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Abstract—This contribution removes some doubts about the
stability issues associated with the local and anisotropic use of
Crank-Nicolson (CN) time integration in Finite-Difference Time-
Domain (FDTD) simulations with spatial irregularities such as
nonuniformity and subgridding.

I. INTRODUCTION

To tackle the present-day multiscale electromagnetic prob-
lems, Finite-Difference Time-Domain (FDTD) solvers must
provide a minimum degree of spatial flexibility, which is
typically offered by nonuniform gridding and subgridding
techniques. Both techniques allow varying cell sizes that are
needed to efficiently resolve the multiscale geometry, but the
former preserves the overall tensor-product structure of the
grid, whereas the latter supports edge termination as to yield
nested tensor-product grids. Although subgridding definitely
uses less memory, the more intricate memory organization
can cause it to be actually less efficient than nonuniform
grids in terms of CPU time depending on the type of prob-
lem. Apart from reducing the number of spatial samples,
the FDTD algorithm can be further optimized by reducing
the number of time samples. However, the time step cannot
exceed a certain stability upper bound, better known as the
Courant limit, which is proportional to the smallest cell size
occurring inside the grid. Conventional subgridding techniques
typically assign a local time step, matching the local stability
constraint, to each subgrid. This approach virtually always
suffers from late-time instability and, although being explicit,
the high number of iterations inside each subgrid can be less
efficient than applying a (partially) implicit method, such as
the Crank-Nicolson (CN) scheme and its Hybrid Implicit-
Explicit (HIE) derivatives. Despite some interesting research
on this topic, e.g., [1,2], no rigorous stability analysis has been
proposed, until the recent publishing of [3], where the local
and anisotropic application of CN, Newmark-beta and leapfrog
alternating-direction implicit (ADI) schemes to nonuniform
grids are thoroughly discussed in terms of stability. Here,
we first summarize the key findings of [3] and then extend
the stability analysis to a very general class of subgridding
schemes with so-called symmetric coupling.

II. NONUNIFORM GRIDDING

With the notations copied from [3, eqns. (2)-(15)], the
hybrid explicit-leapfrog implicit-CN FDTD update equation
for a general lossless inhomogeneous medium discretized on
a nonuniform tensor-product grid is,[

1
∆tDε − 1

2 (I+P) V̂ C Ŵ

1
2V C

TW (I−P) 1
∆tDµ

]
x|n+1 =

[
1

∆tDε
1
2 (I−P) V̂ C Ŵ

− 1
2V C

TW (I+P) 1
∆tDµ

]
x|n + s|n , (1)

with s the source vector and x the field vector,

x|n =

[
P e(n∆t) + (I−P) e((n−0.5) ∆t)

h((n−0.5)∆t)

]
, (2)

and P the diagonal matrix with elements,

[P]i,i =

{
1 if ei is updated explicitly
0 if ei is updated implicitly

. (3)

The FDTD system is exponentially stable if the poles of the
z-domain transfer matrix are not located outside the unit disk.
Besides, it is also polynomially stable if the repeated poles
on the unit circle have linearly independent eigenvectors. An
appropriate change of basis shows that the inverse of the
transfer matrix belonging to (1) is algebraically similar to,

T (z) =

[
(z−1)I −z I2 C̃

C̃T I1 (z−1)I

]
, (4)

with implicitization operators,

[I1]i,i =

{
2 if ei is updated explicitly
z + 1 if ei is updated implicitly

, (5)

[I2]i,i =

{
2 if ei is updated explicitly
1 + z−1 if ei is updated implicitly

, (6)

and modifield curl,

C̃ =
∆t

2

(
D−1
ε V̂ W

)1/2 C (D−1
µ V Ŵ

)1/2
. (7)

Hence, the FDTD system is exponentially stable if the roots
of the characteristic equation det(T (z)) = 0 satisfy |z| ≤ 1. A
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separate treatment of static and dynamic modes together with a
partitioned-matrix rule translates the characterstic equation to,

det
(
z−1(z − 1)2Inh + C̃TI1 I2 C̃

)
= 0 . (8)

Substitution of z = (ζ − 1)/(ζ + 1) allows to interpret (8) as
a linear eigenvalue problem. More specifically,

ζ2 C̃T C̃ v =
(
C̃TP C̃ − Inh

)
v . (9)

Left-multiplying (9) by the hermitian transpose of v and subse-
quently subtracting/adding the hermitian-transposed equation,
yields respectively,

Im(ζ2) ‖C̃ v‖22 = 0 , (10)

Re(ζ2) ‖C̃ v‖22 = ‖P C̃ v‖22 − ‖v‖22 . (11)

As (10) and (11) should hold for any non-zero vector v, the
condition |z| ≤ 1, which is equivalent to Re(ζ) ≥ 0, is
satisfied if and only if Re(ζ2) ≤ 0. A more careful analysis
shows that this can only occur for ζ lying on the imaginary
axis. In other words, the FDTD system has been proven to be
stable if Re(ζ2) ≤ 0, which upon inspection of (11) yields,

‖P C̃‖2 = max
v 6=0

‖P C̃ v‖2
‖v‖2

≤ 1 . (12)

As shown in [3], the limit on ∆t imposed by (12) is exact, i.e.,
it is no overestimation. To avoid polynomial growth the strict
inequality should hold. It is clear from (12), that the operator
P can be tuned as to eliminate the smallest cell sizes from the
stability limit at the cost of implicit CN computations.

III. SUBGRIDDING

Consider a nonuniform coarse grid that is locally overlapped
by a nonuniform subgrid, whose outer edges coincide with
coarse primary edges. If the overlapped coarse part would be
filled with perfect magnetic conductors, which cannot reduce
the time step limit for trivial reasons, the resulting scheme
is equivalent to a conventional grid stitching scheme without
overlap. Hence, stability with overlap is a sufficient condition
for stability without overlap. This insight allows us to detach
coarse curl Cc, fine curl Cf and coupling operator S from each
other, such that, for the subgridding scheme with overlap, (4)
translates to,

T (z) =


(z−1)I −2z C̃c −z I2,s S̃

2C̃Tc (z−1)I

(z−1)I −z I2,f C̃f

N S̃T I1,s C̃Tf I1,f (z−1)I

 , (13)

where implicitization operators of the form (5)–(6) were added
to the subgrid and the coupling. Here, the modified operators
are defined as

C̃c =
∆t

2

(
D−1
ε,c V̂cWc

)1/2 Cc (D−1
µ,c Vc Ŵc

)1/2
, (14)

C̃f =
∆t

2

(
D−1
ε,f V̂fWf

)1/2 Cf (D−1
µ,f Vf Ŵf

)1/2
, (15)

S̃ =
∆t

2

(
D−1
ε,c V̂cWc

)1/2 S (D−1
µ,f Vf Ŵf N

)1/2
. (16)

The construction of (13) requires the coarse-to-fine coupling
operator to be the transposed and row-normalized counterpart
of the fine-to-coarse coupling operator. The diagonal operator
N represents this normalization factor. Following the same
procedure as for the nonuniform gridding, we end up with a
quadratic eigenvalue problem (ζ2A+ ζ B + C) v = 0, with

A = AT =

[
C̃c C̃Tc 0

0 C̃Tf C̃f

]
, (17)

B = −BT =

[
0 −S̃

S̃T 0

]
, (18)

C =

[
I−C̃c C̃Tc Ps S̃

S̃TPs I−N−1/2C̃Tf Pf C̃f N 1/2

]
. (19)

Note that C = CT if Pf = 0, i.e., a fully implicit subgrid, or
if N is a scalar multiple of the identity matrix, i.e., a uniform
subgrid. Assuming that the subgrid is either uniform or fully
implicit, a quadratic eigenvalue problem with this particular
symmetry and with A � 0 has roots ζ in the right half-plane
if and only if C � 0 or, equivalently, if λmax(I − C) ≤ 1.
Separating on- from off-diagonal blocks by means of the
triangle inequality yields,

max
(
‖C̃c‖22 , ‖Pf C̃f‖22

)
+ ‖Ps S̃‖22 ≤ 1 . (20)

For fully implicit subgrid and coupling updates, the coarse-
grid Courant limit is retrieved, as expected.

IV. CONCLUSION

The exact time step limit is provided for nonuniform grids
with local and anistropic application of CN time integration.
A similar limit, albeit an overestimation, is shown to exist
for general symmetric subgridding schemes. The concept of a
z-domain implicitization operator in combination with the bi-
linear transformation can be extended to other stability proofs.
A spatial analog may be used to find the stability condition for
the hybrid staggered-collocated methods proposed in [4]–[6].
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