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Abstract ─ With the development of smart power grids, 

the demand for real-time voltage monitoring along 

overhead transmission lines (OTLs) has been growing. 

However, the existing voltage measurement of OTLs  

by using potential transformers involves formidable 

difficulties. This study proposes a non-contact 

measurement method in which the voltages on AC OTLs 

are inversely calculated on the basis of the measured  

data of the power frequency electric field under OTLs. 

To improve the accuracy and stability of the inverse 

calculation, an accurate mathematical model and 

modified inverse algorithms are investigated and  

then a set of feasible approaches are proposed. First, 

considering an overhead conductor’s actual physical 

form and the meteorological conditions of its operating 

environment, a 3-D catenary model is built, and the 

mathematical relations between 3-D electric fields  

and the voltages on OTLs are identified. Second, the 

improved particle swarm algorithm is used to search the 

optimal measurement positions of the electric field to 

improve the ill-posedness of inverse problems. Third, the 

iterative Tikhonov regularization method, in which the 

number of iterations is considered as the variable, is 

adopted to further improve the ill-posedness of inverse 

problems and reduce the susceptibility of regular 

solutions to regularization parameter α. Fourth, root 

mean square values and phase parameters of AC voltages 

are identified from the sinusoidal fitting curves obtained 

by the real-time inverse calculation. Results of the 

simulation and experiment examples show that inverse 

solutions of high precision can be obtained under the 

condition with relatively high errors of electric field 

measurement. Moreover, the advantages of the proposed 

inversion method, such as fast computing speed and 

good stability, are demonstrated. 

 

Index Terms ─ 3-D model, AC overhead transmission 

lines, electric field, inversion, iterative Tikhonov 

regularization, parameter identification, position 

optimization, voltage. 

I. INTRODUCTION 
Root mean square (RMS) values and voltage phase 

of AC overhead transmission lines (OTLs) reflect the 

operating status and health level of power grids. The 

conventional method of measuring voltages on OTLs is 

to use the potential transformers that are installed in 

substations. With the development of smart power grids, 

the demand for real-time voltage monitoring along OTLs 

has become increasingly apparent. However, installing a 

large number of potential transformers along operating 

OTLs is not feasible because of certain formidable 

difficulties, such as the requirement for power-off 

installation and the increasing probability of ferro-

resonance and insulation fault [1-2]. Given such 

bottleneck, studying new voltage measurement methods 

is necessary. 

Numerous studies on the electromagnetic 

environment of high-voltage OTLs reveal that the power-

frequency electric field around OTLs is significantly 

correlated with the power-frequency voltages on OTLs 

[3-5]. On the basis of this correlation, we propose the 

idea of inversely calculating voltages by using the 

measured data of the electric field. This non-contact 

voltage measurement has prominent advantages in safety 

and operation flexibility. The main challenge in applying 

this method to engineering is the improvement of the 

accuracy and stabilization of the inverse calculation. 

Calculation accuracy is influenced by the precision of 

electric field measurement on site and the precision of 

the mathematical model and inversion algorithm. This 

study focuses on the latter.  

In most studies, 2-D models that ignore the sag and 

span of OTLs and other factors have been used to assess 

the electric field around OTLs [4-6]. However, these 2-

D models are too rough to solve the proposed inverse 

problem. Certain studies have built a 3-D simulation 

model but only with consideration of equally high 

suspension case and a limited length of OTLs [7-8]. In 

the present study, considering the actual meteorological 

and orographic environment and the physical form of 
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OTLs, the 3-D model of OTLs is built, and then the 

mathematical relations between the 3-D electric fields 

and voltages are proposed. 

The calculation of voltages on AC OTLs based on 

measured electric field data is an electromagnetic inverse 

problem, which has serious ill-posedness. Many studies 

have been devoted to dealing with the ill-posed problem 

[9-13], in which Tikhonov regularization has been 

widely used. The error between the solution of Tikhonov 

regularization and the true value strongly depends on  

the value of regularization parameter α, and minor 

differences in α may lead to distinctly different inverse 

solutions. For the selection strategy of α, priori estimate 

and posterior estimate are available [14-17]. Priori 

estimate requires some priori information of the  

true value, but obtaining it in practical engineering 

applications is difficult. By contrast, posterior estimate 

is based on measured data and error level. From posterior 

estimate, several specific methods have been developed, 

and they include the Morozov’s discrepancy principle, 

generalized cross inspection criteria, and L-curve 

criterion. However, the process of α-selection based  

on the methods mentioned above is tedious, and the 

reselection of α is required when the measurement error 

level changes. After analyzing the causes of ill-posedness 

in the special inverse problem, this study proposes a 

series of approaches that search the optimal positions of 

electric field measuring points to reduce the condition 

number of the observation matrix. Then, iterative 

Tikhonov regularization is processed to obtain inverse 

solutions point by point in the time domain. 

 

II. MATHEMATICAL MODEL AND 

OPTIMIZATION METHOD 

A. 3-D model of OTLs’ voltage and electric field 

Given the self-heavy, wind and ice load on OTLs  

and other factors, an OTL suspended between two towers 

is in the shape of catenary. For universal situations, a 

suspended OTL of unequal height (Fig. 1) is considered. 

In Fig. 1, the coordinate origin is set at the ground 

projection of the left suspension point. 
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Fig. 1. Structural diagram of suspended OTL of unequal 

height. 

The catenary can be described by Equation (1) [18]: 
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where a=2σ0/γ is defined as the sag coefficient in which  

σ0 is the horizontal stress of the conductor and γ is the 

conductor load, hd is the height difference between the two 

suspension points, and L is the line span. 

When hd = 0, OTLs are suspended at equal heights, 

and the corresponding catenary equation can be simplified 

to the following: 

      ( ) sinh sinh   0 .z x a x a L x a x L        (2) 

Parameters σ0 and γ depend on the mechanical  

and physical characteristic of OTL, length of span, and 

weather conditions [19-20]. They can be calculated on 

the basis of given operating conditions. The introduction 

of these parameters helps improve the accuracy of  

the electric field calculation. Considering that phase 

conductors of the same type in the same span have a 

uniform catenary form is reasonable. 

One phase of high-voltage OTLs usually contains  

a bundle of sub-conductors. When the radius of a circle, 

along which the bundled sub-conductors are arranged,  

is smaller than the distance between the conductors and 

observation point, such bundle can be equivalent to one 

conductor.  

Power frequency electric field can be regarded as 

quasi-static electric field. The electric field generated  

by AC OTLs is usually calculated with the Charge 

Simulation Method [21-23], in which the effect of the 

conducting ground is equivalent to that of mirror image 

conductors. Suppose that the nth phase conductor is ln  

and that its mirror image is lʹn. Their equivalent charge 

densities are +τn and -τn. The potential at the spatial 

observation point C (xm, ym, zm) is given by the following: 
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where ε0 is the dielectric constant of air and Rnm and Rʹ
nm 

are the distances from the nth phase conductor and its 

mirror image to the observation point C, respectively: 

 ( ( ) ( ) ,nm m n x m n y m n zx x y y z z     R )e e e  

 ' ( ) ( ) ( ) ,nm m n x m n y m n zx x y y z z     R e e e  

 ' '| |,   | | .nm nm nm nmR R R R  

The spatial structure for the calculation is shown in 

Fig. 2. 

Equations (1) or (2) are substituted into (3) and the 

integral variable is converted into xn. The discretization 

and numerical integration are carried out by using the 

Method of Moment. With the synthetical consideration  

of computational complexity and accuracy, the (2K+1) 
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continuous spans of OTLs near point C are intercepted to 

calculate the potential. 
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Fig. 2. Diagram of the spatial structure for calculation. 

 

Point C is named as the match point if it is set on the 

surface of the phase conductor. The potential at point C  

is generated by the total N phases of OTLs. Then, the 

mathematical relationship between the known surface 

potential and the simulated charge density is expressed in 

matrix form as: 

 U = P , (4) 

where P is an N-dimensional square matrix and the 

elements in P can be calculated by numerical integration 

according to Equation (3). 

Then, the 3-D electric field components at point C are 

calculated by the following: 
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 (5) 

By setting M measuring points, the matrix equation 

can be written as follows: 

 .E = G  (6) 

According to Equations (4) and (6), the mathematical 

relationship between the surface potential of OTLs and  

the electric fields at the measuring points is given by the 

following: 

 - = ,1
E = GP U KU  (7) 

where K is defined as the observation matrix. 

Errors and noises inevitably exist in actual 

measurements. Only Eδ (||E - Eδ||<δ) can be obtained.  

If the positions of the measuring points are selected 

randomly, the condition number of matrix K (i.e., 

cond(K)) may be large. Consequently, a small noise in  

E may cause the inverse solution Uδ to severely deviate 

from the true value U. 
 

B. Position optimization algorithm in 3-D space 

Section II.A shows that the observation matrix K  

is determined by the structure of OTLs and the positions 

of electric field measuring points. When the structure  

of OTLs is fixed, reducing cond(K) by optimizing the 

positions of measuring points is convenient and feasible. 

It can reduce the susceptibility of inverse calculation to 

measurement noise [24]. 

In this study, the particle swarm optimization 

algorithm is adopted to search the optimal measuring 

positions. The fitness function of the algorithm is set as 

follows: 

 FitFun cond( ). K  (8) 

In the iteration process of searching the optimal 

solution, values of the fitness function of each particle are 

calculated and compared. Moreover, the historical optimal 

position of each individual particle XHbest, YHbest, ZHbest and 

the global historical optimal positions of the particle 

swarm XGbest, YGbest, ZGbest are dynamically updated, 

thereby guiding a convergence to the global optimal 

position. The velocities and positions of particles in the 

(i+1)th generation of particle swarm on the x-axis are 

determined by the following [25]: 
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 1 1,X X V
  i i i

x  (9b) 

where ω is the inertia weight, c1 and c2 are two learning 

factors, and 
1

1

i

xr  and 
1

2

i

xr  are two random numbers with 

values ranging from 0 to 1, respectively. 

The iteration processes of particle swarm on the y- 

and z-axis are similar to Equations (9a) and (9b). 

The iterative process stops when it reaches the 

predetermined maximum iteration number or the 

predetermined fitness function threshold. Consequently, 

the global optimal fitness function value Gbest and the 

corresponding optimal position XGbest, YGbest, ZGbest are the 

outputs. 

 
C. Iterative Tikhonov regularization method 

The conventional Tikhonov regularization method 

turns the inverse calculation problem into a minimization 

problem [26]: 
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where α is the regularization parameter. 

The approximate regularization solution can be 

obtained using the following expression: 

 * 1 *( ) .U I K K K E
 

     (11) 

An iterative Tikhonov regularization method is 

proposed to achieve a high convergence order [27],  
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where i is the iterative order number. When i=1, the 

conventional Tikhonov regularization is similar to  
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Equation (11).  

The iterative Tikhonov regularization method can 

be implemented in two ways. One way is to select a fixed 

i (i ≥ 1), and perform the iterative calculation to achieve 

the optimization of α(δ). Several studies have adopted 

this approach and developed certain selection criteria  

of α(δ). However, the selection procedure of α(δ) is 

cumbersome, and α(δ) greatly influences inverse solutions. 

Once a slight change occurs in the analytical conditions, 

α(δ) must be reselected. Another way is to select a fixed 

α (α ≥ 0) that is determined by priori estimation and  

then perform the iterative calculation with the uncertain 

parameter i. The regularization solution can be obtained 

conveniently and quickly by reasonably setting the 

iterative termination conditions. Thus, the second 

approach is adopted. 

The theorem in [27] is used to select α and set the 

iterative termination conditions. Suppose that i(δ) is the 

smallest integer that meets the iterative termination 

condition,  

 , || ( 1)i  

    || KU E . (13) 

A constant α0 exists to make i ≥ r + 1/2 when α ≥ α0: 
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D. Characteristic parameter determination of 

sinusoidal voltage 

The characteristic parameters of the power frequency 

voltage are the RMS and phase. One approach is to use 

the phasors of electric field components to inversely 

calculate the phasors of voltages. This calculation process 

is simple, but the accuracy is not up to expectation. 

Another procedure is proposed in this study. The multi-

point synchronous real-time electric field measurement 

is carried out by our self-made device. Then, the voltage 

value can be calculated point by point in the time  

domain according to the mathematical models and the 

optimization method described above. The characteristic 

parameters of sinusoidal voltages can be determined by 

the sinusoidal function fitting. This method has good 

anti-interference ability and self-tuning function, and 

thus, it can improve the calculation accuracy. 

 

III. NUMERICAL EXAMPLE AND 

ANALYSIS 

A. Structure of OTLs and analysis condition 

The selected simulation example involves 220 kV 

single-circuit OTLs. The phase conductor is 2×LGJ-

400/35, and the length of the span is 300 m. Two 

suspension cases are shown in Figs. 3 (a) and 3 (b). 

Figure 3 (c) shows the layout of the phase conductors on 

each tower in Case I and on the left-side tower in Case 

II. Figure 3 (d) shows the layout of the phase conductors  

on the right-side tower in Case II.  
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Fig. 3. Structure diagram of transmission line conductors. 

 

Other analysis conditions are set as follows.  

1) Three-phase symmetrical voltages of OTLs are: 
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127.02 120 kV

127.02 120

U

A
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C
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U

U
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      

. 

2) Given the mathematical principle for solving 

matrix equations as well as the accessibility of the  

real-time and synchronous measurement of electric 

fields, three measuring points, which meet the minimum 

number of measuring points for calculating three-phase 

voltages, are set near the ground. In view of the structural 

symmetry of the three-phase OTLs, the three measuring 

points are symmetrically arranged relative to the y-axis 

on a cross section. 

3) For the meteorological conditions, breezeless, 

ice-free, and average outdoor temperature conditions  

are assumed. Accurate values of the electric field can  

be calculated according to Equations (1)-(5), and the 

measured electric field data are simulated by adding the 

random white noise with the noise level of σ.  

 

B. Position optimization of measuring points 

For Case I, the space range of the position  

XIAO, ZHENG, XIE, MA, ZHANG: AC OVERHEAD TRANSMISSION LINES 898



optimization is set as 0 ≤ x ≤ 150m, -15m ≤ y ≤ 15m, and 

1m ≤ z ≤ 3m. The results of several optimizations are 

cond(K) = Gbest = 14.87, thus, the corresponding optimal 

measuring positions are (150 -7.5 3), (150 0 3), and (150 

7.5 3). 

Moreover, two sets of measuring points (10 -5 1), 

(10 0 1), (10 5 1) and (100 -10 2), (100 0 2), (100 10 2) 

are randomly selected, and the corresponding cond(K) is 

calculated. 

Under the condition of 10% measurement error,  

the directly inverse calculation is performed to obtain  

the corresponding inverse solution Uδ at three sets of 

measuring points. The results of the inverse calculation 

are different because of the addition of random noise. 

The means and variances of 10 calculations are 

determined statistically, as shown in Table 1. 

Table 1 shows that different positions of the 

measuring points lead to different cond(K) and Uδ.  

The greater the cond(K) is, the more Uδ deviates from  

the accurate U. The greater the variance is, the worse  

the calculation stability appears. Thus, the position 

optimization of measuring points presents a significant 

improvement in the ill-posedness of inverse problems. 

For Case II, the optimal measuring positions to be 

found are (120 -6.5 2.9), (120 0 3), (120 6.5 2.9), and the 

corresponding cond(K) is 29.74. The inverse solution 

U
  obtained by the directly inverse calculation is as 

follows: 

 

136.91 1.57

153.54 123.78 kV

135.13 117.68



  
 

  
 
   

U . 

Compared with other randomly selected measuring 

points, the optimal measuring positions determines the 

minimum cond(K). Moreover, the accuracy and stability 

of the inverse calculation are significantly improved. 

This outcome is similar to the conclusion in Case I. 

Although the position optimization of measuring 

points improves the performance of the directly inverse 

calculation, the accuracy of inverse solutions requires 

further improvement. Thus, the iterative regularization 

method is required. 
 

C. Iterative Tikhonov regularization in time-domain 

Suppose that the electric field data measured in real 

time with a noise level of 10% are obtained at the three 

optimal measuring points in Case I. The directly inverse 

calculation and the traditional Tikhonov regularization 

calculation with α=10-6 and α=10-5, respectively, are 

performed. Figure 4 shows the comparison among  

the accurate three-phase voltages and the three inverse 

solutions in a sinusoidal period. Figure 4 reveals that a 

certain error exists between the directly inverse solutions 

and accurate values. The accuracy of inverse solutions  

is improved when the single Tikhonov regulation 

calculation with α=10-6 is carried out. However, the 

accuracy is significantly decreased when α=10-5. This 

result suggests that the regularization parameter α  

must be carefully selected in the traditional Tikhonov 

regularization. 

Suppose that τ=1.4. The iterative Tikhonov 

regularization is carried out when α=10-6 and α=10-5 

respectively. When α=10-6, the iteration numbers of the 

inverse calculation at 20 points of time in a period are [1 

1 1 1 1 2 1 1 1 1 2 2 2 1 1 1 1 1 1 2]. When α=10-5, the 

iteration numbers are [4 4 4 4 4 3 5 5 2 4 4 2 2 4 4 3 5 2 

2 4]. Thus, the iteration number increases when the 

selected value of α is unsatisfactory. Figure 5 presents 

the comparison among the accurate voltages and the 

inverse solutions of the iterative regularization in a 

sinusoidal period. Figure 5 shows that the difference 

between the two inverse solutions is insignificant when 

α approaches two different values. Therefore, the iterative 

Tikhonov regularization method with the variable of  

the iteration number can decrease the susceptibility of  

α to the inverse solution by adjusting the number of 

iterations. 

The iterative Tikhonov regularization is carried out 

successively based on 20 sets of measured data in a 

sinusoidal period. The iteration number varies each  

time, but is certainly no more than 5. The simulation is 

conducted with a regular computer configuration with 

Intel Core I5 CPU, 3.2 GHz clock and 4 GB frequency 

of memory. It takes 0.012s for calculation using MATLAB 

software. The speed of calculation is acceptable. 

The RMS and phase of the three-phase voltages are 

extracted from the sinusoidal fitting curves on the  

basis of the 20 sets of real-time inverse solutions in a 

period. The results of the three-phase voltage phasors are 

statistically shown in Table 2. Moreover, the root-mean-

square errors (RMSEs) between the inverse solutions 

and the accurate values are computed to reflect the 

deviation of the inverse solutions from the accurate 

values. 

Table 2 also shows that the point-by-point iterative 

Tikhonov regularization is superior to other methods in 

terms of accuracy. 

The point-by-point iterative Tikhonov regularization 

with α = 10−6 is adopted under different measurement 

error levels. Tables 3 and 4 show the results. 
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Fig. 4. Comparison among actual values, directly inverse 

solutions, and single regularization solutions. 
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Fig. 5. Comparison among actual values and iterative 

regularization solutions. 
 

Various factors affect measurements in a real 

complicated engineering environment; thus, a 

measurement error of up to 25% is set in the example. 

Tables 3 and 4 show that the error of solution increases 

as the measurement error increases. However, when  

the measurement error is less than 20% in Case I and  

less than 15% in Case II, the accuracy of the inverse  

solutions calculated on the basis of the proposed position 

optimization and point-by-point iterative Tikhonov 

regularization is satisfactory. For many other methods, 

the inverse solutions almost deviate from the actual 

values when the measurement error exceeds 10%. The 

analysis results of the examples verify the accuracy and 

robustness of the presented method. 
 

IV. EXPERIMENTAL VERIFICATION 
Figure 6 presents the simulation experimental 

platform of the three-phase AC OTLs. The real-time 

electric field data are synchronously measured by the  

three self-made devices.  
 

 
 

Fig. 6. Experimental site. 
 

The three-phase AC voltages on OTLs are measured 

by a system that contains high-voltage probes and 

oscilloscope. They do not show complete three-phase 

symmetry: 
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Figure 7 shows the measured Ez components at 

three points. 
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Fig. 7. Measured Ez at three points in the time-domain.  
 

The iterative Tikhonov regularization with α = 10−4 

is adopted to inversely calculate the three-phase voltages 

point by point in the time domain. The comparison 

between actual values and the solutions is shown in Fig. 

8. The phasors of the three-phase voltage can be obtained 

by sine curve fitting: 
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Fig. 8. Comparison between actual values and solutions 

of three-phase voltages. 
 

The maximum RMS error and phase error of  

the calculated three-phase voltages are 10 V and 5°, 

respectively. This result shows that the proposed non-

contact measurement of voltage on OTLs has engineering 

feasibility and accuracy 
 

V. CONCLUSION 
The aim of the study is to realize the non-contact 

measurement of voltages on AC OTLs through inverse 

calculation based on measured electric field data under 

OTLs. An accurate mathematical model and modified 

inverse solution algorithms are proposed to improve the 

accuracy, stability, and robustness of the inverse 

calculation. They are summed up as follows. 

An accurate 3-D mathematical model between the 

voltages and the electric fields of OTLs is built with  

consideration of the real engineering environment and 

physical form of OTLs.  

The position optimization of measuring points is 

presented to minimize the condition number of the 

observation matrix and reduce the sensitivity of inverse 

solutions to measurement noise. The particle swarm 

algorithm for position optimization is proved to perform 

well in global optimization. 

The iterative Tikhonov regularization method with 

varying iteration numbers is developed to further improve 

the ill-posedness of inverse problems. Compared with 

the traditional Tikhonov regularization method, the 

method presented avoids the complex computation of 

selecting regularization parameters α and decreases the 

susceptibility of α to inverse solutions by adjusting the 

number of iterative calculations. 

The process of point-by-point regularization performs 

real-time correction for the inverse calculation, thereby 

improving the calculation accuracy. 

The analysis results of the given examples and 

experiments verify that through the combination of  

the above four improvements, inverse solutions with 

satisfactory accuracy can be obtained under the condition 

with high measurement errors. Moreover, the rapidity, 

stability, and robustness of the inverse calculation are 

demonstrated. 
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Table 1: Comparison of the inverse solutions when setting different measuring points 

Measuring Positions 
(xk yk Zk)/m 

Cond(K) 
Inverse Solution Uδ 

Mean Value/kV 
Variance 

(RMS       Phase) 

 

 

 

10 5 1

10 0 1

10 5 1







 266.44 

: 139.92 -1.72

: 216.10 58.57

: 135.13 121.37

A

B

C

  
 

 
 
   

 

(47.02 23.54)

(162.10 105.55)

(49.13 26.59)

 

 

 

 

100 10 2

100 0 2

100 10 2







 36.66 

: 141.36 1.59

: 166.62 -125.94

: 129.41 118.32

A

B

C

  
 

 
 
   

 

(18.73 2.84)

(32.19 18.79)

(10.03 7.33)

 

 

 

 

150 7.5 3

150 0 3

150 7.5 3







 14.87 

: 128.74 -0.967

: 121.33 -121.51

: 124.35 121.22

A

B

C

  
 

 
 
   

 

(13.37 1.67)

(22.31 11.21)

( 8.19 3.81)
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Table 2: Statistics of various inverse solutions of three-phase voltages 

Accurate Values 
Directly 

Inversion  

Single 
Regularization 
when α=10-6 

Single 
Regularization 
when α=10-5 

Iterative 
Regularization 
when α=10-6 

Iterative 
Regularization 
when α=10-5 

127.02 0

127.02 120

127.02 120







 

140.48 1.01

151.84 126.40

131.64 115.78







 

138.17 0.17

139.30 126.45

129.82 117.17







 

127.07 6.55

77.22 126.80

121.41 124.56







 

132.22 1.22

128.55 124.45

128.27 118.37







 

131.37 1.28

127.91 126.90

129.41 118.83







 

RMSE of RMS 16.54 9.73 28.92 3.21 2.92 

RMSE of Phase 4.46 4.07 6.05 2.83 4.11
 

 

Table 3: Statistics of inverse solutions obtained under different measurement errors in Case I 

Measurement Error/ 
% 

/kVAU   /kVBU   /kVCU   
RMSE  
of RMS 

RMSE  
of Phase 

0 127.020 127.02-120 127.02120 0 0 

 5 128.850.29 129.26-120.23 128.35119.83 1.86 0.24 

 10 132.22-1.22 128.55-124.45 128.27118.37 3.21 2.83 

 15 123.40-1.24 134.77 -122.44 130.67113.45 5.38 4.09 

 20 115.22-2.61 121.12-114.02 133.07112.85 8.37 5.58 

 25 133.943.07 140.24-112.87 137.68137.91 10.61 11.27 

 

Table 4: Statistics of inverse solutions obtained under different measurement errors in Case II 

Measurement Error/ 
% 

/kVAU   /kVBU   /kVCU   
RMSE  
of RMS 

RMSE  
of Phase 

0 127.020 127.02-120 127.02120 0 0 

 5 124.210.79 130.25-115.25 131.24119.06 3.48 2.88 

 10 121.770.75 131.15-113.16 134.06117.74 5.61 4.18 

 15 131.25-1.15 139.78 -124.06 121.83113.87 8.33 4.29 

 20 125.28-2.27 108.45 -112.70 130.36128.11 10.93 6.43 

 25 137.114.37 151.43-115.96 138.09108.25 16.55 7.60 
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