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Abstract ─ A new fourth-order one-step leapfrog hybrid 
implicit-explicit finite-difference time-domain (HIE-
FDTD) method has been proposed in this paper. This 
new method investigates the use of a second-order 
accurate in time and a fourth-order accurate in space. 
Because of the utilize of the one-step leapfrog theory, the 
proposed algorithm not only has the same formulation as 
that used for the traditional FDTD, but also require only 
one-step computations. The 2-D formulation of the 
method is presented and the time stability condition of 
the method is certified. Simulation results show that the 
proposed method is 6.8 times faster than the traditional 
second-order FDTD method and is 2.2 times faster than 
the second-order HIE-FDTD method, which shows that 
the proposed method has very high computational 
efficiency. On the other hand, the proposed method also 
has less dispersion error by comparing with traditional 
second-order FDTD method and the second-order HIE-
FDTD method. 
 
Index Terms ─ Computational efficiency, dispersive 
error, Finite-Difference Time-Domain (FDTD), fourth 
order, Hybrid Implicit- and Explicit-FDTD (HIE-
FDTD), one-step leapfrog. 
 

I. INTRODUCTION 
It is well known that the Courant-Friedrich-Levy 

(CFL) stability condition restricts the applications of the 
FDTD [1-2] method when it is used to simulate 
structures where fine mesh needs. In order to remove the 
CFL limit, many improved method has been developed 
such as alternating direction implicit FDTD (ADI-
FDTD) [3-8], Crank-Nicloson FDTD (CN-FDTD) [9], 
locally one-dimensional FDTD (LOD-FDTD) [10-13] 
and hybrid implicit and explicit-FDTD (HIE-FDTD) 
[14-18]. The HIE-FDTD method is weakly conditionally 
stable. Its time step size is not determined by fine space 
discretization, so, the method allows larger time step size 
than the conventional FDTD method, which is extremely 
useful for problems with very fine structures in one 
direction. 

However, in the HIE-FDTD method, the cell size 
could not be larger than 1/10 of the wavelength, 

otherwise the numerical dispersion inherent in the 
classical Yee FDTD algorithm will introduce significant 
errors. So, when solving the electrically large problems, 
a large number of cells (10-20 cells per wavelength) are 
required to decrease the dispersion error, which would 
increase the computation time inevitably. 

To reduce the computation time, two approaches are 
used in this paper. One is to use more terms in the Taylor 
series to approximate the spatial derivatives. Fang [19] 
was the first to present this approach in conjunction with 
solving Maxwell’s equations. He investigated the use  
of a second-order accurate in time and a fourth-order 
accurate in space FDTD algorithm, which we denote as 
the FDTD (2, 4) algorithm [20-24], [5], [6]. The other 
one is to use the one-step leapfrog method. Cooke [25] 
firstly presented this approach into the ADI-FDTD 
method. With the one-step leapfrog, electric field terms 
arise only on the half time step, while the magnetic field 
terms arise only on the full time step. Consequently, the 
one-step leapfrog ADI-FDTD method is much simpler 
and more efficient than the traditional ADI-FDTD 
method. 

In this paper, a novel fourth-order one-step leapfrog 
HIE-FDTD is developed. The fourth-order one-step 
leapfrog HIE-FDTD method not only has the second-
order accurate in time and the fourth order accurate in 
space, but also has the one-step leapfrog schemes. 
Therefore, since the use of the fourth order accurate in 
space, the proposed method would provide a higher 
accuracy than the traditional second-order FDTD 
method [1-2] and second-order HIE-FDTD method [15]. 
What’s more, the proposed method would spend much 
less computational time because of the use of one-step 
leapfrog schemes and the weak stability than the fourth-
order FDTD method [24]. 

Numerical examples in this paper demonstrate that 
the proposed algorithm has lower dispersion error than 
the conventional FDTD method even when the cell size 
is equal to 1/5 of the wavelength in solving some EM 
problems. For simplicity, the two-dimensional (2-D) 
fourth-order one-step leapfrog HIE-FDTD update 
equations are discussed in this paper. The formulations 
for 3-D fourth-order HIE-FDTD method can be developed  
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following a similar procedure. 
The organization of this paper is as follows. In 

Section II, the formulation of the proposed algorithm is 
presented. The stability condition is certified in Section 
III. The numerical dispersion analysis and numerical 
results applied to the EM problems are presented in the 
Sections IV and V. 

 

II. FORMULATION 
For simplicity, the two-dimensional TE model with 

respect to z-direction is considered in this paper. The 
numerical formulations of the Maxwell’s equations in a 
lossless and isotropic medium are presented as follows: 
 ( ) ( )( ) .

t
R

∂
Ψ = Ψ

∂
 (1) 

Here, ( ) ,, ,x y z
T

E E H 
 
 

Ψ =  ( )R  can be expressed as 

follows: 
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while , , .m m m x yδ = ∂ ∂ =  
By applying the one-step leapfrog technique [25] 

and the hybrid implicit-explicit FDTD (HIE-FDTD) [14-
18] method, a set of time marching equations are derived 
as follows. 

The space operator ( )R  is split into two parts, just 
as ( ) ( ) ( ) ,1 2R R R= +  where 
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By using the Peaceman-Rachford theory, Eq. (1) is 
split into two parts as shown in Eqs. (3) and (4), where 
time marching over one full time step is broken into two 
procedures. The first updating procedure involves the 
advancement from the n th time step to the 1 2n + th 
time step, and in the second procedure, the fields are 
updated from 1 2n + th time step to the 1n + th time step. 
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By substituting [ ]1R  and [ ]2R  into (3), we obtain  

 ( )1 2 1 2- 2 ,n n n
x y z xE t H Eε δ+ +∆ =  (5-1) 

 ( )1 2 1 2
y 2 ,n n n

x z yE t H Eε δ+ ++ ∆ =  (5-2) 
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By substituting [ ]1R  and [ ]2R  into (4), we obtain 

 ( )1 1 2 1 22 ,n n n
x x y zE E t Hε δ+ + += + ∆  (6-1) 

 ( )1 1 2 1 2
y - 2 ,n n n

y x zE E t Hε δ+ + += ∆  (6-2) 
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By replacing n with 1n −  in (6-1)-(6-3), respectively, we 
obtain: 
 ( )-1 2 -1 22 ,n n n

x x y zE E t Hε δ= + ∆  (7-1) 
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Substituting (7-3) into (7-1), we have: 
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By substituting (5-3) and (8) into (5-1), the updating 
equation for xE  is obtained below: 
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Substituting (7-3) into (7-2), we have: 
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By substituting (5-3) and (10) into (5-2), the updating 
equation for yE  is obtained below: 
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By substituting (6-2), (5-2) and (5-3) into (6-3), the 
updating equation for zH  is obtained below: 

 
( )( )
1

z
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z
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In Eqs. (9), (11) and (12) it often uses the finite 
difference to approximate the spatial derivate [21], [23]. 
For example: 
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where ( )α ι  can be obtained in reference [20], 
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If N is equal to 1, the order of the one-step leapfrog 
HIE-FDTD algorithm is equal to 2. When N is equal to 
2, the order of the HIE-FDTD algorithm is equal to 4. 
Then according to the definition of the constant ( )α ι  and 
by substituting (13) into (9), (11) and (12), the fourth-
order one-step leapfrog HIE-FDTD algorithm’s 
equations are obtained as followed. 

To further simplify, the auxiliary field variables e 
and h  are introduced as: 

 1 2 1 2 1 2 , , , ,n n n
m m me E E m x y z+ + −= − =  (14-1) 

 1 1 , , , .n n n
m m mh H H m x y z+ += − =  (14-2) 

The final updating equation for xE  of the proposed 
method is obtained below:  
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where 
 2 2
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 2 2
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 2 2
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 6 / 24 y.c t εµ= ∆ ∆  

The other updating equations of the proposed 
method can be obtained similarly and are not shown here 
for simplicity. 

 
III. STABALITY ANALYSIS OF FOURTH 

ORDER HIE-FDTD METHOD 
From Eqs. (3) and (4), we obtain: 
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For simplification, we obtain the formulation of M 
in (17), shown at the bottom of this page: 
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By substituting (17) into (16), we have 1 ( ) .n nM+Ψ = Ψ

By setting the determinant of [ ]3 3I Mξ× −  to be zero, as 

that 3 3 0.I Mξ× − = ξ  represents the growth factor. 
For simplification, the above equation can be 

represented as follows: 
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By solving (18), the values of the growth factor ξ are 
obtained: 
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In order to satisfy the stability condition during field 
advancement, the module of growth factor ξ must  
be less than or equal to 1. It is apparent that when  
the relation 2 2 2 2 2(4 2 ) (4 )y x ym m mεµ εµ+ + ≤ −  is satisfied, 

the condition 2,3 1ξ =  would be obtained. When 
2 2 2 2 2(4 2 ) (4 ) ,y x ym m mεµ εµ+ + ≤ −  we can obtain that 
2 2 24 2 4 ,y x ym m mεµ εµ− − − ≤ −  as well as 2 4 .xm εµ− ≤  

By substituting the value of ,xm  we have: 
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where 0 0c 1 ε µ=  is the speed of light in the vacuum. 
The values of constant (0)α  and (1)α  are equal to 9/8 
and -1/24, respectively. So through the analysis above, 
the stability condition of the proposed algorithm is 
presented as follows: 
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IV. NUMERICAL DISPERSION ANALYSIS 
We now study the numerical dispersion in the 

proposed algorithm. Substitute e j tωζ ∆=  into (1), it can 
be obtained: 
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Suppose that a wave propagating at angle θ  is in the 
spherical coordinate system. Then,  
 0 cos( ),xk k θ= 0 sin( ),yk k θ=  
where 0k  is the physical wave number. By substituting 
them into dispersion relation (20), the wave number 

ck ω=  can be obtained, while c is the light speed in the 
vacuum. 

The global phase error: 
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k ( )1 sin .
4 k

k
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θ θ
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 
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The cell size x∆ = y∆ = / ,Nλ  λ  is the operating 
wavelength and N is the constant. 

It can be seen from Fig.1. (a) that when CFLN value 
is 2, as the increase of the N, the global phase error of 
the proposed algorithm decreases gradually. Fig.1. (b) 
shows that when N value is 14, the global phase error of 
the proposed algorithm increases gradually as the 
increase of the CFLN. 

When the N value becomes bigger, the cell sizes of 
the proposed algorithm would become smaller so that the 
algorithm would have much bigger computing accuracy 
and lower global phase error, which agree well with the 
Fig.1. (a) When the CFLN value becomes bigger, the 
time step size of the proposed algorithm would become 
bigger so that the algorithm have much lower computing 
accuracy and larger global phase error, which agree well 
with the Fig.1. (b).  
 

 
 (a) 

 
 (b) 
 
Fig. 1. (a) the relation between the global phase error and 
constant N, the relation between the global phase error 
and constant CFLN. 
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V. NUMERICAL RESULTS 
To verify the computational efficiency and the 

dispersive error of the fourth-order one-step leapfrog 
HIE-FDTD method, two examples are presented in this 
section. For comparison, numerical results calculated by 
using the traditional second-order FDTD algorithm, the 
fourth-order FDTD algorithm and the second-order HIE-
FDTD algorithm are also presented. 
(1) Computational Efficiency 

In order to verify the validity and computational 
efficiency of the fourth-order one-step leapfrog HIE-
FDTD algorithm, the simulation of the proposed method 
with pulse source is presented in this sub section.  

A 2-D computational domain with the dimension 
360 mm×36 mm is shown in Fig. 2 (a). The cell sizes are

x∆ = 6 mm and y∆ = 0.6 mm. So the total meshes are 
60×60. 10 cell-thick CPML layers are used to terminate 
the computational domain. A small current source is 
placed at the center of the domain. Observation point 1P  
is located at the grid (45, 30), as shown in Fig. 2 (a). The 
time dependence of the source is as follows: 

 20
0(t) cos(2 )exp( 4 ( ) ),

t t
P f tπ π

τ
−

= −  

where 0 5 ,f GHz= 9
0 3 10 s,t −= × 93 10 s;τ −= ×  thus, the 

wavelength of the source is about 60 mm. 
The electric field values yE  at point 1P  are 

calculated by using the fourth-order one-step leapfrog 
HIE-FDTD method and are plotted in Fig. 2 (b). For 
comparison, the results calculated by using the 
traditional second-order FDTD method, the fourth-order 
FDTD method and the second-order HIE-FDTD method 
are also presented in this figure. The time stability 
conditions of these four methods are: 

2 2t 1 (1 ) (1 y) 1.99c x ps∆ ≤ ∆ + ∆ = (second-order FDTD 

method [1]), 2 2t (6 70 (1 ) (1 y) 1.71c x∆ ≤ ∆ + ∆ = (fourth- 

order FDTD method [10]), 2t 1 (1 ) 20c x ps∆ ≤ ∆ =
(second-order HIE-FDTD method [7]) and 

2t (6 7) (1 ) 17.14c x ps∆ ≤ ∆ = (fourth-order one-step 
leapfrog HIE-FDTD method), respectively. In this 
simulation, the time step sizes of the above four 
algorithms all take the maximum time step size that 
satisfy their stability conditions. 

Figure 2 (b) illustrates that the result of the fourth-
order one-step leapfrog HIE-FDTD algorithm is well 
consistent with these of the second-order FDTD 
algorithm, the fourth-order FDTD algorithm, and the 
second-order HIE-FDTD algorithm. 

To complete this simulation, the computer costs of 
these methods are presented in Table 1. Because the 
fourth-order one-step leapfrog HIE-FDTD algorithm as 

well as the second-order HIE-FDTD algorithm can take 
much larger time step size than the FDTD algorithm, the 
computer costs of these two methods are much less than 
the FDTD algorithm. From Table 1, it can see that the 
proposed method is 6.8 and 14.54 faster than the 
traditional second-order FDTD method and the fourth-
order FDTD method, respectively. What is more, 
although the maximum time step size of the proposed 
algorithm is just 6/7 times as that of the second-order 
HIE-FDTD algorithm, the computer cost of the fourth-
order one-step HIE-FDTD algorithm also be less than 
that of the second-order HIE-FDTD algorithm. It is 2.2 
times faster than the second-order HIE-FDTD algorithm. 
In conclusion, the proposed fourth-order one-step 
leapfrog HIE-FDTD algorithm can save computational 
time greatly when solving the fine electromagnetic 
problems as presented in Table 1. 
 

 
 (a) 

 
 (b) 
 
Fig. 2. (a) Free space truncated by CPML, and (b) the 
electric field values at point 1.P  
 
Table 1: Computer costs of the FDTD algorithm and 
HIE-FDTD algorithm 

 ( )t ps∆  CPU Time (s) 
Second-order 

FDTD 1.990 14.40 

Fourth-order 
FDTD 1.71 30.69 

Second-order 
HIE-FDTD 20.0 4.66 

One-step-leapfrog 
Fourth-order HIE-FDTD 17.14 2.11 

 
(2) Dispersion Error 

In order to verify the lower dispersive error of the 
fourth-order one-step leapfrog HIE-FDTD algorithm, 
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another numerical example is presented in this sub 
section. 10-cell-thick CPML layers are used to terminate 
a 2-D computational domain with the dimensions 360 
mm×360 mm. A small current source is placed at the 
center of the domain. Observation point 2P  is 117 mm 
far away from source point, as shown in Fig. 3 (a). 

The time dependence of the source is as follows: 
 (t) sin(2 ),P ftπ=  
where f=10 GHz, thus the wavelength of the source is 30 
mm.  

It uses the fourth-order one-step leapfrog HIE-
FDTD method, the second-order HIE-FDTD method and 
the second-order FDTD method to compute the field 
value yE  at point 2 ,P  the results are shown in Fig. 3 (b). 
The cell sizes of the x-direction and y-direction of the 
fourth-order one-step leapfrog HIE-FDTD algorithm are

x y∆ = ∆ = 6 mm, which are equal to 1/5 of the 
wavelength. For comparison, there are two kinds of cell 
sizes used in the second-order FDTD algorithm. One is

x y∆ = ∆ = 3 mm, which are equal to 1/10 of the 
wavelength; the other is x y∆ = ∆ = 6 mm, which are 
equal to the values of the fourth-order one-step leapfrog 
HIE-FDTD algorithm. The cell sizes of the second-order 
HIE-FDTD method are also x y∆ = ∆ = 6 mm. 
 

 
 (a) 

 
 (b) 
 
Fig. 3. (a) Free space truncated by CPML, and (b) the 
electric field values at point 2 .P  

It is well known that as the cell sizes increase, the 
dispersive error of the FDTD method would increase. It 
means that the accuracy of the FDTD method would 
decrease as the cell sizes increase, especially when the 
cell size is larger than 1/10 of the wavelength. So, in  
Fig. 3 (b), we think the result of the second-order FDTD 
algorithm whose cell size is equal to 1/10 of the 
wavelength is accurate. From Fig. 3 (b), it is clear that as 
the cell sizes increase, the result of the second-order 
FDTD algorithm and the second-order HIE-FDTD 
algorithm whose cell size are equal to 1/5 wavelength are 
not well consistent with the accurate result. However, the 
result of the fourth-order one-step leapfrog HIE-FDTD 
algorithm although its cell size is also equal to 1/5 of the 
wavelength agrees much well with the accurate result. It 
demonstrates that the fourth-order HIE-FDTD algorithm 
has much less dispersive error than the second-order 
FDTD algorithm method and second-order HIE-FDTD 
method when the cell size increases. Since the cell size 
could take larger values, the fourth-order one-step 
leapfrog HIE-FDTD algorithm is more suitable to solve 
electrically large problems. 
 

VI. CONCLUSION 
This paper firstly introduces the fourth-order one-

step leapfrog theories into the HIE-FDTD algorithm. It 
is found that the technique is weakly conditionally stable 
and supports time step size greater than the CFL limit. 
The computer cost of the fourth-order one-step leapfrog 
HIE-FDTD algorithm is much less than the second-
order, fourth-order FDTD algorithm and the second-
order HIE-FDTD even though the maximum time step 
size of the proposed algorithm is smaller than that of the 
second-order HIE-FDTD algorithm. It means that the 
fourth-order one-step leapfrog HIE-FDTD method has 
higher computational efficiency than the FDTD algorithm 
and second-order HIE-FDTD algorithm. Numerical 
simulations show that the fourth-order one-step leapfrog 
HIE-FDTD algorithm has higher calculation accuracy 
and low computational error, even when the cell size is 
equal to 1/5 of the wavelength. Therefore the fourth-
order one-step leapfrog HIE-FDTD algorithm is very 
suitable to solve problems where both fine and electrically 
large structures are needed. 
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