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Abstract ─ Mode tracking plays an important role in 

characteristic modes analysis. However, mode tracking 

in a proper and efficient way is still a challenging work. 

Based on modal linear correlation and modal stability,  

a double modal parameter tracking method is proposed 

in this paper, which is to track modes by correlating 

eigenvector and calculating the stability of characteristic 

angle simultaneously. To eliminate ambiguity case of 

multi-mode mapping one mode, two sorted mode with 

max Pearson correlation coefficient are identified same 

mode by utilizing saving best function. In order to 

verify accuracy and efficiency of the proposed method, 

four representative structures are analyzed. It can be 

observed that the proposed tracking method works 

better than the traditional methods. 

 

Index Terms ─ Characteristic modes analysis, double 

modal parameter tracking method, modal linear 

correlation, modal stability. 
 

I. INTRODUCTION 
The Theory of Characteristic Modes (TCM) was 

first presented by Garbacz in his doctoral dissertation [1] 

and then refined by Harrington in 1970s [2, 3]. TCM 

shows deep insight into the nature feature of an object, 

which is based on the method of moment (MoM). But 

researchers originally didn’t pay much attention to TCM. 

As the extreme development of computer, TCM has 

attracted many researchers’ interest now. Applying the 

CMA, Chen an Wang show a UAV platform integrated 

pattern reconfigurable antenna [4], and a HF band 

shipboard antenna [5], where the radiation efficiency 

has been improved. Using the orthogonality between 

different modes, many antennas with good isolation in 

MIMO system have been designed by researchers [6-9] . 

CMA is generally performed in spectrum. The 

same mode at different frequency samples needs to be 

identified firstly, which is called mode tracking. Mode 

tracking is the basis of characteristic mode application. 

However, mode tracking in a proper and efficient way 

is still a challenging work. There are a few of papers 

involving mode tracking. The tracking methods in these 

papers are all only tracking one modal parameter: a) 

Tracking method in paper [10, 11] is based on tracking 

eigenvalues. b) Tracking method in paper [12-14] is 

based on correlating eigenvectors. c)Tracking method 

in paper [15] is based on correlating modal far-field 

pattern. Tracking methods in a) and b) are both based 

on one parameter deriving from generalized eigenvalue 

equation, and no additional calculation is needed. 

Therefore, these methods have high computational 

efficiency. However, they can’t deal well with complex 

structures since mode swapping always exists. Tracking 

method in c) utilizes stability of far-field pattern to 

obtain better results than a) and b), but a lot of 

computation has to be added for calculating far-field. 

In this paper, a new tracking method named as 

double modal parameter tracking method (DMPTM)  

is proposed, which is based on tracking two modal 

parameters at the same time. 

The remainder of this paper is organized as follows. 

In Section 2, the theory and the formulations in 

characteristic modes analysis are given briefly. In 

Section 3, DMPTM is introduced in detail. Four 

numerical experiments are presented in Section 4 to 

show the accuracy and efficiency of the proposed 

method. Section 5 concludes this paper.  

 

II. BRIEF INTRODUCTION TO CMA 
Linear combination of a set of characteristic modes 

can well approximately represent the solution of an 

electromagnetic problem. These characteristic modes 

correspond to the inherent properties of electromagnetic 

objects and have orthogonality between different modes 

[2]. For the sake of easy reference, the following 

paragraphs are a brief introduction to characteristic  
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modes analysis. 

As presented in [2], characteristic modes can be 

obtained by solving the following generalized eigenvalue 

problem: 

 
n n nXJ RJ , (1) 

where X and R are imaginary part and real part of 

impedance matrix Z, which is derived from the well 

known method of moment (MoM). 
nJ  and 

n  are 

named as eigencurrents (or eigenvectors), and eigenvalues 

n  represents the radiation or scattering properties of 

the corresponding modes. If 0n  , the mode stores 

magnetic energy. If 0n  , the mode stores electric 

energy. And if 0n  , the mode is at resonance. It is 

notable that characteristic modes are independent of a 

specific source or excitation, and only rely on the shape, 

size, material and working frequency band of the object. 

Because of its large range of eigenvalues [12], 

characteristic angles 
n  are introduced as following: 

 0180 arctan( )n n   . (2) 

Obviously, the range of values for 
n  is from 

0
90  

to 
0

270 . If 
0

180
n

  , the corresponding modes are at 

resonance.  

In theory, the linear combination of infinite modes 

is needed to describe the electromagnetic properties  

of the study object. Fortunately, only several mode  

with small eigenvalues are needed to descript the 

electromagnetic behavior for electrically small or 

moderate objects [16]. 

 

III. DOUBLE MODAL PARAMETER 

TRACKING METHOD 
In this section, double modal parameters tracking 

method is presented in detail.   
 

A. Main ideas 

Eigenvalues, eigenvectors and characteristic far 

fields are three main parameters in CMA, and they have 

different features: The range of values for eigenvalues is 

 ,  , and they vary fast with frequencies and are 

easily affected by numerical accuracy, so eigenvalues 

are not suitable to be tracked. Characteristic far fields 

are the most stable among modal parameters, so they 

can be chosen to track mode. However its calculation 

cost is expensive and its calculation results are also 

affected by spatial angular step. The eigenvectors 

stability is between eigenvalues and characteristic far 

fields, and they are obtained directly through solving 

generalized eigenvalue equation, so mode tracking based 

correlating eigenvectors is a balanced choice between 

efficiency and accuracy. 

However, mode tracking based only one modal  

parameter [10-15] can work well for simple structure, 

but they can not deal well with complex object. 

This paper proposed a double modal parameter 

tracking method based modal correlation and modal 

stability. Its main ideas are:  

1) Tracked mode satisfying both model correlation 

requirement and modal stability requirement can be 

identified to same mode. 

2) To eliminate ambiguity situation where multi-

modes map one mode, the pair of modes with the max 

correlation coefficient are mapped to same mode. 

 

B. Modal correlation requirement 
Modal correlation requirement is referred that 

correlation coefficients of same modes at different 

frequency samples are larger than specified linear 

correlation threshold. In this paper, linear correlation  

is measured by Pearson correlation coefficient, its 

formulation is followed [14]:  

 1
,

2 2

1 1

( )( )

( ) ( )

N

i i

i
m n N N

i i

i i

x x y y

r

x x y y



 

 



 



 

. (3) 

In formulation (3),  1 2, , ,
T

Nx x x x  represents 

thm  eigenvector at frequency ,pf x  represents the mean 

value of its components. y and y  represent thn  eigenvector 

and its mean value at frequency 
qf  respectively, and 

p q . 

The range of values for 
,m nr  is [0,1]. It represents 

that the two eigenvectors are linearity independent if 

,m nr  equals 0, and it represents that the two eigenvectors 

are linear correlation if 
,m nr  equals 1. Because 

eigenvectors are function of frequency, the correlation 

coefficients between same modes vary with frequency 

change, so a threshold for linear correlation is needed to 

be specified. According to our experience, the correlation 

threshold 
gR  is set to 0.8～0.9, the default value of 

gR  

is 0.8. It means that sorted mode satisfied correlation 

requirement if their correlation coefficient is larger than 

gR .  

 

C. Modal stability requirement 
Modal stability requirement is referred that modal 

parameters of same mode varying with frequencies are 

smaller than specified stability threshold. Stability is a 

universal characteristic in macroscopic physics word, so 

modal stability is inherent feature. In the aforementioned 

literatures, modal stability hasn’t been paid sufficient 

attention, and the tracking methods in [10-15] don’t 

make use of the modal stability.  

In order to measure modal stability, characteristic  
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angle stability is defined as follows: 

 c e

e e

s
  

 

 
  . (4) 

In formulation (4), 
e  represents extrapolated 

characteristic angle derived from known characteristic 

angle array, by utilizing Matlab function spline. The  

c  represents directly calculated characteristic angle 

according to formulation (2). 

Tracked modes satisfy modal stability requirement 

if the modal stability of s is smaller than the specified 

threshold .gS  Because the range of values for 

characteristic angle is 
0 0

90 ,270   , so the range of values 

for s is also large. According to our experiences, 
gS
 
is 

set to 0.2～0.5 which is changed according the complexity 

of structure. The default value of 
gS

 
is 0.5. Figure 1 

shows the schematic diagram of modal stability s. 

 

90

180

270

c

Known curve

090 

Frequency(MHz)

1f 2f

e

 
 

Fig. 1. Schematic diagram of modal stability. 

 

D. The proposed tracking method 

The proposed double modal parameter tracking 

method is divided into three stages: pre-processing 

stage, mode tracking stage, and post-processing stage. 

 

D1. Pre-processing stage 
There are several tasks in the pre-processing stage. 

Firstly, K eigen-pairs of each frequency, where M 

frequencies samples are setup at prior, are calculated 

and ordered in ascending order of eigenvalues. Secondly, 

Pearson correlation coefficients between eigenvectors 

of adjacent frequencies are calculated, according to 

formulation (3). Thirdly, Index-Table array with 

dimension of rows columnsM K , where each column maps 

one mode and each row maps one frequency is 

initialized by its first row filled with 1,2, ,K  and 

others are filled with "NaN". The elements of the first 

row in Index-Table represent the K modes of the first 

frequency F1, which does not need to be tracked. 

The Matlab function corr is used to calculate  

Pearson correlation coefficient between every eigenvector 

at frequency 
iF  and all K eigenvectors at frequency 

1iF 
, 

resulting in an array with K elements. After calculating 

correlation coefficients between all eigenvectors at 

adjacent frequencies, an array with dimension of 
M M K   will be obtained.  

 

D2. Mode tracking stage 
Mode tracking stage consists 4 tracking function: 

primary tracking function, rescuing function, opening 

new mode function, and saving best function, as is 

shown in Fig. 2. Mode tracking start with K eigenvectors 

at 2nd frequency sample 2 ,F  then K eigenvectors at  

3rd frequency sample 3 ,F  until K eigenvector at last 

frequency sample .MF  The 4 tracking function will be 

performed at these frequencies except that primary 

tracking function, opening new mode function and 

saving best function are performed at 2nd frequency 

sample 
2 .F  
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Modal correlation 
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Assembling data

 
 
Fig. 2. Flow chart of proposed double modal parameter 

tracking method. 

ACES JOURNAL, Vol. 32, No. 12, December 20171071



D2.1. Primary tracking function 
Firstly, one determines whether there is any 

correlation coefficient between the thj  eigenvector at 

iF  (called current mode) and K eigenvectors at 
1iF 
 

larger than 
gR . If there is none of them, tracking 

process comes to rescuing function. And if there is any, 

tracking process comes to extrapolate characteristic 

angle. This is called modal correlation tracking. Then 

tracking process comes to determine whether the modal 

stability coefficient is smaller than .gS  If the modal 

stability requirement is satisfied too, tracking process 

comes to saving best function, and if not, tracking 

process comes to rescue function again. This is called 

modal stability tracking. 
 

D2.2. Rescuing mode function 
Firstly, for the sake of convenience, the indicator 

of previous frequency sample is set as 2.p i   

Secondly, Pearson correlation coefficients between 

current eigenvector and K eigenvectors at previous 

frequency are calculated. Thirdly, modal correlation 

tracking and modal stability tracking are performed. If 

both modal correlation tracking and model stability 

tracking are successful, then rescuing function success, 

and tracking process comes to saving best function, 

otherwise tracking process comes to opening new mode 

function. 

 

D2.3. Opening new mode function 
The method of opening new mode function is 

similar to the one in paper [12]. It is to add a new 

column at right side of the last column of current Index-

Table array. The thi  element of the new added column 

is filled with mode index, and the other elements are 

filled with "NaN", as is shown in Fig. 3. 

 

D2.4. Saving best function 
If tracking process comes to saving best function, it 

means that both modal correlation requirement and 

modal stability requirement are satisfied. Without loss 

of generality, we suppose that thj  eigenvector at 

frequency 
iF  (called current mode) and thm  eigenvector 

at frequency 
1iF 
 do so, and suppose that the mode index 

of m at frequency 
1iF 
 (called previous mode) is kept at 

2nd  column in Index-Table, as is shown in Fig. 3. If the 

element of 2nd  column corresponding frequency 
iF  is 

"NaN", it will be directly replaced by the mode index j. 

Otherwise, supposing the element is "h", it means that 

the thh  eigenvector at frequency 
iF  (called kept mode) 

has been mapped to previous mode. This scenario is 

known as the ambiguity case of multi-mode mapping 

one mode. In order to eliminate ambiguity case, one  

needs to compare the correlation coefficient between 

current mode and previous mode with the correlation 

coefficient between kept mode and previous mode,  

then choose the pair of modes with larger correlation 

coefficient to map into same mode. Then the failed 

mode (mode h in Fig. 3.) in competing will be opened 

new mode if saving best function is performed in 

rescuing function, or will be put into rescuing function 

if saving best function is performed in primary tracing 

function.  
 

2

m

hj h

1

1

mode1 mode2 mode3 new mode

3

3 54 NaN

NaN

NaN21 3 5 4

K

mode4 mode5 mode K

NaN

NaN5 4

K

K

NaN

NaN NaN NaN NaN

1F

2iF 

1iF 

iF

 
 

Fig. 3. Example of saving best function and opening 

new mode function. 

 

D3. Post-processing 
There are three works during post-processing  

in this paper, which are pruning Index-Table array, 

assembling data of eigen-pairs and marking monotonous 

modes. These three works are similar to the works in 

paper [12], it will be briefly described here. 

Firstly, pruning Index-Table array means that 

columns with number of non-nan elements less than 

three will be cut off. 

Secondly, assembling data of eigen-pairs means 

that the remaining modes in Index-Table after pruning 

are subsequently fulfilled with the real eigenvalues and 

eigenvectors, which are corresponding to mode index in 

Index-Table array. 

Lastly, monotonous modes means that the modes 

with negligible meaning within the computed frequency 

band. It implies that characteristic angle of monotonous 

modes is smaller than 0110  or larger than 0250  within 

the computed frequency band. So the last work is to 

find out the index of monotonous modes. 

 

IV. NUMERICAL RESULTS 
In this section, four examples are presented to 

demonstrate the capability of the proposed method, the 

material in each example is perfect conductor, and the 

same triangle meshes are used for different tracking 

methods in each example. 
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A. Mode tracking of rectangular plate  
The first example is a rectangular plate with size of 

120×60 mm2, as is shown in Fig. 4. The whole structure 

is divided into 798 triangles, resulting in 1158 RWG 

basis functions. The computed frequency band is from 

1 GHz to 4 GHz with 0.1 GHz frequency step, and 6 

eigen-pairs are required at each frequency sample, and 

gR  is 0.8 and 
gS
 
is 0.5. 
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direction of each model current) 
 

Fig. 4. Characteristic angle curves and modal current 

distribution of metal rectangular plate. 
 

Figure 4 (a) shows the tracking result by FEKO, 

and Fig. 4 (b) shows the tracking result by proposed 

method. It can be seen that the characteristic angle 

curves are similar except that the order of the modes is 

different. However, there are still obviously differences  

between them: 

a) The FEKO gives 9 characteristic angle curves 

for different modes. However the DMPTM gives 8 

characteristic angle curves for different modes. 

b) The characteristic angle curve of mode 1 in Fig. 

4 (a) is closed at 3.2 GHz, and mode 9 is opened at  

3.4 GHz. However, the characteristic angle curve of mode 

4 in Fig. 4 (b), which corresponds the characteristic 

angle curve of mode 1 in Fig. 4 (a), is continuous in the 

entire analysis frequency band.  

In order to check tracking results, the mode current 

distribution is shown in Fig. 4 (c). It is found that the 

current distribution of mode 1 at 3.2 GHz is the similar 

to that of mode 9 at 3.4 GHz, which are tracked by 

FEKO, so they should be the same mode. In contrast, 

the mode current distribution of mode 4 tracked by 

DMPTM is similar at 3.1 GHz, 3.3 GHz and 3.4 GHz, 

so they are the same mode. Therefore, the proposed 

method in this paper gives the correct tracking results. 
 

B. Mode tracking of Minkowski fractal structure 
The second example is Minkowski fractal structure 

with outer size of 71.3×71.3 mm2, as is shown in Fig. 5. 

The whole structure is divided into 664 triangles, 

resulting in 856 RWG basis functions. The computed 

frequency band is from 2.1 GHz to 2.8 GHz with 10 MHz 

frequency step, and 6 eigen-pairs are required at each 

frequency sample, and 
gR  is 0.8 and 

gS
 
is 0.5. 

Figure 5 (a) shows the tracking result by FEKO, 

Fig. 5 (b) shows the tracking result by proposed method, 

Fig. 5 (c) shows the local enlargement of Fig. 5 (a),  

and Fig. 5 (d) shows the local enlargement of Fig. 5 (b). 

Characteristic angle cures in Fig. 5 (a) are very similar 

to the curves in Fig. 5 (b) except different mode order. 

It is can been seen from Fig. 5 (c) and Fig. 5 (d) that, 

there are 2 swapping modes and 2 non-continuous 

behaviors in Fig. 5 (a), but there are none of them in  

Fig. 5 (b). This is due to modal stability tracking in the 

double modal parameters tracking method. Therefore, 

the proposed tracking method in this paper gives better 

results than FEKO does in this example. 
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Fig. 5. Characteristic angle curves of Minkowski fractal 

structure. 
 

C. Mode tracking of open cavity structure 
The third example is open complex cavity structure. 

The structure is an embedded conformal omni-directional 

antenna without any feed [17], as is shown in Fig. 6.  

In the metal cavity of diameter 138.0 mm and height 

45.0 mm, there are narrow circular rings with a width 

7.0 mm and a wide circular ring with width 40.0 mm. 

The two rings are located on aperture plane of the 

cavity. There is one shorting post connecting narrow 

circular ring and bottom of the cavity at 
0

0  and 
0

180  

respectively, and there is one shoring post connecting 

wide circular ring and the bottom of the cavity at 
0

90  

and 
0

270  respectively. The four shorting posts form 

eight "T" junctions. 

The whole structure is divided into 1289 triangles, 

resulting in 1834 RWG basis functions. The computed 

frequency band is from 0.4 GHz to 0.7 GHz with 10 MHz 

frequency step, and 6 eigen-pairs are required at each 

frequency sample, and 
gR  is 0.8 and 

gS  is 0.5. 

Figure 6 (a) shows the tracking result by FEKO, 

Fig. 6 (b) shows the tracking result by proposed method, 

Fig. 6 (c) shows the local enlargement of Fig. 6 (a), and 

Fig. 6 (d) shows the local enlargement of Fig. 6 (b).  

It can be seen that characteristic angle cures in Fig. 6  

(a) are also very similar to curves in Fig. 6 (b) except 

different mode order. As is pointed in Fig. 6 (a) and Fig. 

6 (b), both of them well identify two pairs of degenerate 

mode. However, the curves of mode 5 and mode 6 in 

Fig. 6 (c) are broken at 0.67 GHz, resulting that two 

additional curves of mode 7 and mode 8 are opened at 

0.68 GHz. So, there are 2 non-continuous behaviors in 

Fig. 6 (a), but there are none of them in Fig. 6 (b). 

Therefore, proposed tracking method gives better 

results than FEKO does in this example. This is also 

due to the double modal parameter tracking method.  
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Fig. 6. Characteristic angle curves of open cavity 

structure. 
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D. Mode tracking of a plane 
The fourth example is an approximate model of 

commercial plane A320, which is with body length of 

37 m and wingspan size of 39 meters.  

The whole structure is divided into 4180 triangles, 

resulting in 6270 RWG basis functions. The computed 

frequency band is from 5 MHz to 11 MHz with 0.2 MHz 

frequency step, and 6 eigen-pairs are required at each 

frequency sample, and 
gR  is 0.8 and 

gS  is 0.2. 

Figure 7 (a) shows the tracking result by FEKO, 

Fig. 7 (b) shows the tracking result by tracking method 

based on correlating eigenvector, and Fig. 7 (c) shows 

the tracking result by proposed method. In this example, 

the three figures show completely different results: there 

are 4 swapping modes and 2 non-continuous behaviors 

in Fig. 7 (a), and there are 2 swapping modes and 2 

non-continuous behaviors in Fig. 7 (b), but there are none 

of them in Fig. 7 (c). Therefore, the proposed tracking 

method gives better results than FEKO and tracking 

method based correlating eigenvector.  

Table 1 shows the detailed comparison of the 

proposed tracking method and FEKO, including the 

number of non-continuous behavior and the number of 

mode swapping. From Table 1, it can be seen that there 

is no non-continuous behavior and mode swapping for 

DMPTM in the four examples, but there are some for 

FEKO in these examples. Therefore, the proposed 

tracking method gives more correct tracking results 

than FEKO does. 
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Fig. 7. Characteristic angle curves of A320. 

 

Table 1: Comparison of DMPTM and FEKO 

Numeric 

Example 

Number 

of 

Mode Swapping 

Number of 

Non-continuous 

Behavior 

FEKO DMPTM FEKO DMPTM 

Rectangular 

plate 
0 0 1 0 

Minkowski 

fractal structure 
2 0 2 0 

Open cavity 

structure 
0 0 2 0 

A320 4 0 2 0 

 

V. CONCLUSION 
In this paper, a double modal parameter tracking 

method (DMQTM) is proposed, which tracks modes 

based correlating eigenvectors and calculating the 

stability of characteristic angle simultaneously. In order 

to eliminate ambiguity case, saving best function is 

introduced. To verify accuracy and efficiency of the 

proposed DMQTM, four examples are analyzed by 

FEKO, tracking method based on correlating eigenvector 

and proposed method respectively. The numerical results 

demonstrate that the proposed method efficiently gives 

more accurate mode tracking curves than traditional 

tracking method does. In order to find out the exact 

resonant frequency for characteristic mode, our future 

work is to add adaptive frequency.  
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