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Abstract ─ An efficient spectral element method (SEM) 

based on Gauss-Lobatto-Legendre (GLL) polynomials is 

proposed for the semiconductor transient simulation. 

The fully coupled Newton iteration method is employed 

to solve the nonlinear drift-diffusion model. The mix-

order basis functions with different variables and domains 

are employed to give a full play to the superiority of  

the proposed SEM. The PIN diode with quasi one-

dimensional structure has been analyzed, and the 

numerical results have demonstrated the efficiency and 

accuracy of the proposed method. 

 

Index Terms ─ Gauss-Lobatto-Legendre (GLL) 

polynomials, mix-order basis function, PIN diode, 

Spectral Element Method (SEM). 

 

I. INTRODUCTION 
The drift-diffusion model is a common way to 

describe the interior carrier behavior of semiconductor 

devices, and it is a directly-coupled system of three 

nonlinear partial differential equations [1]. During the 

past few decades, numerical methods such as finite 

element method (FEM) and finite difference method 

(FDM) have been employed to solve the equations [1, 2]. 

In consideration of the efficiency and accuracy, several 

adaptive grid refinement strategies have been proposed 

[3, 4], but the implementation is relatively cumbersome. 

Recently, the spectral element method (SEM) has shown 

its higher accuracy and lower computation cost than 

FEM or FDM [5, 6, 10, 11]. The efficient SEM has  

been proposed to solve the Schrödinger’s equation in 

nanodevice simulation [7] and the high power microwave 

propagation problems [8]. 

In this paper, the spectral element method based  

on the drift-diffusion model has been developed for 

semiconductor transient simulation. The Gauss-Lobatto-

Legendre (GLL) polynomials are used as the basis 

function to expand the variables, and it gets the advantage 

that the error decreases exponentially with the 

polynomial order increases, called spectral accuracy [8]. 

To minimize the unknowns, different orders of the basis 

function can be selected with the following criterion: the 

higher order of the basis function for the variables with 

larger range of values such as electron concentration and 

hole concentration, and the higher order of the basis 

function for the domain with rapid changing values for 

the same variable. 

The organizations of this article are as follows. In 

Section II, the basic theory of SEM based on GLL 

polynomials has been described briefly. Then, the 

detailed process about how to solve the drift-diffusion 

model with the spectral element method, and the two 

strategies that the different orders of the basis function 

are selected according to the different variables and 

domains has been introduced specifically. Next, in 

Section III, the overshoot phenomena in PIN diode with 

quasi one-dimensional structure has been analyzed to 

demonstrate the efficiency and accuracy with the 

proposed method. 

 

II. FORMULATION 
The drift-diffusion model is composed of three 

nonlinear differential equations, the electronic and hole 

current continuity equations and Poisson equation [2], 

described as: 
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where   is the electrostatic potential, q  is the electric 

charge, 
0N  is the electrically active net impurity 
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concentration,   is the permittivity, and n  and p  are 

the electron and hole carrier densities. G  and R  describe 

the generation phenomena and recombination processes. 

The electron and hole current densities symbolized by 

n
J  and 

p
J  are given by: 
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where 
n

D and 
p

D  are the corresponding diffusion 

coefficients, and 
n

  and 
p

  are the electron and hole 

mobility. 

 

A. Basis functions 

The difference between SEM and FEM lies in the 

choice of the expansion basis. In order to achieve the 

high accuracy, the GLL basis functions are employed 

throughout this article. A rough introduction is shown as 

follows, and more details can be found in the reference 

[7]. 

The Nth order GLL basis functions in a 3-D cubic 

element ( , , ) [ 1,1] [ 1,1] [ 1,1]          can be written 

as: 
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functions with three directions and have the following 

definition: 
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Here, L ( )N   and 
'L ( )N  are the Legendre 

polynomial of Nth order and its derivative. The points

{ , j=0,1,...,N}j  are the zeros of 2 '(1 )L ( ) 0N j   . 
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Fig. 1. The mapping from the: (a) physical to the (b) 

reference domain. 

 

Because of the basis functions definition on the 

standard cubic element, the mapping from the physical 

to the reference domain is essential for general meshes 

as shown in Fig. 1. The basis functions below the 

physical coordinate and reference one have the following 

relationship: 

 , (5) 

where 
iN  and 

i  represent the basis functions for the 

physical and reference coordinate, and J is the Jacobian 

matrix. 

 
B. SEM for semiconductor simulation 

Here, the electron and hole concentrations and 

electric potential are selected as the unknown variables. 

The fully coupled Newton iteration method is employed 

to solve the nonlinear equations. 

Taking electronic current continuity equation for an 

example, the specific derivation process is introduced 

here. Firstly, the equation should be normalized into 

dimensionless form and the factors can be found in [2]. 

For the time partial derivative, the backward difference 

operator is employed to achieve the unconditional 

stability with a large time step represented by t : 
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where ( , , ) ( ) ( ),n n nf n p n n R G          and mn

represents the electron carrier densities at the time of 

m t . The Equation (6) is equivalent to the following 

form: 

  1( , , ) ( , , ) 0.m m m m m m m m
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Expand the formula (7) using the Taylor series and just 

retain the first order item. Then, the Newton iterative 

formula can be obtained finally: 
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Here, the ( , , )l l ln p  represents the results obtained 

by the l th Newton iteration. By applying the Galerkin 

weighted-residual method to (8), the following form (9) 

can be obtained: 
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Using the GLL basis functions, the variables can be 
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expanded as follows: 

 
1 1 1

, ,
total total totalN N N

j j j j j j

j j j

n n N p p N N 
  

     , (10) 

where ( 1)( 1)( 1)totalN N N N      represents the total 

number of basis functions. Substituting (10) into (9) and 

simplifying the resulting equation, we have the final 

form of equation system (11): 
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Repeat the above operations for the hole current 

continuity equation and Poisson equation, then the fully-

coupled system can be described by the following matrix 

form: 
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The remaining elemental matrices are defined as: 
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When the norm of , 1 , 1 , 1( , , )m l m l m l T

n p 

  
δ δ δ is less than 

the setting of tolerance, , 1 , 1 , 1( , , )m l m l m l T  
n p φ can be 

account as the approximate solution of the original 

nonlinear system. 

Particularly, it may suffer from instability when a 

simple finite difference scheme is employed as 

mentioned in [12]. The numerical error is caused by the 

hyperbolic and convection dominated equations. The 

stability of the model can be improved by employing 

proper discretization method. In this paper, the backward 

Euler scheme in time and GLL basis functions in space 

are employed. The backward Euler scheme is implicit 

and unconditionally stable with large time steps. As a 

specific finite element method, the SEM with GLL basis 

functions also satisfies the discrete maximum principle 

[13]. Therefore, the proposed method can yield a 

reasonable degree of accuracy independent of 

perturbations. 
 

C. Mix-order basis function 

Here, the electron and hole concentrations and 

electric potential are selected as the unknown variables. 

The fully coupled Newton iteration method is employed 

to solve the nonlinear equations. The variation range of 

the electron and hole carrier densities is still larger than 

electrostatic potential by expressing all densities in units 

of 
in and all potential in units of /kT q , where 

in is the 

intrinsic density, k  is the Boltzmann’s constant and T  

is the carrier temperature [2]. To capture the density 

gradient, the fine meshes or the higher order basis 

function is necessary. Based on the above consideration, 

different orders of the basis function can be selected by 

the range and the changing domain of the three variables. 

Here, we employ higher order for the electron and hole 

carrier densities and higher order for the rapid changing 

domain with the same variable. Because of using 

different orders of basis function for carrier densities and 

potential, the following integration is needed to fill the 

above matrices, taking the [ ]ijT  for example: 
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iN  and jN  have different orders and the high order 

integration is employed with
' ' '( , , ).N N N N N N         
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Due to the fact that different domain has different 

order of basis functions, the continuity at the interface 

between two domains must be handled properly. 

Considering that the quasi one-dimensional structure is 

analyzed in this paper, the different orders basis 

functions are only applied at the direction with changing 

variables. Therefore, the continuity can be enforced 

easily. 
 

III. NUMERICAL EXAMPLES AND 

DISCUSSIONS 
In order to verify the accuracy and efficiency of the 

proposed method, the quasi one-dimensional PIN diode 

with the p nn   doping is selected as the numerical 

model [9]. As shown in Fig. 2, the cross section area of 

the diode is 8 210 ,cm  and the length is 10 m . The 

distribution of doping concentration is displayed by Fig. 

3. 

Here, it should be indicated that all the numerical 

examples are computed on an Intel(R) Core(TM)2 with 

2.83 GHz CPU (the results are computed by only one 

processor) and 8 GB RAM. The tolerance is set to be 
610 . 

 

3 m

 

5 m 2 m

P I N

 
 
Fig. 2. The model of PIN diode. 
 

 
 

Fig. 3. The doping concentration of PIN diode. 

 

A. Basic simulation 

In order to verify the validity of the proposed SEM 

for transient semiconductor simulation, a sine-wave 

voltage is imposed on the anode of the PIN diode. The 

mesh size is 0.01 m , and the order of the basis functions 

is set to be 1. The time step size is 1 .ns  Figure 4 shows 

the transient current flowing through the diode, and it is 

in good agreement with the result obtained by COMSOL 

software. 

 
 

Fig. 4. The distribution of transient current. 

 

Figure 5 shows the distribution of variables at the 

time of 20 ,ns  and the results of the comparison with 

COMSOL demonstrate the validity of the SEM for 

transient semiconductor simulation. 

 

B. Mix-order with variables and domains 

It can be found that the electron and hole carrier 

densities have a faster change than the electric potential 

from Fig. 5. Therefore, it is reasonable to use high order 

basis function for densities and low one for potential. As 

can be seen in Fig. 5, the densities in P domain and N 

domain have larger gradient than I domain. So, the high 

order basis functions are employed for the variables in P 

domain and N domain.  

To verify the efficiency of the mix-order basis 

function with different variables and domains, the 

transient response under the electromagnetic pulse with 

fast rise time has been simulated. Figure 6 shows the 

input voltage imposed on the anode of the diode, and 

gives the transient current densities obtained by SEM 

with 1st order and 5th order basis function. The mesh 

size for 1st order basis function is 0.01 m  and 0.2 m

for 5th order basis function. The time step size is 1 ps . 

The overshoot current shown in Fig. 6 is due to the 

capacitive performance of PIN diode under high 

frequency. 
 

 

 

Fig. 5. The distribution of variables at the time of 20 ns . 
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Fig. 6. The distribution of transient current densities. 

 

Table 1 shows the compute time using the mix-order 

basis functions with different variables. The same high 

order basis functions for the electron and hole carrier 

densities, and low order basis functions for electric 

potential. Table 2 shows the compute time using the mix-

order basis functions with different variables and 

different domains. The same high order basis functions 

for the P and N domain, and low order basis functions 

for I domain. As can be seen in Table 2, the case with 

standard 1st order of basis function takes 3.32 times  

CPU time than the proposed mix-order method. The 

proposed mix-order SEM exhibits a good efficiency in 

semiconductor transient simulation. 

 
Table 1: Comparison of computation Efficiency 

Mesh Size 

( m ) 

Order of Basis 

Function Number of 

Unknowns 

CPU Time 

(s) 
n, p   

0.01 1st 1st 11988 206 

0.1 
4th 4th 4788 177 

4th 1st 3588 132 

0.2 
5th 5th 2988 148 

5th 2nd 2388 112 

 
Table 2: Comparison of computation efficiency 

Mesh Size 

( m ) 

Order of Basis 

Function Number of 

Unknowns 

CPU Time 

(s) 
n, p   

0.01 1st 1st 11988 206 

0.1 

4th 1st 3588 132 

4th 

(2nd) 
1st 2788 88 

0.2 

5th 2nd 2388 112 

5th 

(2nd) 

2nd 

(1st) 
1688 62 

The numbers in the bracket represent the orders of basis functions for 

I domain. The default represents the same order of basis function for 
the whole domain. 

 

VI. CONCLUSION 
In this paper, the spectral element method (SEM) is 

proposed for the semiconductor transient simulation. 

The Gauss-Lobatto-Legendre (GLL) polynomials are 

used as the basis function to expand the variables. The 

fully coupled Newton iteration method is employed to 

solve the nonlinear drift-diffusion model. The mix-order 

basis functions with different variables and domains are 

employed to improve the compute efficiency. The PIN 

diode with quasi one-dimensional structure has been 

analyzed, and the numerical results demonstrate the 

accuracy and efficiency with the proposed method. 
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