1 1 1
k k k k

i i ip igd d d d



    .                  (8)                       

Obviously, if the fitness of the particle i in (k-1)-th 

generation and k-th generation are known, the fitness in 

(k+1)-th generation can be predicted by the formula (7). 

Like the standard PSO, the best position of population in 

this method is also selected from the best position of all 

individuals. 

It must be mentioned that in formula (7) distances 
( )k

id , ( 1)k

id  , ( )k

ipd , and ( )k

igd  have an very important impact 

on the fitness value  ( 1)

,

k

i df x  . If one of them is too small, 

its reciprocal will be very large, and it will be the main part 

of the fitness value. Moreover, if one of them is zero, the 

expression (7) has no meaning. So, we have to avoid this 

happened. Usually, we should give a certain threshold.  

If the distance is less than the threshold, the algorithm  

will be terminated. Of course, as we all know as the  

PSO algorithm evolutes, the 
( 1)

,

k

i dx 
  will approaches the

( )

,

k

i dgbest . In this situation, the termination is normal. 

Otherwise, the termination is abnormal, which we should 

avoid it. In this paper, the threshold is 0.0001.  
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C. Proposed PSO algorithm 

The flowchart of the fePSO algorithm is shown in 

Fig. 1, and the main steps of the proposed algorithm for 

optimizing complex microwave devices are as follows. 

(1) Modeling the microwave device in HFSS; 

(2) PSO initialization, including population size, 

inertia weight, cognitive coefficient and social coefficient, 

number of iterations; 

(3) For the first two generations of the population, 

calculate particles fitness using the model in HFSS, 

which is the true fitness, and update particles velocity 

and positions according to formula (1) and (2); 

(4) According to the previous two generations 

particles position and fitness, we can calculate the next 

generation particle fitness using formula (7), which is the 

estimated fitness, and then update the particles position 

using formula (6); 

(5) Return to step (4) until the number of iterations 

is reached, then the algorithm stops. 

 

 

Begin

Particles initialization

Calculate the true fitness 

by HFSS and update the 

individuals and global 

optimality

Iteration Number>2?

Fitness estimate  and 

update individuals and 

global optimality

Update particles 

velocity and 

position

End

Stopping criteria?

Update particles 

velocity and 

position

YES

NO

YES

NO

 
 

Fig. 1. Flowchart of the proposed fePSO algorithm. 

 

III. OPTIMAL DESIGN OF YAGI MSA 

BASED ON THE PROPOSED fePSO 

ALGORITHM 
Yagi-Uda antenna was developed by two Japanese 

scholars Shintaro Uda and Hidetsugu Yagi in 1920, and 

it is called "Yagi Antenna" for short [28]. Yagi antenna 

is composed of a feeder oscillator and several passive 

parasitic oscillator side by side, and it is a commonly 

used for radar, television and meter, decimeter band end-

fire antenna in communication. In 1989, Huang designed 

a Yagi MSA for mobile satellite equipment [29]. Yagi 

MSA has get high attention due to its small size,  

light weight, compact structure, easy processing and 

integration features. In 1998, Qian proposed a Yagi MSA 

with broadband characteristics [30]. The broadband 

impedance matching was performed on the antenna 

through microstrip line to a broadband balun structure 

with coplanar strip line [31], and it used a truncated floor 

acting as a reflector. As a result, it gained 17% relative 

bandwidth and 6.5 dB gain. The Yagi MSA is widely 

used in tunnels, narrow mines due to its high gain and 

wide beam width. In this section, we will optimize a Yagi 

MSA by the proposed fePSO algorithm. 

The structure of the Yagi MSA is shown in Fig. 2 

(a) and its HFSS model is shown in Fig. 2 (b). The 

antenna uses a tapered microstrip balun for feeding, and 

uses a tapered structure to connect the microstrip line and 

the excitation array. There is a reflection array, an 

excitation array and a lead array on the substrate. The 

parameters related to the performance of the antenna 

include the length of the reflection element W, the 

diameter of the cylinder d, the length of the excitation 

element dr and the width W1, the length and width of the 

lead element d1 and W2, the distance between the 

excitation element and the reflection element g1, the 

distance between the excitation element and the lead 
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element g2, the distance between the lead elements g3, 

the width of the feed microstrip line S2 and the width of 

the ground plane S1. The dielectric board material is FR4, 

which length is L, width is W, thickness is h, the relative 

dielectric constant 
r = 4.4 and dielectric loss tangent 

tan = 0.02. 

The design specifications of the antenna is that the 

center frequency is 2.45GHz covering 2.4 ~ 2.483GHz 

WiFi frequency band. Totally, there are 12 variables 

except the dielectric board. We select 4 variables to 

optimize, and the other fixed sizes are shown in Table 1. 

The optimized size parameters are v =[dr g1 g2 g3], where 

the range of each parameter is d=[40, 45], g1=[15, 20], 

g2=[8, 14], g2 = g3. 

 

Table 1: Fixed parameters of the Yagi MSA 

Names Value (mm) 

h 60 

d 2 

h1 4.96 

d1 37 

h2 3.7 

S2 1.5 

h 0.8 

L 120 

 

d

S1 S2

g1

W1

g2 g3

d1

0.5dr

W

L

W2

 

 (a) Structure of the Yagi MSA 

 
 

 (b) Model of the Yagi MSA in HFSS 

 

Fig. 2. The Yagi MSA. 

 

Select 24 groups v =[dr g1 g2 g3] as the initial 

population using orthogonal design method, which 

means the number of particles is 24. The maximum 

number of iterations is 500. For the first two generations 

of the population, calculate reflection coefficient S11 in 

HFSS, which is the true fitness, and update particles 

velocity and positions according to equation (1) and (2), 

where c1=c2=2,   =1. According to the previous two 

generations particles position and fitness, we can 

calculate the next generation particle fitness using 

equation (7) and update the particles position using 

equation (6). hhen the number of iterations is reached, 

we may save the optimal size combination. Then, we 

model the Yagi MSA with the optimal sizes into HFSS to 

calculate exact solution for comparison. 

In this example, the fitness function of the fePSO is 

given by: 

11@2.45max GHzFit S .                       (9) 

According to the proposed fePSO algorithm and 

equation (9), we get the optimal result, which is v = 

[41.6252 18.3370 12.1976 12.1976]. 

After optimization, the accuracy of the model is 

evaluated using the average absolute error (ABE). 

Assume 
,pred iy   is calculated by equation (7), and its 

precision value computed by HFSS is 
iy . he select T 

data points for each group of data, so the ABE is given 

by: 

,

1

1 T

pred i i

i

ABE y y
T 

  .                    (10)  

 

Table 2: ABE of different test samples 

Test Sample Number ABE 

1 0.2013 

2 0.2955 

3 0.1981 

4 0.2480 

5 0.3314 

 
In order to demonstrate the accuracy of formula (7), 

in this example, we select five sets of sizes randomly in 

the 3rd generation as test samples for comparison with 

computing results by HFSS, and the results are in Table 

2. There are 41 points selected for the S11, that is, T = 41 

in (10), then the ABE is calculated. It can be seen from 

Table 2 that the ABE of the five test samples are around 

0.2. Also, according to (10), we compute the ABE of the 

optimized result, which is 0.2610. Therefore, we can 

conclude that the results given by the fePSO algorithm 

are very close to the accuracy values in HFSS, which 

means the method is effective. 
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 (a) S11 of the optimized Yagi MSA 

 
 (b) Pattern of the optimized Yagi MSA 

 

Fig. 3. Optimal results of the Yagi MSA. 

 

The performance of the optimized Yagi MSA is 

given in Fig. 3. From Fig. 3 (a) we know that the resonant 

frequency is 2.45GHz, the attenuation is -27dB, and 

covers the hiFi frequency band from 2.4 to 2.483GHz 

with -10dB. Figure 3 (b) shows the radiation pattern.  

It can be seen that the maximum gain of the optimized 

Yagi MSA can reach 20dB at 2.45 GHz, which meets the 

requirements. Therefore, the fePSO algorithm can be 

used to optimize the Yagi MSA, and the performance is 

excellent. 

hhen optimizing the Yagi MSA by using standard 

PSO exploiting HFSS, it takes about 150s for a particle, 

therefore 24 particles need around 1800000s after 500 

iterations. hhen optimizing the Yagi MSA by GP, 

establishing a precise GP model needs at least 28 sets of 

data after many trials. Only calculating HFSS to acquire 

28 sets of data requires 4004s. But before modeling, it 

needs tedious manual extraction and arrangement of the 

data. hhen establishing a precise ANN model for the 

Yagi MSA, it requires more than 28 sets of data, the total 

time will be more time-consuming than optimization by 

GP model. Moreover, the training time either GP or ANN 

is necessary. However, it only needs 7210s using the 

proposed fePSO algorithm after 500 iterations. Therefore, 

the optimization of the Yagi MSA using the fePSO 

algorithm can greatly shorten the optimization time. 

 

IV. OPTIMAL DESIGN OF SIR 

MICROSTRIP BANDPASS FILTER BASED 

ON THE PROPOSED fePSO ALAGORITHM 
In microwave communications, microstrip bandpass 

filter directly affects the performance of the system. 

There are many kinds of microwave bandpass filters, 

such as capacitive gap coupling transmission line 

bandpass filters, comb bandpass filters, interdigital 

filters and half-wavelength resonators parallel coupled 

bandpass filters. Straddy Impedance Resonator (SIR) 

parallel coupled bandpass filter is a unique parallel 

coupled bandpass filter. It was first proposed by Mitsuo 

Makimoto and Sadahiko Yamashita in 1980 [32], which 

is an essential components between the low-noise final 

amplifier and Mixer. Compared with the traditional 

microstrip filters, the hairpin SIR microstrip bandpass 

filter has the advantages of small size, easy integration 

and low cost. By controlling the coupling and non-

coupling segments, the position of the parasitic passband 

can be controlled. The problem of harmonic suppression 

is solved, so it has been widely used in the L-band and 

S-band. 

The structure of the L-band hairpin SIR microstrip 

band-pass filter is shown in Fig. 4 (a), and the HFSS 

model is shown in Fig. 4 (b). The parameters for a single 

resonator are as follows: l1 and lc are the length of the 

different microstrip lines; wt and wc are the width of the 

different microstrip lines; l2 is the width of a single 

resonator unit and l-l2 is the spacing of adjacent resonator 

units; The thickness of dielectric substrate is h and the 

relative dielectric constant 
r = 9.5. 

The design specifications of the SIR microstrip 

bandpass filter are that the center frequency is 1.2GHz,  

-3dB bandwidth is greater or equal to 50MHz, 
21 40S  

dB in 1.05GHz and 1.35GHz. In this example, two  

sizes are selected for optimization. The optimized size 

parameter is v =[wt l1] , where the range of each parameter 

is wt =[0.5, 0.9], l1=[6.5, 8.5]. Other dimensions are fixed, 

as shown in Table 3. 

Select 24 groups v = [wt l1] as the initial population 

using orthogonal design, in which the number of 

particles is 24. The maximum number of iterations is 500. 

For the first two generations of the population, calculate 

transmission coefficient S21 in HFSS, which is the true 

fitness, and update particles velocity and positions 

according to equation (1) and (2), where c1=c2=2,  =1. 

According to the previous two generations particles 

position and fitness, we can calculate the next generation 

particle fitness using equation (7) and update the 

particles position using equation (6). hhen the number 

of iterations is reached, we get the optimal size 

5.00

10.00

15.00

20.00

90

60

30

0

-30

-60

-90

-120

-150

-180

150

120

HFSSDesign1Radiation Pattern 4

m1

Name Theta Ang Mag

m1 90.0000 90.0000 20.0039

Curve Info

dB(rETotal)
Setup1 : Sweep
Freq='2.45GHz' Phi='0deg'

dB(rETotal)
Setup1 : Sweep
Freq='2.45GHz' Phi='90deg'
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combination. After that, the SIR microstrip band-pass 

filter with the optimized parameters is modeled in HFSS 

to calculate its exact solution for comparison. 

In this example, the fitness function of the fePSO for 

the filter is given by: 

   

   

21@1.185 21@1.235

21@1.05 21@1.35

3 & & 3

& & 40 & & 40

GHz GHz

GHz GHz

Fit S S

S S

  

 

.      (11) 

According to the proposed fePSO algorithm and 

equation (11), we get the optimal result, which is v = 

[0.8074 8.3717]. 

 

l2 l

wt
wt

wt
l1

lc

wc  
 (a) SIR microstrip band-pass filter structure 

 
 (b) SIR microstrip band-pass filter model in HFSS 

 

Fig. 4. The SIR microstrip bandpass filter. 

 

Table 3: Fixed parameters of the SIR microstrip bandpass 

filter 

Names Value (mm) 

wc 2.76 

lc 7.25 

l2 5.2 

l 7 

h 0.254 

 

In order to demonstrate the accuracy of formula (7), 

in this example, we select five sets of sizes randomly in 

the 3rd generation as test samples for comparison with 

computing results by HFSS, and the result is in Table 4. 

There are 61 points selected for the S21, that is, T = 61 in 

(10), then the ABE is calculated. It can be seen from 

Table 4 that the ABE of the five test samples are around 

0.5. Also, according to (10), we compute the ABE of the 

optimized result, which is 0.6792. Therefore, we can 

conclude that the results given by the fePSO algorithm 

are very close to the accuracy values in HFSS, which 

means the method is effective.  
 

Table 4: ABE of different test samples 

Test Sample Number ABE 

1 0.4792 

2 0.5602 

3 0.4125 

4 0.7939 

5 0.4489 

 

From the optimized result in Fig. 5 we can see that 

the SIR microstrip bandpass filter center frequency is 

1.2GHz and the 3dB cutoff bandwidth reached 50MHz. 

At 1.05 GHz and 1.35 GHz, the decay have reached 

40dB. It can meet the design requirements. 

hhen optimizing a SIR microstrip bandpass filter 

by using standard PSO exploiting HFSS, it takes about 

40s for a particle in HFSS and 24 particles need around 

480000s after 500 iterations. hhen optimizing design 

the SIR microstrip band-pass filter by GP, we find it 

needs at least 10 sets of data after many trials for 

establishing a precise GP model. Only calculating HFSS 

to acquire 10 sets of data requires 400s. Also, we need 

some time to train the GP. hhen establishing a precise 

ANN model of the SIR microstrip band-pass filter, it 

requires more than 10 sets of data, the total time will be 

more time-consuming than optimization by GP model. 

However, it only needs 1930s using the proposed fePSO 

algorithm after 500 iterations. The optimization of the 

SIR microstrip bandpass filter using the fePSO algorithm 

can greatly increase the optimization design efficiency. 
 

（1.19,-3.089） （1.24,-2.726）

 

Fig. 5. S21 of the optimized SIR bandpass filter. 
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V. CONCLUSION 
When optimizing complex microwave devices, it 

takes a lot of time to use global optimization algorithms 

exploiting full-wave electromagnetic simulation software. 

The most commonly used fitness prediction methods 

such as neural networks, support vector machines and 

Gaussian processes require sample acquisition and 

training. And the choice of sample affects the correctness 

of the constructed model. The fitness estimation method 

proposed in this paper is derived from the explicit 

evolutionary formula of particle swarm optimization, 

that is, the fitness of the offspring is obtained through the 

weighted average of the fitness of the parents. Therefore, 

only the first and the second generation true fitness are 

needed. The third generation fitness can be obtained by 

weighting the position and fitness of the first and the 

second generation particles, and the fourth generation 

fitness can be obtained by weighting the position and 

fitness value of the second and the third generation 

particle, and so on. When optimizing the microwave 

devices, only the first two generations of particles need 

to be solved in the full wave electromagnetic simulation 

software, and then the prediction formula is used in  

the subsequent iterative optimization, which can greatly 

improve the optimization efficiency. In this paper, the 

Yagi microstrip antenna and hairpin SIR bandpass filter 

are optimized respectively. From the results, it can be 

seen that this method can achieve good optimization 

design in a short time, so this method provide theoretical 

guidance for the optimal design of complex microwave 

devices. 
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