
"Faster" Could be "Slower": Uncovering the Salient Characteristics of Slow-

light Guided Signals with the Finite-Difference-Time-Domain (FDTD) Method 
 

 

Stavroula Foteinopoulou 
 

Department of Electrical and Computer Engineering  

University of New Mexico, Albuquerque, NM 87131, USA 

sfoteino@unm.edu  

 

 

Abstract ─ Slow-light mesophotonic waveguides have 

gained increasing interest in the recent years because  

of their catalyzing potential to transform applications 

relying on all-optical signal manipulation or enhanced 

light-matter interactions. The quests in this area have 

been targeting waveguide platforms with a giant group 

velocity index as determined by modal type of analyses 

in frequency domain. We show here that these efforts 

with frequency-domain methods have entirely missed on 

important mode features which are nevertheless crucial 

in practically effecting an ultra-slow guided pulsed 

signal with a large time delay. We utilize first-principle 

electromagnetic (EM) simulations in time-domain and 

show that contrary to conventional wisdom, the group-

index by itself is not in general a good measure of the 

slow-down factor for a pulsed light signal propagating 

within the waveguide. We present a counterexample 

comparing two modes which demonstrates that the 

“faster” mode, the one with the lower group index, is the 

one that leads to larger effective time delays. The time-

domain analysis in this counter-example uncovers a new 

figure of merit for practical slow-light platforms which 

indicates that along with a near-zero group velocity,  

a relatively low group-velocity dispersion value is 

simultaneously required.  
 

Index Terms ─ Finite Difference Time Domain (FDTD) 

method, group index, group velocity, group velocity 

dispersion, left-handed materials, negative-index media, 

slow light, wave dispersion.  
 

I. INTRODUCTION 
Electromagnetic (EM) waveguiding platforms 

across the board have been predominantly studied in a 

frequency-domain framework for modal responses. In 

such framework, the modal behavior for the system is 

sought for a certain frequency, , and wavevector, k. 

Such modal response can be calculated analytically for 

simple planar geometries, such as in dielectric slab [1], 

metallic [2-4], metal-slot [2,5], and negative-refractive-

index waveguides [6] as well as for their heterostructures 

[7]. As the guiding structures however become more 

complicated, as for example in metallic periodically 

corrugated waveguides [8], metal/dielectric-strip 

waveguides [9] or all-dielectric designer surface plasmon 

waveguides [10-13], numerical approaches are needed to 

determine both the wave dispersion and spatial field 

profiles for the modes supported by the guiding system. 

One widely adopted example of such numerical 

approaches is the Finite-Difference-Frequency-Domain 

(FDFD) method [10,14-16].  

While important information for a system’s 

response to incoming EM waves can be obtained with 

these frequency-domain methods, a complete picture for 

the dynamic evolution of the propagating wave cannot 

actually be trivially deduced. Realistic source excitations 

are neither a perfect plane wave nor are they perfectly 

monochromatic even at continuous wave (CW) excitation. 

A framework for time-domain analysis is certainly 

highly desirable, especially for systems where the 

dynamic evolution of the guided wave is key to their 

operational principle. One such example is waveguides 

that support ultra-slow light waves [17] which have been 

realized in plasmonic-based systems [9, 18], in platforms 

based on negative-refractive-index metamaterials [7, 19-

21], in photonic-crystal waveguides [22-24], as well as 

in certain atomically-thin materials with a phonon-

polariton photonic response [25]. 

In this paper, we show that a time-dependent 

framework is key to obtaining understanding and 

uncovering design principles for slow-light platforms for 

practical applications. In principle, the system’s time-

domain response can be constructed from frequency-

domain methods with the use of rigorous-modal 

matching analysis [26]. Actually, using this composite 

detailed analysis, He et al. [26] showed that a wave-

packet in a tapered metamaterial waveguide gets back-

reflected rather than attaining the “trapped rainbow” 

effect [21] which was hypothesized based on a purely 

frequency-domain analysis. However, the process 

followed by Ref. [26] can get quickly elaborate as 

structures or EM-wave launch geometries get more 

complicated and may require approximations that limit 

the range of validity. A brute-force, ab-initio method for 
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time-domain analysis is highly attractive. Free from any 

assumptions for simplifications, a highly popular widely 

used method for analysis in the time-domain is the 

Finite-Difference-Time-Domain (FDTD) method [27], 

which allows modeling of actual experimental set-ups.  

In the following, we demonstrate why FDTD is 

highly suited for designing slow-light waveguides, 

uncovering salient mode characteristics that were missed 

with modal frequency-domain analyses. In particular, 

this paper is organized as follows. In Sec. II, we present 

the paradigm system that will be analyzed in two 

variations; these will serve as the counter-example 

showing that it is the system with the higher group 

velocity practically yielding the larger time delay for a 

guided pulsed signal. In Sec. III we analyze these designs 

in frequency-domain determining a prediction for their 

behavior as slow-light waveguides. In Sec. VI, we 

discuss the methodology to calculate appropriately the 

effective time delay and speed of a pulsed signal in the 

FDTD method. In Sec. V, we apply this methodology  

in the two paradigm system variations and extract an 

additional design principle that has been hitherto missed 

from standard modal dispersion analysis. Finally, we 

present our conclusions in Sec. VI. 

 

II. THE SLOW-LIGHT BI-WAVEGUDE 

PARADIGM SYSTEM 
We use the paradigm system of Ref. [7] as a counter-

example to show that the frequency-domain predictions 

for a near-zero group velocity in two waveguide designs 

do not end-up yielding ultra-slow guided light in time-

domain for both cases. This paradigm system is a  

bi-waveguide comprising a regular dielectric slab 

waveguide [1], i.e., a positive-index-medium (PIM) 

waveguide, and a slab waveguide made from a negative-

index-medium (NIM) [see Fig. 1]. In the PIM waveguide, 

the guided mode has the Poynting vector S, parallel to 

the direction of phase propagation, as given by the 

wavevector k. Conversely, in the NIM waveguide the 

Poynting vector S, is anti-parallel to the direction of 

phase propagation [6]. Outside the waveguide the EM 

energy decays exponentially (evanescent waves). The 

evanescent tails of the guided mode do carry some 

energy along the +x direction, but this can be neglected 

in this case as the main waveguides have a width of about 

three times the free space wavelength. 

As we also depict in Fig. 1, the phase (wave vector) 

direction is common in both constituent waveguides,  

as imposed by Maxwell’s equations requiring continuity 

of the parallel component of the wave-vector across  

the waveguide interfaces. Then, it follows from the 

respective Poynting vector directions that the EM energy 

would have a disposition to propagate in opposite 

directions in each sub-waveguide if the waveguides were 

independent. Because of this competition in the direction 

of energy propagation in each of the sub-waveguides, 

Ref. [19] envisioned the composite PIM-NIM bi-

waveguide to possess nearly-frozen light modes. These 

manifest themselves in the waveguide dispersion relation, 

(kx), with near-zero group velocity, i.e., /kx=0. 

Guided modes with near-zero group velocity can be 

found for a range of parameters in this system. An 

additional benefit of the PIM-NIM bi-waveguide is that 

it is also favorable for monomodal response [28].  

 

 
 
Fig. 1. The slow-light bi-waveguide paradigm system 

comprising a positive-index-medium (PIM) waveguide 

and a negative-index-medium (NIM) waveguide. Two 

cases, depicted in (a) and (b), have been chosen in order 

to showcase two near-zero group velocity examples but 

with distinctly different effective responses to an input 

EM signal. In each case, the widths for the individual 

PIM, NIM waveguides as well as the total width of the 

bi-waveguide are indicated. 

 

We focus now our attention on two particular bi-

waveguide designs A and B, in order to demonstrate how 

the FDTD method distinguishes the behavior between 

two modes which are both identified as slow-light modes 

with a modal analysis. Both bi-waveguide designs 

comprise the same materials: a permittivity of =4.0 for 

the PIM, and the Veselago dispersive material [29] for 

the NIM with a plasma frequency of p=23081012 

rad/s. The chosen waveguide widths however for each 

sub-waveguide, dNIM and dPIM, are different and result in 

a different total width for the bi-waveguide. In the 

following, we designate the total bi-waveguide width as 

dA, and dB, for design A and design B respectively (see 

Fig. 1 for their values). We note, the paradigm system is 

idealized, e.g., actual metamaterials do not follow the 

Veselago medium response. The purpose of using this 

idealized paradigm is to understand how features in the 

frequency-domain modal response effect behaviors in 

time-domain. This link is what has not been hitherto well 

understood. This understanding is however of utmost 

importance to design practical systems that guide ultra-

slow EM pulses. 
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In the following section we present and compare the 

predictive response of the two paradigm designs based 

on a modal frequency-domain analysis. 

 

III. BI-WAVEGUIDE DESIGNS A AND B: 

PROPERTIES IN FREQUENCY DOMAIN 
The simple planar geometry of the bi-waveguide 

system allows calculating analytically the dispersion 

relation of the guided mode, (kx), i.e., the relation 

between the frequency and the wave vector along the 

guide direction, This is done by considering a guided 

wave solution in the PIM, and NIM region, and 

evanescent tails outside the waveguide; the wave 

dispersion is then determined by applying the EM 

boundary conditions for the continuity of the tangential 

components of the electric and magnetic field (see  

Ref. [7] for details). This is depicted in Fig. 2 (a).  

Both frequency and wave vector are represented in 

dimensionless units [see caption of Fig. 2]. The 

dimensionless scaled wave vector along the guide 

direction, , is also known as modal index [30]. We 

observe that a single guided-mode is present for each 

design in this frequency range. We recognize that for a 

range of modal index values the dispersion flattens for 

both waveguide designs. We designate this dispersion 

region with a yellow shading in Fig. 2 (a) and show it 

magnified in Fig. 2 (b) for both waveguide designs.  

This nearly-flat dispersion region signifies a near-

zero group velocity magnitude, vg, and conversely a very 

large group index (absolute value), |ng|, since: 

 
| |

g

x g

c
v

k n


 


,                           (1) 

where  is the guided wave cyclic frequency, kx, is the 

wavevector along the guiding direction and c is the speed 

of light. Equation (1) implies that a large group-index 

magnitude leads to a large light slow-down factor for the 

guided wave. For the case of design B, the dispersion 

band has a negative slope in a range of modal index 

values, and yields a negative group index, ng. In Fig. 2 

(c) the group index (absolute value) is plotted, but we use 

a dashed line, instead of a solid line, to designate the 

range for which the group index is negative (see also Ref. 

[31]).  

We also mark in Fig. 2 (c) certain modes of interest 

for waveguide A and waveguide B. First, we make note 

of modes SLA and SLB, shown with a blue box and a 

red box, respectively. What is interesting about these two 

modes is that both have large group index (absolute 

values); so in principle both look like good candidate 

modes for slow-light guiding. Mode SLA has a group 

index of ~100 and mode SLB’s group index is even 

higher, ~2000. So, if one was to think of a good slow-

light waveguide design the obvious choice from such 

frequency domain analysis would be design B operating  

at mode SLB. We will see however with the time-domain 

analysis in the following that this is not true; we will find 

that it is actually design A at mode SLA that makes a 

good slow-light waveguide. For this purpose, we need to 

analyze the signal propagation along the waveguide for 

both slow-light waveguide candidates in time-domain. 

Before doing so, we present in the following the details 

of the numerical determination of the signal propagation 

speed for a more general case of a moderate group index. 

We choose mode LB of design B, that we have designated 

with a brown square in Fig. 2 (c). 
 

 
 

Fig. 2. (a) The wave dispersion for the two bi-waveguide 

designs, A and B of Fig. 1. Both the frequency and the 

wavevector along the guiding direction, x, are represented 

in dimensionless units; the former by multiplying the 

inverse of the free-space wavelength, free, with the 

average width of the two waveguide designs and the 

latter by dividing with the free-space plane-wave 

wavevector, kpw, to give , which is known as the modal 

index [30]. The shaded area designates a region of 

nearly-flat dispersion for both designs. (b) Zoom of the 

shaded region of (a). (c) Magnitude of the group index, 

|ng|, (logarithmic scale) versus the modal index, , for the 

two waveguide cases [dashed lines indicate regions with 

ng<0]. The three modes that are labeled (SLA, SLB and 

LB) will be analyzed further. 
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IV. SIGNAL PROPAGATION SPEED IN 

FDTD: CALCULATION METHOD 
In the FDTD framework, a numerical experiment 

with an Otto set-up [7, 10-11, 32] can be implemented 

for the determination of the propagating signal’s speed. 

The Otto set-up yields an evanescent wave that further 

excites the guided mode in the bi-waveguide system. The 

right-angle prism of the Otto configuration, lies above 

the bi-waveguide system of Fig. 1, with its hypotenuse 

along the x-direction; it so fixes the modal index to 

0=nprismsin(450) since EM boundary condition require 

the wavevector along the x-direction to be conserved. 

Therefore, an EM wave launched from the left-side of a 

prism with 0 =LB would couple to mode LB with a 

wavevector along the +x-direction. As mode LB has  

a negative group index as determined in Sec. III, the 

composite waveguide mode is expected to be a backward 

type of mode [10-11, 33]. This means the EM energy of 

the composite guided wave will propagate opposite to its 

wavevector, i.e., in the –x direction. Indeed, we observe 

in the FDTD calculations that despite the different 

Poynting vector directions in the NIM and PIM sub-

waveguide parts, in both of them the pulsed signal 

propagates in the direction predicted by the dispersion-

band slope direction, i.e., in the –x direction for mode LB 

(see also Refs. [7] and [31]). 
 

 
 

Fig. 3. FDTD results (filled diamonds) for the detector 

position, xdet, versus the arrival time of the pulsed signal 

at this detector for mode LB. The detector position is 

scaled with the free space wavelength, free, while the 

pulse arrival time is scaled with the wave period T of  

the central frequency of the input EM pulse (filled 

diamonds). The red solid line represents a linear fit on 

the FDTD data. 
 

To avoid any interference that would come from  

the reflected signal at the waveguide edges, the FDTD 

simulation set-up has the bi-waveguide terminated with 

suitable absorbers in both sides [see Ref. 7]. Different 

detectors are placed at various distances, xdet, from the 

left-side of the prism, to span different positions along 

the –x direction. Each detector extends across the entire 

bi-waveguide width in the y-direction. For each of the 

detectors, each positioned at different xdet, the Poynting 

vector along the guide direction, Sx, is recorded at each 

time step for all spatial grid points in the y-extend of the 

detector. As the waveguide system is strongly dispersive 

it is not appropriate to monitor the peak of the pulse in 

order to determine its arrival time. To determine the EM 

signal’s speed in the FDTD implementation of the bi-

waveguide system, we follow a similar approach to that 

introduced by Peatross et al. in Ref. [34].  

In particular, we calculate the arrival time, tarr, at a 

detector at position xdet from: 

 0 0

arr

0 0

,

sim B

sim B

t d

x

t d

x

t S x y t dy dt

t x

S x y t dy dt

 
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 
 


 
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 

 

 

det

det

det

( , , )

( )

( , , )

 (2) 

with dB being the bi-waveguides B width across the  

y-direction (see schematics in Fig. 1). The FDTD 

simulation is terminated at tsim at which time the signal 

strength should be at least three magnitudes lower  

than its peak value (the lower the more accurate the 

calculation). We show the results calculated from Eq. (2) 

with the FDTD method in Fig. 3. The numerical FDTD 

data can be fitted with a linear fit (red-solid line in  

the figure). From, the slope of the xdet(tarr) fit line we 

determine |ng| for mode LB to be 20.7 which agrees 

excellently with the value determined from the 

frequency-domain analysis which is 21.7 [see Fig. 2 (c)]. 

So, we did not find any surprises for the case of mode 

LB and both frequency and time domain analysis agree 

on the propagating properties of the guided pulsed 

signal. Whether this holds to be true for the ultra-slow 

guided modes, namely modes SLA and SLB in Fig. 2 (c), 

we explore in the following section. 

 

V. SIGNAL PROPAGATION SPEED OF 

MODES AT FLAT WAVE DISPERSION: 

FREQUENCY-DOMAIN VERSUS TIME-

DOMAIN PREDICTIONS 
Now we follow the process of Sec. IV in the FDTD 

simulations for mode SLA of waveguide design A and 

mode SLB of waveguide design B. Both correspond to 

regions of flat guided wave dispersion, (kx). For design 

A, we obtain an effective slow down factor of ~300 

which is actually quite higher than the frequency-domain 

prediction of ~100. The FDTD result for the SLB 

waveguide is even more cumbersome. We find that the 

effective slow down factor varies with the distance from 

the prism edge between the values ~10 and 40 which is 

about two orders of magnitude lower than the frequency-

domain prediction of ~2000. We discuss below where 

this huge discrepancy between modal analysis and time-

domain observations for mode SLB is coming from.  

The input EM wave, has a Gaussian beam waist, 

which implies a spread  around the 0 value 
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corresponding to a certain mode. All observed guided 

waves, around LB, SLA and SLB modes are subject to 

the influence of the modal index spread, , which 

introduces additional modes in the vicinity of the 

respective intended modes, e.g., LB, SLA or SLB. The 

case of mode SLB, is especially peculiar however when 

compared to the case of modes LB and SLA. The 

difference between mode SLB and modes LB and SLA 

is that the group index, ng changes so much around mode 

SLB with modal index,  to the point that it goes from 

positive to negative.  

 

 
 

Fig. 4. Comparison of the relative group index variation 

with the modal index (absolute value), versus the modal 

index  for the different modes. 

 

It appears there is a correlation between consistency 

of modal and time-domain analysis and the variation of 

the group index ng with the modal index, . We therefore 

plot in Fig. 4, the relative group index variation with the 

modal index (absolute value), i.e., |ng/|/|ng| versus the 

modal index  for both the bi-waveguide designs. This 

quantity is calculated from the dispersion relations of 

Fig. 2 (b). We also designate the modes LB, SLA and 

SLB that we have discussed above. Figure 4 confirms 

that the lower the value of this quantity the better the 

agreement between frequency-domain predictions and 

time-domain calculations for the effective guided- 

mode slow-down factor. In other words, the quantity 

|ng/|/|ng| can serve as a figure of merit (FOM) for 

slow-light waveguides, with lower values indicating a 

better performance. It can be shown that if |ng|>>, 

which is typically the case for modes identified as slow 

modes in a modal analysis that: 

 2 0

0

1
( )

g

g

g

n
FOM GVD v

n c







   


, (3) 

with 0 being the frequency of the corresponding mode 

and GVD the group velocity dispersion at that frequency. 

Equation (3) implies that along with a near-zero group 

velocity a relatively small GVD value is simultaneously 

required to practically achieve high effective slow-down 

factors.  

VI. CONCLUSION 
Our analysis here suggests that the Finite-

Difference-Time Domain (FDTD) method gives a more 

complete picture for the system’s response in a particular 

experimental set-up. Thus, the FDTD method is more 

suitable to characterize practical slow-light systems in 

comparison with modal methods in the frequency domain. 

The FDTD analysis on a paradigm system uncovered  

a figure of merit for design guidance of slow-light 

platforms. The latter stresses on the importance of an as 

low as possible GVD value along with a near-zero group 

velocity to practically achieve slow-light propagation. 
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