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Abstract ─ Effective formulations of the complex 

frequency-shifted perfectly matched layer (CFS-PML) 

based on the two-dimensional (2-D) TE  body of 

revolution finite-difference time-domain (BOR-FDTD), 

named as the BOR-CFS-PML, are proposed to truncate 

the Drude media. The auxiliary differential equation 

(ADE) method and the trapezoidal recursive convolution 

(TRC) method are applied to the implementation of the 

BOR-CFS-PML. The proposed formulations have good 

performance in attenuating low-frequency evanescent 

waves and reducing late-time reflections. A numerical 

test is provided to validate the effectiveness of the 

proposed algorithm. 

 

Index Terms ─ Auxiliary differential equation (ADE), 

body of revolution (BOR), complex frequency-shifted 

perfectly matched layer (CFS-PML), finite-difference 

time-domain (FDTD), trapezoidal recursive convolution 

(TRC). 

 

I. INTRODUCTION 
The body of revolution finite-difference time-

domain (BOR-FDTD) method [1],[2] plays an important 

role in simulating electromagnetic wave propagation  

in rotationally symmetric geometries. The BOR-FDTD  

has an advantage of simplifying an original three-

dimensional (3-D) problem to a two-dimensional (2-D) 

problem, so that it saves much running time.  

When the open region problems are simulated, an 

effective absorbing boundary condition is necessary. The 

perfectly matched layer (PML) was firstly introduced  

by Berenger in [4]. Next, the stretched coordinate PML 

(SC-PML) with simple implementation in the corners 

and edges of the PML regions was presented in [5]. 

However, the SC-PML had a drawback of the inefficiency 

in attenuating the evanescent waves [6],[7]. To overcome 

the shortcoming of the SC-PML, the complex frequency-

shifted PML (CFS-PML) [8] was proposed to efficiently 

damp the low-frequency evanescent waves and late-time 

reflections [6].  

To analyze the Drude model and other dispersive 

models, the recursive convolution (RC) method [9],[10], 

the piecewise linear RC (PLRC) method [11] and the 

trapezoidal RC (TRC) method [12,13] have been explored 

to realize the frequency-dependent FDTD method. 

Especially, the TRC method has the advantages of high 

accuracy and simplicity.  

In this paper, effective formulations of the CFS-

PML based on the (2-D) TE  BOR-FDTD, named here 

as the BOR-CFS-PML, are proposed. The formulations 

of the BOR-CFS-PML utilize the auxiliary differential 

equation (ADE) method [14] and the TRC method to 

truncate the Drude media. The results of the numerical 

example show that the BOR-CFS-PML has much better 

absorbing performance than the SC-PML based on the 

BOR-FDTD.  
 

II. FORMULATIONS 
In the cylinder coordinate, the complex spatial 

coordinate-stretching variables are defined as: 
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where 1r  and 1z  are the interfaces between the FDTD 

and the PML grids along the directions of r and z, 

respectively, and  ( , z)  S r  are the CFS-PML variables 

given by: 
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where   and   are positive real and   is real and 

1 . 

In 2-D TE  case, based on the SC-PML formulations 

[5], the frequency-domain modified Maxwell’s equations  
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in the Drude media can be written as: 
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The frequency-domain electric flux density D ( , )r z   

are given by: 

 0 ( )    rD E ,  (7) 

where ( )r   is the complex relative permittivity of the 

Drude model defined as: 
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where p  is the Drude pole frequency and   is the 

damping constant.  

By using the partial fraction expansion, 1



S  can be 

expressed as: 
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where  
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By submitting (9) into (4)-(6) and using the inverse 

Fourier transformation and the ADE method, ones obtains: 
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where rzF , zrG , zrP , zQ  and rQ  are the auxiliary 

variables expressed as follows: 
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Using the BOR-FDTD scheme and the TRC method 

[12] to discretize (10)-(17), ones obtains: 
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It can be seen that (11) includes a singularity when 

0r  for the 1/ r  term. The proposed update equation to  
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solve the problem [2] is: 
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The corresponding coefficients in (18)-(28) are listed 

as follows: 
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where   ( , )r z   are the space cell size and t  is 

the time step. 

 

III. NUMERICAL RESULTS 
A numerical example is provided to validate  

the effectiveness of the proposed BOR-CFS-PML 

formulations. The model structure of the numerical 

example is presented in Fig. 1. The BOR-CFS-PML with 

10-cell-thick layers is used to truncate the FDTD 

computation domain filled with the Drude media with 

2 28.7p   Grad/s and =20  Grad/s, which occupies 

    cells. The space cell size is 42 10  m    r z  

and the time step is 134.48 10  s.  t  In this simulation, 

the excite source, which is located at (10, 50) as shown 

in Fig. 1, is a modulated Gaussian pulse whose center 

frequency is 35 GHz and maximum interesting frequency 

is 70 GHz. In the PML domain, 


  and 


  are scaled using 

an m-order polynomial scaling and   is a constant. To 

obtain the low reflection, the BOR-CFS-PML parameters 

,max 10,  0.6,  ,max , ( 1) (150 ),ratio m      

, 1.4,ratio   2m   are selected empirically. The 

simulation is operated for 2240 ps. 
 

 
 

Fig. 1. The model structure of the numerical example. 

 

The relative reflection error of the BOR-CFS-PML 

in the time-domain is shown in Fig. 2. The relative 

reflection error is calculated at an observation point 

located at (59, 11) as: 
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where ( )

TH t  represents the value calculated in the test 

domain, ( )

RH t  is the reference solution based on the 

extended 260x480-cell FDTD computational domain 

terminated by additional 128-cell-thick PML layers.  

For comparing, the SC-PML based on the BOR-FDTD, 

named here as the BOR-SC-PML, is also computed  

by using the same PML parameters except 0.   

Compared with the BOR-SC-PML, the BOR-CFS-PML 

has better performance in reducing late-time reflection 

error. Specially, it has about 60 dB improvement near 

1500 pst . 

Figure 3 shows the reflection coefficients in the 

frequency-domain with the BOR-CFS-PML and the 

BOR-SC-PML. The reflection coefficients are calculated 

at the same observation point by using: 
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where the operator  *F  is the symbol of the Fourier 

transformation. The maximum reflection coefficient of 

the BOR-CFS-PML is -68 dB in the interesting frequency 

range. Within the low-frequency, the BOR-CFS-PML 

holds significant improvement compared with the BOR-

SC-PML.  

ACES JOURNAL, Vol. 33, No. 4, April 2018440



In conclusion, the BOR-CFS-PML holds the 

remarkable advantages in attenuating low-frequency 

evanescent waves and reducing late-time reflections over 

the BOR-SC-PML. 

 

 
 

Fig. 2. Relative reflection errors versus time of the BOR-

CFS-PML and the BOR-SC-PML for truncating the 

Drude media. (Two curves almost overlap before 237ps). 

 

 
 

Fig. 3. Reflection coefficients versus frequency of the 

BOR-CFS-PML and the BOR-SC-PML for truncating 

the Drude media. (Two curves almost overlap after  

35 GHz). 

 

IV. CONCLUSION 
An effective implementation of the BOR-CFS-

PML, which takes advantage of the ADE method and the 

TRC method to terminate the Drude media, is presented. 

It is confirmed in the numerical example that the proposed 

BOR-CFS-PML is efficient in the absorption of the low-

frequency evanescent waves and the reduction of late-

time reflections. 
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