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Abstract ─ This paper provides two novel Stochastic 

Galerkin Method strategies to undertake stochastic 

analysis of the crosstalk in the multi-conductor cables 

with uncertain boundary conditions. Two different 

uncertain boundary conditions, stochastic lumped source 

and stochastic lumped load, are considered into stochastic 

Transmission Line Model. With the help of the Feature 

Selective Validation, it is verified that the proposed 

strategies is accurate by comparing with the reference 

results provided by Monte Carlo Method. At last, 

advantage of the proposed strategies in computational 

efficiency is presented. 

 

Index Terms ─ EMC simulation, stochastic Galerkin 

method, uncertain boundary conditions, uncertainty 

analysis. 
 

I. INTRODUCTION 
Recent years, in order to reasonably accomplish 

simulation recurrence of actual situation, Electromagnetic 

Compatibility (EMC) community is facing a growing 

demand for developing uncertainty analysis into 

simulations. Among these new-type simulations, input 

parameters can be modeled by random variables, due to 

the lack of knowledge or the existence of tolerance factor 

[1, 2].  

Solving stochastic Transmission Line Model is a 

typical uncertainty analysis problem in EMC simulation. 

For example, in calculating crosstalk of the wires in a 

cable bundle, the height of the wires might be uncertain 

in the complicated actual situation. In this case, the 

crosstalk voltages at terminations will be no longer 

deterministic. Obtaining these uncertain outputs is what 

uncertainty analysis does. 

Many uncertainty analysis methods are presented  

to deal with this typical problem. Monte Carlo Method 

(MCM) is a widely used uncertainty analysis method, 

which owns high accuracy [1-3]. It is easy to realize as 

there is no need to change solver during uncertainty 

analysis. However, low computational efficiency makes 

MCM uncompetitive in EMC simulation, especially in 

some complicated problems. 

Stochastic Galerkin Method (SGM) is another 

accurate uncertainty analysis method that provides  

high computational efficiency [4, 5]. Discussion of the 

crosstalk problem can be seen in literatures [6-8]. It 

shows that SGM is as accurate as MCM, and much more 

effective than MCM. Nevertheless, the original solver 

must be changed during uncertainty analysis in SGM. 

This character limits the application of SGM. If the 

solver of the problem is complex, realizing of SGM will 

become difficult. In existing literatures of SGM, only the 

uncertainty in telegraph equations is considered. Thus, 

further studies about applying SGM are still necessary to 

solve more complex problems. 

In this paper, in order to improve the applicable 

scope of SGM in solving complex EMC problems, 

uncertain boundary conditions will be considered in 

stochastic Transmission Line Model. Novel SGM 

strategies will be introduced in detail towards two 

different uncertain boundary conditions, stochastic 

lumped source and stochastic lumped load. By using 

Feature Selective Validation [9-12], the strength of the 

SGM strategies will be testified. 

The structure of the paper is as follows. Section  

II employs a brief description of Stochastic Galerkin 

Method; solving of stochastic Transmission Line Model 

with uncertain boundary conditions is presented in Section 

III; algorithm validation is presented in Section IV; 

Section V provides a summary of this paper. 
 

II. SGM OVERVIEW  
In traditional EMC simulation models, all input 

parameters are supposed certain. However, in actual 

situation, some parameters might be unknown as the lack 

of knowledge, or may change arbitrarily like the cables 

in a moving car, or may be random as the existence  

of manufacturing tolerance. In this case, some input 

parameters of the simulation must be uncertain in  

order to improve the reliability of simulation results.  

In such simulation, the output parameters which we  

are interested in will be influenced by the uncertainty 

inputs. Uncertainty analysis methods can provide these 

uncertain outputs. 
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SGM is an effective uncertainty analysis method 

which is rooted in the generalized Polynomial Chaos 

(gPC) theory, and it has been successfully applied in 

many fields [4, 5]. 

Modeling the uncertain inputs is the primary task of 

SGM. And random events  , which are caused by the 

uncertain input parameters, can be modeled by random 

variable space ( )  . The random variable space ( ) 
 
is 

made up by several random variables, shown in (1). 

Moreover, each random variable has its own distribution: 

  1 2( ) ( ),  ( ),  ,  ( ) .n         (1) 

Independence of the random variables in the random 

variable space is an essential requirement in the 

application of SGM. Karhunen-Loeve expansion can 

provide technical support for such independence [5]. 

Based on the gPC theory, the outputs of uncertainty 

analysis can be unfolded by polynomial form shown in 

(2): 

 
0 0 1 1( ) ( ) ( ) ( ),P PV v v v          (2) 

where ( )V 
 
is the output result which is influenced by 

the random variable space  , and ( )i 
 
stands for the 

Chaos polynomial of the random variables which is 

given by the Askey rule. Where P +1 is total number  

of the polynomial, and 
iv
 
is the polynomial coefficient, 

which needs to be solved.  

Table 1 presents the Askey rule. The form of 

polynomial is determined by distribution of the random 

variables. The Askey rule can guarantee best convergence 

of the polynomial expansion according to the gPC theory 

[5]. 

 
Table 1: Askey rule 

Random 

Variables 

Wiener-Askey 

Chaos 
Support 

Gaussian Hermite-chaos ( , )   

Gamma Laguerre-chaos [0, )  

Beta Jacobi-chaos [0,  1]  

Uniform Legendre-chaos [ 1,  1]  

 
Suppose that there are two random variables 

1  
and 

2  
in a random variable space 

1 2{ ,  }.   1  
is in 

Gaussian distribution, and 
2  is in Uniform distribution. 

First three polynomials of the Hermite-chaos are 

0 1( ) 1,    
1 1 1( )  

 
and 2

2 1 1( ) 1.     First three 

polynomials of the Legendre-chaos are 0 2( ) 1,    

1 2 2( )  
 
and 2

2 2 2( ) 3 1.      The polynomial 

expansion of   is in form of tensor product, as Table 2 

shown. 

 

Table 2: Polynomial for the case with two random 

variables 

The Number of 

Polynomial P 

The 

Order d 
Polynomial 

0 0 1 

1 1 1  

2 1 21.732   

3 2 
2

10.707 ( 1)   

4 2 1 21.732     

5 2 2

21.118 (3 1)    

 

If the order of the polynomial is d and the number of 

the random variables is n, the number of polynomials  

P +1 will be calculated by following relationship: 

 
( )!

( 1) .
! !

n d
P

n d


   (3) 

The polynomials given by the Askey rule are 

orthogonal to each other, which implies that, 

 2,  .i j i ij     (4) 

Where 
ij

 
is Kronecker function which leads to the 

relation: 

 
1 ( )

 .
0 ( )

ij

i j

i j



 


 (5) 

Inner product computation . ,  .  is defined as: 

 ,  ( ) ( ) ( ) ,i j i j w d          (6) 

where ( )w 
 
is weight function, and it can be obtained by 

the joint probability density of the random variables 

because the random variables are independent. In the 

same way, the supports of the integration are the joint 

supports of every random variable. 
 

III. SOLUTION OF STOCHASTIC 

TRANSMISSION LINE MODEL 
Transmission line equations include two types of 

equations, and they are telegraph equations and boundary 

conditions equations. Previous research only focuses on 

uncertain analysis of telegraph equations, shown in [6-8]. 

In contract, little attention is gained about boundary 

conditions equations. Therefore, this study aims to 

undertake uncertainty analysis in boundary conditions 

equations. 

Boundary conditions equations are given as (7) and 

(8): 

 (0) V (0),s sV Z I   (7)

  
 ( ) V + ( ),l lV L Z I L  (8) 

where L is the length of the  transmission line. I (0) and 

V (0) stand for the current value and the voltage value in 

source end. I (L)
 
and V (L) are the current value and the  
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voltage value in load end. Vs
 is the voltage source in the 

source end, and Vl
 presents the voltage source in load 

end. 
sZ  and 

lZ  present the loads in source end and load 

end respectively. 

Two different uncertain boundary conditions are 

considered. One is stochastic lumped source, and the 

other is stochastic lumped load. 

 

A. Stochastic lumped source 

In the first model, uncertainty in lumped source Vs
 

is considered, and equation (7) is translated into: 

 (0, ) V ( ) (0, ),s sV Z I     (9) 

where V ( )s   is the uncertain input which is inference  

by the random event  . (0, )V   and (0, )I 
 
are outputs 

of the calculation. 

According to the gPC theory, the output parameters 

can be expanded by the polynomial of the random 

variables like (2), so they become: 

 0 0 1 1 2 2

0 0 1 1 2 2

(0, ) ( ) ( ) ( )
.

(0, ) ( ) ( ) ( )

V v v v

I i i i

      

      

  


  
 (10) 

Substituting (10) into (9), (9) can be expanded as: 

 0 0 1 1 2 2

0 0 1 1 2 2

( ) ( ) ( )

V ( ) ( ( ) ( ) ( )).s s

v v v

Z i i i

     

      

  

  
 (11) 

Using Galerkin progress, inner product computation 

with 
0 ( ) 

 
is taken on both sides of (11). And (11) is 

rewritten as: 

 

0 0 0 1 1 0

2 2 0 0

0 0 0 1 1 0

2 2 0

( ), ( ) ( ), ( )

( ), ( ) V ( ), ( )

( ( ), ( ) ( ), ( )

( ), ( ) ).

s

s

v v

v

Z i i

i

       

      

       

   

 

 

 
 (12) 

Considering the properties given in (4), (12) can be 

rearranged to obtain: 

 0 0 0V ( ), ( ) ,s sv Z i     (13) 

where 0V ( ), ( )s     is integral calculation, so its result 

is a constant. 

Inner product computation with 
1( ) 

 
and 

2 ( ) 
 
is 

done in the similar way like (12), Equation (14) is got: 

 
0 0 0

1 1 1

2 2 2

V ( ), ( )

V ( ), ( ) .

V ( ), ( )

s

s s

s

v i

v Z i

v i

  

  

  

    
    

     
        

 (14) 

Compared with the original equation in (7), the 

random variable   is disappeared, and (14) only includes 

three certain equations. Randomness is transferred into 

the Polynomial chaos in (10). 

Traditional EMC simulation method can be used to 

solve the equations in (14), and coefficients like 
0v
 
and 

0i  
can be calculated. After substituting these coefficients  

into the Polynomial chaos in (10), uncertainty analysis 

results of the SGM are presented. If the random variables 

in (10) are sampled, the statistical property which we 

need will be obtained, such as the expectation, the 

standard deviation, the worst case values, the probability 

density curves, and so on. 
 

B. Stochastic lumped load 
In the second model, stochastic lumped load is 

considered into boundary conditions equation (7). The 

equation will become: 

 (0, ) V ( ) (0, ).s sV Z I     (15) 

Compared with the equation (9), the lumped source 

Vs  is a certain input, but the lumped load is turned into 

an uncertain value, ( )sZ  .  

The output parameters (0, )V   and (0, )I   can
  

also be expanded by substituting (10), equation (15) is 

unfolded as: 

  0 0 1 1 2 2

0 0 1 1 2 2

( ) ( ) ( )

V ( )( ( ) ( ) ( )).s s

v v v

Z i i i

     

      

  

  
 (16) 

Taking inner product computation on both sides 

with 
0 ( )  , (16) is rewritten as: 

 

0 0 0 1 1 0

2 2 0 0

0 0 0 1 1 0

2 2 0

( ), ( ) ( ), ( )

( ), ( ) V , ( )

( ( ) ( ), ( ) ( ) ( ), ( )

( ) ( ), ( ) ).

s

s s

s

v v

v

i Z i Z

i Z

       

     

         

    

 

 

 
 (17) 

Using the inner product properties given in (4), (17) 

should be: 

 
0 0 0 0

1 1 0 2 2 0

V ( ( ) ( ), ( )

( ) ( ), ( ) ( ) ( ), ( ) ).

s s

s s

v i Z

i Z i Z

    

         

  


 (18) 

It is worth noting that the first Chaos polynomial

0 ( )   is equal to 1. Thus, the calculating progress like 

(19) can be obtained: 

 
0 0 0V , ( ) V ( ), ( ) V .s s s        (19) 

In the similar way, (20) and (21) can be shown as 

the relations: 

 
1 0 1V , ( ) V ( ), ( ) 0,s s        (20) 

 
2 0 2V , ( ) V ( ), ( ) 0.s s        (21) 

Taking inner product computation with 
1( ) 

 
and

2 ( )  , the Galerkin Process results can be rearranged to 

get: 

 
0 0

1 1

2 2

V

0 ,

0

sv i

v T i

v i

     
     

 
     
          

 (22) 

 

0 0 1 0 2 0

0 1 1 1 2 1

0 2 1 2 2 2

( ) , ( ) , ( ) ,

( ) , ( ) , ( ) , ,

( ) , ( ) , ( ) ,

s s s

s s s

s s s

Z Z Z

T Z Z Z

Z Z Z

        

        

        

 
 

  
 
 

 (23) 
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where T is only an intermediate variable. The random 

variable   in the Chaos polynomial 
1( )  is ignored to 

simplify the expression. 

Unlike (14), equations (22) and (23) provide an 

augmented certain equation. Traditional EMC simulation 

method can also be used to calculate the coefficients in 

(10), like 
0v

 
and 

0i . Final uncertainty analysis results 

can also be got by sampling equation (10). 
 

IV. ALGORITHM VALIDATION 
In this section, algorithm validation of the proposed 

strategies is presented. The validation model is got by 

improving a published model mentioned in literature [6]. 

Only geometrical uncertainty has been considered in [6]. 

In our model, uncertain boundary conditions will also be 

considered at the same time. 

The validation model is to calculate crosstalk between 

two coupled lines, and it is shown in Fig. 1. 

The radius of the radiating conductor and the 

disturbed conductor are both 0.1mm. The horizontal 

distance between two conductors is 0.05m. The height  

of the disturbed conductor is 0.035m, and the height of 

the radiating conductor 
gH  obeys Gaussian distribution 

N(0.04,0.005)m. All the loads are supposed 50 ,  except 

for 
loadZ  under identified. The amplitude of the excitation 

source 
sourceU

 
is another undefined value. The radiating 

conductor and the disturbed conductor are surrounded by 

vacuum. The relative dielectric constant and the relative 

magnetic permeability of the vacuum are both 1. 
 

Usource

0.035m5
0
  lo
a

d
Z

5
0
  

5
0
 

1m

(0.04, 0.005)mN

far endV 

 
 

Fig. 1. Basic Stochastic Transmission Line Model. 
 

A random variable can be used to express the 

uncertainty in the height of the radiating conductor, and 

it shows in: 

 10.04 0.005 ,gH  +  (24) 

where, 
1  is standard normal distribution. 

 

A. Validation of the first strategy 

The strategy about the stochastic lumped source  

is validated at first. Uncertainty in lumped source is 

considered as: 

 21.1 0.1 ,sourceU  +  (25) 

where 
2  is the Uniform distribution in [ 1, 1]  . 

On the contrary, the lumped load is a certain value 

shown as: 

 50.loadZ   (26) 

In this case, the random variable space is 
1 2{ ,  }  , 

thus Chaos polynomials should be chosen as Table 2. 

Using the process given in Section III, the probability 

density curve of crosstalk voltage value 
far endV   

at the 

far end of the disturbed conductor can be calculated. 

Figure 2 shows the results of the crosstalk voltage value 

at single frequency point 20 MHz and 5 MHz.  

Results calculated by MCM can be regarded as 

reference data, and 20000 times of sampling are used. 

The sampling times judgment is based on the method 

given in [13], in order to make sure that MCM is 

convergence.  
 

 
 

Fig. 2. Results at single frequency point. 

 

Figure 2 indicates that the results given by the first 

SGM strategy and MCM are nearly the same at these two 

frequency points. 

Figure 3 shows the expectation results of 
far endV 

 

with frequency from 1MHz to 100 MHz. Meanwhile, Fig. 

4 presents the ‘worst case’ information. 
 

 
 

Fig. 3. Expectation results of crosstalk voltage value 

from 1MHz to 100 MHz. 
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Fig. 4. Worst case values of crosstalk voltage value from 

1MHz to 100 MHz. 

 

By using FSV, the Total-GDM of the results between 

two methods in Fig. 3 is 0.036. It indicates that the results 

in the first strategy are an ‘Excellent’ match with the 

results in MCM. The Total-GDM of the results according 

to Fig. 4 is 0.043, and it is also an ‘Excellent’ match. The 

details about FSV can be found in [9, 10]. In Fig. 5, all 

the relative errors between SGM and MCM in every 

frequency point are less than 1%, and it means that SGM 

and MCM are in the same accuracy level. 

 

 
 

Fig. 5. Relative errors between SGM and MCM in the 

first strategy. 

 

According to all Total-GDM results above, it is 

testified that the first SGM strategy in considering the 

stochastic lumped source is as accurate as MCM. 

 

B. Validation of the second strategy 
Uncertainty in the lumped load is considered in this 

part, it shows in: 

 
355 5 ,loadZ  +  (27) 

where 
3  is also the Uniform distribution in [ 1, 1]  . 

The lumped source is a certain value this time, and 

it should be: 

 1.sourceU   (28) 

The random variable space turns to be 
1 3{ ,  }  , the 

Chaos polynomials also can be provided by Table 2. In 

this case, the random variable 
2  in the table is changed 

to be 
3 . 

By using the process provided in Section III, the 

uncertain crosstalk results can be obtained. Fig. 6 also 

gives the PDF results at single frequency point 20 MHz 

and 5 MHz. It shows that the MCM results are quite 

similar to the results given by the second SGM strategy. 

 

 
 
Fig. 6. Results at single frequency point. 

 

The expectation results and Worst case values at the 

whole frequency from 1MHz to 100 MHz are presented 

in Fig. 7 and Fig. 8 respectively. 

In the same way, by using FSV, the Total-GDM of 

the results between two methods in Fig. 7 is 0.014, and 

it is 0.020 in Fig. 8. Both of them indicate the ‘Excellent’ 

match. Furthermore, the relative errors given in Fig. 9 

can provide the same conclusion. 

In a word, it is demonstrated that the accuracy of the 

second SGM strategy is also in the same level with MCM 

in considering the stochastic lumped load. 

 

 
 
Fig. 7. Expectation results of crosstalk voltage value 

from 1MHz to 100 MHz. 
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Fig. 8. Worst case values of crosstalk voltage value from 

1MHz to 100 MHz. 

 

 
 

Fig. 9. Relative errors between SGM and MCM in the 

second strategy. 

 

C. Discussion of computational efficiency 

The simulation time comparison between SGM and 

MCM in two strategies is shown in Table 3. The total 

time includes pre-processing time, calculating time and 

post processing time. 

For pre-processing time, some inner product 

computations must be calculated firstly in using SGM. 

On the contrary, nothing needs to be done in MCM. In 

calculating time, several certain equations like (14) or an 

augmented equation like (23) should be solved in SGM, 

thus the calculated quantity of the SGM is equal to 

several times of the original equation like (7). However, 

20000 times of the original equation like (7) need to  

be calculated in MCM. As to the post processing time, 

statistical properties of the results can be obtained. The 

SGM samples the random variables before statistical 

properties calculation, so it needs a little more time than 

MCM. 

Therefore, the difference in computational efficiency 

between SGM and MCM is decided by the calculating 

time. If the single simulation time in solving equation (7) 

is long, the difference will be more obvious. 

Table 3: The simulation time comparison between the 

SGM and the MCM 

 
Pre- 

Processing 
Calculating 

Post 

Processing 
Total 

MCM(1) 0s 373.83s 0.15s 372.98s 

SGM(1) 10.25s 0.26s 0.81s 11.32s 

MCM(2) 0s 355.29s 0.21s 355.5s 

SGM(2) 10.84s 0.25s 0.97s 12.06s 

 

In short, the computational efficiency of SGM is 

much higher than MCM. 
 

V. CONCLUSION 
In this paper, considering uncertain boundary 

conditions, two novel strategies based on Stochastic 

Galerkin Method are presented to solve the stochastic 

transmission line equations. By using Feature Selective 

Validation, the proposed strategies are demonstrated  

as accurate as Monte Carlo Method. Furthermore, the 

computation efficiency of the strategies is proved much 

higher than that of Monte Carlo Method. In a word, the 

proposed strategies improve the competitiveness of the 

Stochastic Galerkin Method in solving complex multi-

conductor cables problems. 

At last, the usage of uncertainty analysis results is 

discussed. Expectation results are the most likely values, 

so it is useful in EMC prediction field. Standard deviation 

information plays an important role in sensitivity analysis 

and robustness analysis of EMC simulation. Worst case 

values are a special focus in EMC field, and it is an 

important value in EMC optimization design.  
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