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Abstract ─ In this article, two efficient approaches for 

the correction of known positioning errors of the 

measurement probe in a plane-polar near to far-field 

(NTFF) transformation, requiring a minimum number  

of NF data in the case of quasi-planar antennas, are 

presented and experimentally assessed. Such a NTFF 

transformation benefits from a non-redundant sampling 

representation of the voltage detected by the probe got 

by modeling an antenna with a quasi-planar geometry 

through a double bowl, a surface consisting of two 

circular bowls with the same aperture radius, but with 

lateral bends which may differ to better fit the antenna 

shape. The uniform samples, i.e., those at the points  

set by the representation, are accurately retrieved from 

the collected not regularly distributed ones either by 

applying a singular value decomposition based approach 

or an iterative scheme. Then, the input NF data necessary 

for the classical plane-rectangular NTFF transformation 

are evaluated from the so retrieved non-redundant uniform 

samples through a 2-D optimal sampling interpolation 

formula. 

 

Index Terms ─ Antenna measurements, non-redundant 

representations of electromagnetic fields, plane-polar near 

to far-field transformation, positioning errors correction. 
 

I. INTRODUCTION 
The near to far-field (NTFF) transformation techniques 

[1-5] are well-assessed and commonly employed tools for 

the precise evaluation of the radiation pattern of antennas 

having large dimensions in terms of wavelengths from  

NF measurements made in an anechoic chamber, which 

suitably reproduces the free-space propagation conditions 

by suppressing almost completely the reflections from  

its walls. Among these transformations, the traditional 

plane-rectangular one [6, 7] is especially suitable when 

dealing with high gain antennas which radiate pencil beam 

patterns. For these antennas, an even more convenient 

transformation is the one using the plane-polar scan  

[8-14], which offers the following advantages compared  

to the plane-rectangular one: i) a simpler mechanical 

realization, since it can be achieved via a linear movement 

of the measuring probe and a rotary motion of the antenna 

under test (AUT); ii) a larger scanning zone for the same 

dimensions of the anechoic chamber; iii) a more precise 

measurement of the radiation patterns of gravitationally 

sensitive spaceborne AUTs when the scanning is 

accomplished in a horizontal plane. In order to make  

the number of the required NF data and corresponding 

measurement time remarkably smaller than those in [8- 

10], the non-redundant sampling representations of 

electromagnetic (EM) fields [15] have been suitably 

applied in [11, 12] to the voltage detected by a non-

directive probe, thus developing 2-D optimal sampling 

interpolation (OSI) formulas, which allow one to 

accurately recover the NF data necessary for the 

traditional plane-rectangular NTFF transformation [6,  

7] from a minimum number of plane-polar ones. In 

particular, the AUTs have been considered as contained 

inside a surface formed by two circular bowls having the 

same aperture and possibly different lateral surfaces 

(double bowl) in [11], whereas an oblate ellipsoidal 

surface has been employed to model them in [12]. The 

experimental assessments of the non-redundant plane-

polar NTFF transformations [11] and [12] have been 

then provided in [13] and [14], respectively. 

It must be noticed that, as a consequence of a not 

accurate control of the positioners and/or of their limited 

resolution, it could not be possible to acquire the NF data 

at the points prescribed by the non-redundant sampling 

representation, even if their actual positions can be precisely 

revealed through laser interferometric techniques. Hence, 

the fulfillment of an efficient and robust procedure, that 

enables a possibly precise retrieval of the NF data to be 

employed in the traditional plane-rectangular NTFF 

transformation from the positioning errors affected 

(non-uniform) plane-polar ones, appears of fundamental 

importance. To this purpose, a procedure relying on the 

conjugate gradient iterative technique and adopting the fast 

Fourier transform (FFT) for non-equispaced data [16] has 

been applied for correcting known position errors in the 

traditional NTFF transformations adopting the planar [17] 

and spherical [18] scans. However, this procedure is  

not appropriate for the non-redundant plane-polar NTFF 
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transformations [11, 12], wherein efficient OSI expansions 

are applied to precisely evaluate the NF data necessary 

for the traditional plane-rectangular NTFF transformation 

from the collected non-redundant plane-polar samples. As 

underlined in [19, 20], where a more complete discussion 

on the non-uniform sampling can be found, the formulas 

which allow the direct retrieval of the needed data from the 

non-uniform samples are not stable and easy to use, and 

are valid only for specific samples grids. A convenient 

and feasible policy [19] is to retrieve the regularly 

distributed (uniform) samples from the non-uniform ones 

and then reconstruct the required NF data by using a 

precise and stable OSI formula. To reach this goal, two 

distinct procedures have been proposed. The former adopts 

an iterative technique, converging only if it is possible to 

set up a bijective relation linking every uniform sampling 

point to the nearest non-uniform one, and has been used to 

reconstruct the uniform samples in a plane-rectangular grid 

[19]. The latter utilizes the singular value decomposition 

(SVD) method, does not show the above shortcoming, 

allows one to benefit from the redundancy of the data  

to increase the algorithm robustness as regards errors 

corrupting them, and has been exploited to develop non-

redundant NTFF transformations from positioning errors 

affected samples adopting the plane-polar [21], bi-polar 

[22], and cylindrical [23] scans. In any case, the SVD based 

approach can be gainfully employed if the starting 2-D 

problem of the regularly spaced samples retrieval can be 

subdivided in two independent 1-D problems; if this  

is not the case, the dimensions of the related matrices 

remarkably increase, so that a massive computing effort is 

needed. Both the procedures have been compared through 

simulations and experimentally assessed with reference 

to the cylindrical [24] and spherical [20, 25-27] scans, 

whereas their effectiveness in the plane-polar NTFF 

transformation when using an oblate ellipsoidal AUT 

modeling has been experimentally demonstrated in [28].  

The aim of the article is to suitably extend the 

application of these techniques to the correction of 

known positioning errors in the non-redundant NTFF 

transformation with plane-polar scan [11, 13], which 

adopts a double bowl to shape a quasi-planar antenna 

(Fig. 1), and to experimentally demonstrate their 

effectiveness through a measurement campaign executed 

at the Antenna Characterization Lab of the UNIversity of 

SAlerno (UNISA). 
 

II. NON-REDUNDANT REPRESENTATION 

OF THE PROBE VOLTAGE ON A PLANE 

FROM NON-UNIFORM SAMPLES 

A. Uniform samples representation 

The non-redundant sampling representation of the 

voltage detected by a not directive probe, which scans a 

plane at distance d from the aperture of a quasi-planar AUT 

via a plane-polar NF system, and the corresponding OSI 
expansion are briefly recalled in this subsection for the 

case wherein a double bowl model is adopted [11, 13]. 

The spherical coordinate system (r, , ) is used for 

denoting the observation point, while the plane-polar 

coordinates (, ) are also used to identify a point P on 

the plane (Fig. 1). A double bowl is a surface Σ obtained 

by joining together two circular bowls having the same 

aperture radius a, but possibly not equal bending radii  

h and h' of the upper and lower arcs to allow a better 

fitting of the actual antenna geometry (see Figs. 1 and 2).  

As mentioned in the Introduction, the non-redundant 

sampling representations [15] can be advantageously 

exploited to represent the voltage detected by a not 

directive probe, because its spatial bandwidth practically 

coincides with that of the antenna radiated field [29]. 

According to these representations, an optimal parameter 

 must be adopted for describing any of the curves  

(diameters and rings) representing the plane in a plane-

polar frame, and a suitable phase factor j ( )e    has to be 

singled out from the voltage 
 
V  or 

 
V detected by the 

scanning probe in its two orientations (probe/rotated probe). 

The so introduced “reduced voltage”: 

 j ( )( ) ( ) e ,V V     (1) 
 

is spatially almost bandlimited and not strictly bandlimited, 

so that an error arises when it is approximated by means 

of a bandlimited function. In any case, this bandlimitation 

error can be made reasonably small as the band-width  

is larger than a critical value 
 
W  [15] and effectively 

reduced by considering an increased bandwidth 
  
 'W , 

 
 '  being an enlargement bandwidth factor a bit larger 

than one for AUTs having electrical large sizes [15]. 

 
Fig. 1. Plane-polar scanning for a quasi-planar antenna. 

 

If Γ is a diameter, by choosing 2W  '/  it 

results [11, 13]: 

 
  
   2  R1  R2  s1'  s2'  , (2) 

   1 2 1 2
' ''R R s s        , (3) 

wherein  ' '4 ( 2)a h h      is the length of the 
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intersection curve   C '  between the meridian plane passing 

through the observation point P and the double bowl ,  

 is the wavenumber, 
  
R1,2  are the distances from P to the 

two tangency points 
  
P1, 2  between   C ' and the cone with 

the vertex at P, and 
  
s
1,2'  their curvilinear abscissas (see Fig. 

2). The values of 
  
s
1,2'  and 

  
R1,2  change depending on the 

radial distance 
 
() . It can be easily verified that, when 

ρ < a, the tangency points 
  
P1, 2 are situated on the upper 

bowl, whereas, when ρ > a, 
  
P1  is still on the upper bowl 

and 
  
P2  is located on the lower one. The corresponding 

expressions of 
  
s
1,2'  and 

  
R1,2  can be evaluated in a 

straightforward manner and are explicitly reported in 

[11, 13]. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Relevant to the double bowl modeling. 

 

If Γ is a ring,   results to be constant and the angle  

 can be conveniently used as optimal parameter. The 
corresponding bandwidth 

 
W  is [11, 13]: 

 

 2 2

''
max ( ) max '( ') '

2 2
( ) ( )

zz
W R R z d z

 
       

 

  2 2'( ') ' ,( ) ( )z d z      (4) 

 
where '(z') is the equation of the surface  and   R

, R
 

are the maximum and minimum distances from Γ to the 

circumference of  at z'. The explicit evaluation of such a 

maximum is detailed in [11, 13]. 

At each point P(, ) on the plane, the voltage can be 

efficiently evaluated through the following OSI expansion 

[11, 13]: 
 

     

0

0

j ( )

1

( ), e , , , , , "

n q

n n

n n q

V V A N N        





  

  ,

 

(5) 

 
wherein 

  
n0  n0    Int   , 2q is the number of 

the considered nearest intermediate samples  ,nV   , 

namely, the reduced voltages at the intersections between 

the diameter through P and the sampling rings,  
  

 
 
 

A ,n,, N, N"  N n, DN" n  , (6) 
 

is the OSI interpolation function,  

 
  
n  n  2n (2N"1) ;  

  
N" Int N ' 1 , (7) 

 
  
N' Int 'W 1 ;    N  N" N ' ;  

 
  q . (8) 

 

Int(x) denotes the greatest integer less than or equal to x, 

and  is the oversampling factor needed to control the 
truncation error [15]. In (6), 

  

N , 
TN 2cos2  / 2  cos2  / 2   1 

TN 2 cos2  / 2  1 

, (9) 

and 

 

 
 

DN"  
sin (2N"1) / 2 
(2N"1) sin( / 2)

, (10) 

are the Tschebyscheff and Dirichlet sampling functions 

[15], 
  
TN ()

 
being the Tschebyscheff polynomial of degree 

N.  
The intermediate samples can be determined by 

interpolating the samples on the rings through the OSI 

formula [11, 13]: 

     
0

0

,,

1

", , , , , ,

m p

m n n nnn n m n

m m p

V V A M M      



  

  ,

 

(11) 

wherein 
  
m0  m0    Int /n , 2p is the number of 

the considered nearest samples on the ring specified by 

 
n , and  

  
m,nmn 2m/(2Mn"1); 

  
Mn" Int Mn' 1 , (12) 

 
  
Mn'  Int *W (n)  1;  

  
Mn  Mn"Mn' , (13) 

 
  
* 1('1) sin(n) 

2/3
;  

 
n  pn . (14) 

 
The 2-D OSI expansion, which allows the accurate 

reconstruction of 
 
V  and 

 
V  at any point in the 

measurement circle, is easily attained by properly 

matching the 1-D expansions (5) and (11). It can be 

exploited to reconstruct in a fast and accurate way these 

voltages at the points necessary for the plane-rectangular 

NTFF transformation [6, 7]. However, the probe corrected 

formulas in [7] (whose expressions in the here used 

reference system are shown in [13, 30]) are valid only 

when the probe keeps its orientation with respect to the 

AUT and this requires its co-rotation with it. In order to 

avoid this co-rotation, a probe with a far field having a 
first-order -dependence must be utilized. In this case, 

the voltages 
 
VV  and 

 
VH  (acquired with co-rotation by 

the probe and rotated probe) are related to 
 
V  and 

 
V  by:  

   
VV V cos V sin ;   

  
VH V sin Vcos , (15) 

thus enabling a “software co-rotation”. To this end, an 

open-ended rectangular waveguide can be conveniently 

used as scanning probe. In fact, the far field radiated in 

the forward hemisphere by it, when excited by a 
 
TE10  

mode, has in a practically good approximation a first-

order azimuthal dependence [31]. 
 

B. Uniform samples recovery 

In this subsection, two effective techniques for 
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correcting NF data affected by known positioning  

errors in the described non-redundant plane-polar NTFF 

transformation are presented by pointing out their 

benefits and shortcomings. 

The former technique relies on the SVD method. In 

such a case, it is supposed that, save for the sample at 

 
  0 , all the other are not regularly spaced on rings  

not uniformly distributed on the scanning plane. This 

hypothesis is indeed realistic if the plane-polar NF data are 

collected by performing the scan along the rings as needed 

to benefit from the reduction of the number of NF data 

on the most inner rings, obtainable when exploiting the 

previous non-redundant sampling representation. In this 

case, the problem of the uniform samples retrieval can be 

subdivided in two independent 1-D problems. 

The uniform 
  
2Mk

" 1 samples on a non-uniform ring 
at 

  
 (

k
) are recovered as follows. By considering a set  

of 
  
Jk  2Mk

" 1  non-uniform sampling points 
  
(k ,j) 

on this ring and expressing the corresponding reduced 
voltages ( , )jkV    in terms of the unknown ones at the 
uniform sampling points 

  
(k,m,k), the linear system: 

  
C X  B ,

 

(16) 

is attained, wherein  B  is the known non-uniform 

samples vector, X is that of the unknown uniform ones 

,( , ),m kkV    and 
 
C  is a 

  
Jk  (2Mk

" 1)  sized matrix. 

The element of the matrix 
 
C  are: 

   
cjm  A j,m,k,k , Mk, Mk

"  ,

 

(17) 

wherein 
  
m,k  mk  2m(2Mk

"1) and 
 
k  pk. 

It is worthy to observe that, for a given row j, the elements 

 
cjm  are zero when the index m is outside the range 

  
[m0(j )  p1, m0(j )  p] . The SVD is then applied to 

get the best least square approximated solution of (16). 

After such a step, the intermediate samples ( , )kV    in 

correspondence of the intersections between the non-

uniform rings and the diameter passing through P are 

recovered via the OSI expansion (11), wherein the samples 

,( , )m kkV    take the place of the  ,,n m nV    ones. Since 

these intermediate samples are not regularly distributed, 

the voltage at P can be reconstructed by first recovering 

the regularly distributed intermediate samples  ,nV    

again by applying the SVD method and subsequently 

interpolating them through the OSI expansion (5). 

It must be stressed that either the distances from each 

non-uniform ring to the corresponding uniform one and the 

ones between the non-uniform sampling points and the 

associated uniform ones on the non-uniform rings have 

been supposed less than one half of the related uniform 

spacing for avoiding a severe ill-conditioning of the 

correlated linear system. In addition, in order to minimize 

the computational effort, an equal number 

 
N  of uniform 

samples, coincident with that corresponding to the outer 

uniform ring, has been reconstructed on each non-uniform  

ring. In this way, the samples are aligned along the 

diameters and, therefore, the number of systems to be 

solved is minimum. 

At last, 
 
V  and 

 
V  at the points necessary for the 

traditional plane-rectangular NTFF transformation [6, 7] 

are efficiently reconstructed via the OSI expansions (5) and 

(11), this latter appropriately adapted to account for the 

redundancy in.  

The latter technique adopts an iterative scheme, 

converging only if it is possible to set up a bijective relation 

linking each uniform sampling point to the nearest non-

uniform one. In this case, the number Q of the non-uniform 

samples must be the same as that of the uniform ones. 

Moreover, it is now supposed that, except the sample at 

 
  0, all the other are not regularly spaced on the 

scanning plane, do no longer lie on rings, but must satisfy 

the above bijective correspondence. By applying the OSI 

expansions (5) and (11), it is possible to express the 

reduced voltages at each non-uniform sampling point 

  
(k,j, k)  in terms of those unknown at the nearest uniform 
sampling points 

  
(n,m, n) , thus getting the linear system: 

    

 
0

0

,

1

( , )  , , , , "

n q

j k kk n

n n q

V A N N    



  

 
 

 

    
0

0

, ,,

1

, , , , , "

m p

n m n m nj n n nk

m m p

V A M M   



  

 , (18) 

which can be again recast in the matrix form (16), 

wherein 
 
C  is now a 

 
QQ  sized matrix. Such a linear 

system could be solved via the SVD method, but a huge 

computational effort would be required. On the contrary, 

it can be efficiently solved by applying an iterative 

algorithm, which is derived as described in the following. 

In the first step, the matrix 
 
C  is subdivided in its diagonal 

part 
 
C D  and non-diagonal part  , subsequently, both the 

sides of the relation 
 
C X  B  are multiplied by 

  
CD

1
, and, 

finally, its terms are rearranged thus obtaining the iterative 

scheme: 

   
X

( )
 CD

1
B CD

1
 X

(1)
 X

(0)
 CD

1
 X

(1)
,

 

(19) 

with 
  X

( )  being the uniform samples vector obtained at 

the   th  iteration. 

To guarantee the convergence of such an iterative 

scheme, it is necessary but not sufficient, as stressed in 

[19], that the amplitude of every element belonging to the 
main diagonal of the matrix 

 
C  be different from zero and 

larger than the amplitudes of the other elements which lie 

on the same column or row. It can be easily verified that 

the assumed hypothesis of bijective relation between each 

uniform sampling point and the “nearest” non-uniform 

one ensures the fulfillment of these conditions. By putting 

relation (19) in explicit form, it results: 
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 ( )
,,n m nV    

 

 

   


1

A n,n,, N, N" A m, n,m,n ,n, Mn, Mn
" 


 

 

  

0

0

0

0

,

1 1

( ) ( )

( , )  , , , , "

s q i p

n m n n s

s s q i i p
s n mi

V A N N    

 

     

  

   
 

   1( )
, , ,", , , , ( , )m sn i s s s s i sA M M V      , (20) 

where 

  

s0 
n if n  n

n1 if n  n






;

     

i0
m if m, n m,s

m1 if m, n  m,s






.

 

(21)  

 

III. EXPERIMENTAL ASSESSMENT 
Some results of laboratory tests performed in the 

anechoic chamber of the UNISA Antenna Characterization 

Lab are shown in this section to give the experimental 

assessment of the two described techniques for 

compensating the probe positioning errors. The chamber 

is 
 
8m5m4m

 
sized and is provided with a plane-polar 

NF scanning system, besides the cylindrical and spherical 

ones. The pyramidal absorbers, covering the chamber 

walls, assure a reflection level lesser than – 40 dB. A 

vector network analyzer is utilized to accomplish the 

measurements of the amplitude and phase of the voltage 

detected by the adopted probe, an open-ended WR-90 

rectangular waveguide. The plane-polar scan is attained 

by attaching the probe to a linear vertical positioner and 

putting the AUT on a rotating table, whose rotary axis is 

normal to the linear positioner. A further rotating table has 

been recently integrated in the NF scanning system. It has 

been placed between the linear positioner and the probe 

and allows to perform a plane-polar scan, wherein the 

probe axes keep their orientation with respect to AUT 

ones (hardware co-rotation), as well as to measure the NF 

data which would be collected by a plane-rectangular NF 

facility. The considered AUT is a dual pyramidal horn 

antenna with vertical polarization, positioned on the plane 

z = 0 of the adopted reference system (Fig. 1) and working 
at 10 GHz. The horns aperture has sizes 

 
8.9cm 6.8cm

and the distance between the apertures centers is 26.5 cm. 

This AUT has been modeled by a double bowl with 

a = 18.0 cm and h = h' = 3.0 cm. The non-uniform, as well 

as the uniform, NF plane-polar samples considered in the 

shown results have been acquired on a circle having radius 

110 cm on a plane at distance d = 16.5 cm from the AUT. 

In Figs. 3 and 4, the E- and H-planes FF patterns 
reconstructed from the non-redundant plane-polar NF 

samples acquired with the hardware co-rotation are 

compared with those got from the plane-rectangular  

NF data directly measured, at the sample spacing of 

0.45, on the 140cm140cm inscribed square. As can 

be seen, a very good agreement is found in both the 

planes. The corresponding recoveries, obtained from the 

non-redundant plane-polar NF samples acquired when 

using the software co-rotation, are shown in Figs. 5 and 6. 

In such a case, especially in the H-plane, a less accurate 

reconstruction results. This is due to the fact that the far 

field radiated by an open-ended rectangular waveguide 

excited by a 
 
TE10  

mode has only approximately a first-

order azimuthal dependence [31]. 

Let us now turn to the case of irregularly spaced 

samples. The first set of figures (Figs. 7 - 11) refers to the 

case of not uniformly distributed sampling points which 

lie on rings. The NF data have been acquired in such a 

way that the distances from every non-uniform ring to 

the corresponding uniform one, and those between the 

non-uniform sampling points and the related uniform  

ones on the rings are random variables with uniform 

distributions in 
 
(/2, /2) and 

  
(k /2, k /2) , 

respectively. 

 

 

Fig. 3. E-plane pattern. ––––– reconstructed from plane-

rectangular NF data.      reconstructed from the non-

redundant plane-polar NF samples with hardware co-

rotation. 

 

 

Fig. 4. H-plane pattern. ––––– reconstructed from plane-

rectangular NF data.      reconstructed from the non- 

redundant plane-polar NF samples with hardware co-

rotation. 
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Fig. 5. E-plane pattern. ––––– reconstructed from plane- 

rectangular NF data.      reconstructed from the non-

redundant plane-polar NF samples with software co-

rotation. 

 

 

Fig. 6. H-plane pattern. ––––– reconstructed from plane- 

rectangular NF data.      reconstructed from the non-

redundant plane-polar NF samples with software co-

rotation. 
 

The amplitude and phase of 
 
V  on the diameter at 

 = 90°, retrieved via the SVD procedure, are compared 

in Figs. 7 and 8 with the ones directly measured on  

the same line. The comparison between the recovered 

amplitude of 
 
V  on the diameter at  = 0° and that 

directly measured is also reported in Fig. 9. As can be 

clearly observed, notwithstanding the imposed severe 

values of the positioning errors, all recoveries are very 

accurate except for the zones where the voltage level is 

very low. 

To put in evidence only the error related to the 

retrieval of the uniform samples from the acquired non-

uniform ones and not just that imputable to the software 

co-rotation, the overall efficacy of the SVD based 

technique is validated by comparing the FF patterns in the 

principal planes E and H (Figs. 10 and 11) recovered from 

the non-uniform NF data with the ones reconstructed from 

the non-redundant, uniform, plane-polar NF samples 

with software co-rotation (reference). The reconstructed 

FF patterns obtained from the non-uniform plane-polar 
NF data without using the SVD technique are shown  

in the same figures for sake of comparison. These last 

reconstructions appear remarkably worsened with respect 
to the ones obtained when applying the SVD based 

procedure, thus further assessing its effectiveness for 

compensating known position errors. Since the considered 

set of non-uniform samples satisfies also the applicability 
conditions for the iterative procedure, this last has been 

applied too by obtaining quite analogous results, as can 

be seen from Figs. 12 and 13. 

 

 

Fig. 7. 
 
V

 
amplitude on the diameter at  = 90°. ––––– 

measured.      retrieved from the non-uniform NF 

samples via the SVD procedure. 
 

 

Fig. 8. 
 
V

 
phase on the diameter at  = 90°. ––––– 

measured.      retrieved from the non-uniform NF 

samples via the SVD procedure. 

 

The second set of figures (from Fig. 14 to Fig. 18) 

refers to the case of non-uniform sampling points which do 

not lie on rings and, therefore, the iterative technique has 

been adopted. In this case, the not regularly spaced samples 

have been collected in such a way that the random shifts in 

 and  between the positions of the non-uniform samples 
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and the related uniform ones are uniformly distributed in 

 
(/3,  /3)  and 

  
( n /3, n /3) . Figures 14 and 

15 show the comparison between the amplitudes of 
 
V  and 

 
V  on the diameter at  = 30° recovered from the non-

uniform samples by applying the iterative procedure and the 

directly acquired ones on the line. The reconstruction of the 

phase of the most significant of them is shown in Fig. 16 
for completeness. Also in such a case, the reconstructions 

are very accurate. It should be noticed that the above 
results have been got by using only 10 iterations, since, 
as shown in [25], such a number of iterations guarantees 

that the iterative scheme converges with very low errors. 

At last, the overall efficacy of the iterative technique for 

correcting known probe positioning errors is confirmed 

by the E-plane and H-plane pattern reconstructions 
reported in Figs. 17 and 18. As a matter of fact, the 

reconstructions obtained without using the iterative 

approach, reported in the same figures, appear severely 

compromised. 

 

 

Fig. 9. 
 
V

 
amplitude on the diameter at  = 0°. ––––– 

measured.      retrieved from the non-uniform NF 

samples via the SVD procedure. 
 

 

Fig. 10. E-plane pattern. ––––– reference.      

recovered from the non-uniform NF samples via the 

SVD procedure.      recovered without using the 

SVD procedure. 

 

Fig. 11. H-plane pattern. ––––– reference.      

recovered from the non-uniform NF samples via the SVD 

procedure.      recovered without using the SVD 

procedure. 
 

 

Fig. 12. E-plane pattern. ––––– recovered from the non-

uniform NF samples via the SVD procedure.      

recovered from the non-uniform NF samples via the 

iterative procedure. 

 

 

Fig. 13. H-plane pattern. ––––– recovered from the non-

uniform NF samples via the SVD procedure.      

recovered from the non-uniform NF samples via the 

iterative procedure. 

D’AGOSTINO, FERRARA, GENNARELLI, GUERRIERO, MIGLIOZZI: NEAR TO FAR-FIELD PLANE-POLAR TRANSFORMATION 425



 

Fig. 14. 
 
V

 
amplitude on the diameter at  = 30°. ––––– 

measured.      retrieved from the non-uniform NF 

samples via the iterative procedure. 
 

 

Fig. 15. 
 
V

 
amplitude on the diameter at  = 30°. ––––– 

measured.      retrieved from the non-uniform NF 

samples via the iterative procedure. 
 

 

Fig. 16. 
 
V

 
phase on the diameter at  = 30°. ––––– 

measured.      retrieved from the non-uniform NF 

samples via the iterative procedure. 

 

It is worthy to point out that the number of the collected 

not regularly spaced plane-polar NF samples is 1 476 in 

both the cases and, accordingly, remarkably less than that 

(33 581) required by the plane-polar scanning techniques 

[8, 9] to cover the same measurement area. 

Another set of experimental results, validating the 

effectiveness of the two developed techniques and relevant 

to a different antenna, can be found in [32]. 

 

 

Fig. 17. E-plane pattern. ––––– reference.      

recovered from the non-uniform NF samples via the 

iterative procedure.      recovered without using the 

iterative procedure. 

 

 

Fig. 18. H-plane pattern. ––––– reference.      

recovered from the non-uniform NF samples via the 

iterative procedure.      recovered without using the 

iterative procedure. 

 

IV. CONCLUSION 
In this paper, two effective procedures, which allow 

the correction of known positioning errors in the plane-

polar NTFF transformation based on the double bowl 

AUT model, have been proposed. The very good NF and 

FF reconstructions attained when applying them in 

presence of large and pessimistic positioning errors, as 

compared with the worsened ones obtained when these 

procedures are not employed, validate experimentally their 
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effectiveness. 
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