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Abstract

Electricity forecasting is an essential task for energy management systems
of microgrids deployed in smart grids. Accurate price forecasting will even-
tually enhance the economic operation of microgrids. In this regard, the
literature is rich with studies focused on predicting electricity price data
using artificial neural networks. However, most of them consider a single
model such as multi-layer perceptron (MLP) and radial basis function (RBF)
to perform electricity price forecasting. In this paper, a hybrid framework
based on simultaneously utilizing MLP-RBF neural networks is presented to
predict the Iranian electricity market price. In addition, few works in literature
considered Iran’s electricity market as their case of analysis and investiga-
tion. Forecasting results indicate that MLP neural networks outperform the
RBF neural networks. The values for the coefficient of determination (R)
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corresponding to MLP and RBF neural networks are obtained 0.55 and 0.44,
respectively. However, the proposed hybrid framework performed better than
both MLP and RBF models with R-value equal to 0.71. In addition to this,
the MSE and RMSE values show the superiority of the proposed method to
the single methods.

Keywords: Electricity price forecasting, artificial neural networks, smart
grids, electricity markets.

1 Introduction

The electricity market liberalization has resulted in a shift from a central-
ized framework i.e., the load consumption was the variable of interest for
performing forecasting in a competitive framework, where the forecasting of
prices was an inevitable function for consumers and generators [1–3]. High
electricity price volatility is the main reason for the risk in the daily market
operation. This claim is particularly true for spot price(s), where intermittence
could be higher than fifty percent on a day-ahead scale, meaning over ten
times greater than for other products of energy (crude oil and natural gas)
[1, 4, 5]. Based on research analyzing the financial effect of price prediction
inaccuracies on forecasting users in daily market operation, it was revealed
that one percent MAPE accuracy amendment led to a 0.1–0.35 percent cost
decrease [6].

The paradigm of smart grids is seemed to “redefine the concept of what
it means to build and operate the grid” [7, 8]. Notably, while human system
operators still make the final decisions, several implementations of intelligent
devices would finally operate the power network automatically. The available
option for having a bi-directional power flow, a number of micro power
plants, and alternative electricity prices would be applied to support more
refined control systems than easily turning power plants on-off [7, 9, 10].
Smaller appliances and loads, when put together, can form even smaller grids,
pico-grids. These pico-grids can bundle together to form nano-grids and mini-
grids. The nano-grid is likely to be smaller in size than a micro-grid with
a capacity in the order of 2–20 kW since its niche application is likely to
be for remote area power supplies. Furthermore, a nano-grid operates at dc
instead of 50/60 Hz and relies on power electronic converters to interface
both sources and loads to the system. The management approach of the grid
can be made from the bottom-up where the monitoring starts at the pico-
grids and move up the level and scale. Figure 1 shows multiple pico-grids
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Figure 1 Example of multiple pico-grids forming a micro-grid.

forming into a micro-grid. Generally, nano-grids have many advantages with
fewer technical obstacles. They have a low power rating compared with
micro-grids. But, their design depends on several numbers of inverters and/or
converters sets; standard nano-grids have some barriers. Therefore, they need
to separate isolated controllers as well as high cost and loss safety methods.
In addition, the interconnection of both inverters and converters leads to more
private risks causing noise and interference issues [11, 12].

A microgrid is a system benefiting from at least a renewable source (i.e.,
photovoltaic power and/or wind power) and a control system that allows the
system to operate in grid-connected or off-grid operation modes. Microgrids
usually are utilized with energy storage systems like battery storage systems.
In this way, they are able to store electricity generated by renewables and
perform an economic role in the energy market by optimal charging and
discharging of energy storage. A virtual power plant is a cluster of dis-
tributed generators, energy storage systems, and controllable loads integrated
to operate as an individual plant [13, 14]. The interconnection of microgrids
and virtual power plants is depicted in Figure 2. Energy management sys-
tems are the core of both microgrids and virtual power plant management
centers. Energy management systems take the optimal decisions based on
three critical factors: (i), (ii) energy production and consumption, and (iii)
load demand. Therefore, it is essential to forecast the future electricity price,
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Figure 2 The interconnection of microgrids and virtual power plants.

energy availability accurately, and load demand to take optimal decisions
regarding the future time horizon [15]. It is important to mention that these
factors have stochastic nature and depend on several features that may
not be forecasted with the necessary precision; for example, the weather
conditions have impacts on the energy availability (due to renewables like
photovoltaic/wind power) [16], load demand (e.g., air conditioning) [17], and
importantly the electricity price [18]. Here, we focus on the latest factor, i.e.,
electricity price forecasting, which is a highly variable factor in the energy
management system.

Generally, there are different methods for predicting uncertain variables
such as electricity price values [19]. Some methods are computational intelli-
gence (CI) methods, statistical methods, reduced-form methods, fundamental
methods, and multi-agent methods. Also, there are three different forecastings
based on the prediction time horizons: long-term, mid-term, and short-term
electricity price forecasting [20]. The focus of this paper is on short-term
load forecasting, which is appropriate for day-ahead smart grid operation.
Moreover, the most important electricity price methods are CI and statistical
methods in day-ahead electricity markets. Statistical models are typically
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unable to predict non-linear patterns, which implies the linearity behavior
in electricity price [21] and is impractical in forecasting rigid alters in the
price signals [22]. This finally leads to inaccurate prediction performance.
Nowadays, there is an emerging sub-field of deep learning in neural network
methods [23].

In the literature review of electricity price forecasting, considering CI
techniques, the sets for training and testing, applying in the point fore-
cast simulation, are generally constant during the designated time series.
These ways of setting show that the participants in the electricity market
will depend on the non-recalibrated models for the indefinite horizon, for
instance, during the whole out of sample testing horizon, once the EPF
model is calibrated. Investigation of the training data set size impact on
the accuracy of prediction is not entirely analyzed in previous research on
neural network-based techniques and conventional methods in [23]. The
authors of [24] compared the neural networks, support vector machine, and
statistical ARIMA model according to the local electricity data for Cali-
fornia. The support vector machine model had the highest accuracy, while
both techniques outperformed the ARIMA model. In [23], the Belgium
data is used for empirical comparison of traditional algorithms and neural
network-based methods. Five years of data is designated for training, and
one year of data is used for testing in both models. Neural networks had
the highest prediction accuracy. Based on the Spanish and Californian data
in [25], the ARIMA model with wavelet transformation and the univariate
time-series neural network with wavelet transformation are examined. Four
weeks for the different seasons were sued for testing the models. The neural
network models were statistically more accurate than the ARIMA model.
The daily electricity price prediction is conducted according to the models of
neural networks with various structures in combination with supplementary
clustering algorithms in [26]. The Italian Southern region data is used for
prediction. Training is performed using approximately 3 years of data, and
the test is done over four months. Neural networks with a supplementary clus-
tering algorithm performed better than univariate neural networks. Pattern
Sequence-based Forecasting method (PSF) is compared and tested with the
neural networks with wrapper function for the feature selection of Spanish,
New York, and Australian markets [27]. Historical calendar data, weather as
well as electricity data were the explanatory variables in the proposed model.
The training was performed on three-years data, and testing was conducted
on one-year price data. The ANN method was outperformed by the accuracy
in comparison with the PSF method. Researchers in [28] conducted spike
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probability forecasting and electricity price prediction for Finish Nord Pool
day-ahead energy market. The neural networks were evaluated with other
algorithms, such as the ARIMA time-series model. In addition, two years of
data are considered for training the data, and one year of data is designated
for testing the data. The neural network-based model had better forecasting
results in both cases. In [29], the gradient boosted regression trees examined
on the Spanish market was performed better than the linear regression model.
The implemented algorithm is an ensemble machine learning method that
is related to the random forest algorithm. The training horizon was thirty
months period, and the testing horizon was six month period. The proposed
method was outperformed the conventional algorithms.

Furthermore, forecasting other intermittent parameters such as load
demand and RESs output power has been extensively studied in recent
years. In [30], a novel method based on recurrent neural networks (RNN)
is proposed to forecast real-world load data from five residential consumers
provided by London Hydro. In another paper [31], a classical long short-
term memory-based neural network with selected autoregressive features
is developed to ameliorate short-term load demand forecasting accuracy
by employing three strategies: autoregressive features selection, exogenous
features selection, and a “default” state for avoiding overfitting at times of
high load variability. The results showed an accuracy improvement of up to
25% in comparison with classical models. In [32], a novel radial basis func-
tion (RBF) neural networks-assisted hybrid modeling strategy is suggested
to forecast the PV cell temperature. The hybrid model is designed as an
explicit mathematical formulation combined with an RBF neural network-
assisted correcting factor. The model forecasting performance is evaluated
by laboratory and commercial plants. The results indicated that the suggested
method accurately performs cell temperature and output power prediction
for laboratory and commercial plants. Thus, the hybrid modeling strategy
could support a potential solution framework for cell temperature and output
power forecasting for different PV cells. In [33], a wind power plant power
output is forested by weather and power plant parameters and employing an
extended fuzzy wavelet neural network. This method was used for the Manjil
wind power plant in Iran, with actual data being recorded every 10 min. The
method was also compared with the conventional forecasting methods. The
results indicated that the suggested method was more efficient and had higher
precision for short-term wind power forecasting than other classical methods.

In this paper, a hybrid method based on multi-layer perceptron (MLP)
neural networks and RBF neural networks is proposed to accurately forecast
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the electricity price data of the Iranian electricity market. While some articles,
such as in [34] and [15], predicted uncertain parameters in micro-grids’
energy management system, there proposed method of this paper is based
on hybrid utilization of these methods, which enhances the performance of
prediction, and ultimately improves the operation of the micro-grids. Each
of the forecasting models is compared with the proposed hybrid method to
validate the results. More importantly, Iran’s electricity market has not been
carefully analyzed for electricity price prediction in recent years. Therefore,
this paper aims to investigate the accuracy of the forecasting methods on the
price patterns extracted from reliable sources. Consequently, we implemented
the proposed forecasting methodology on the actual data and comprehen-
sively compared it with the results of the suggested method and conventional
CI models of RBF and MLP neural networks. The essential contributions of
the paper are as follows:

(1) Proposing a novel forecasting method based on neural networks for
energy management of micro/nano grids.

(2) Validating the proposed method on Iran’s electricity market prices,
which has not been addressed in previous studies.

(3) Comparing the proposed method with other conventional neural net-
works such as the methods presented in [34] and [15]. Also, the merits
of the proposed method, including the accuracy and precision, are
discussed.

The structure of the paper is as follows. In Section 2, an introduction to
the Iranian day-ahead electricity market is provided. In Section 3, the MLP
and RBF ANN methodologies as well as the proposed method for electricity
price forecasting, are presented. In Section 4, test results of the electricity
price prediction are explained. And in the last section, the conclusion of the
paper is given.

2 The Iranian Day-ahead Electricity Market

While changes in the electricity industry were occurring in the world around
thirty years ago, the first steps for restructuring the Iranian electricity industry
were taken in the 1990s. It was in November 2003 that the Iranian wholesale
electricity market officially launched and resulted in the electricity price
clarification, the attraction of the private sector’s investment, and obtaining
long term security of supply, as the significant restruction goals in the Iranian
electricity industry. In the year 2000, the termination of the government
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monopoly and privatization officially initiated with starting the third develop-
ment plan. Consequently, it has resulted in the 48.05 percent contribution of
the private sectors in the yearly electricity production in 2015 [35]. Currently,
the share of private sectors is about 60 percent [36]. The daily market in
Iran is a generally wholesale market where the standard hourly contracts are
exchanged for the daily physical delivery. The competitive price is designated
by the intersection of the market demand and supply curves in this market, as
depicted in Figure 3(a). The supply curve profile is indicated by the ranking of
the generation units by their short-run marginal cost in rising order, together
with the dispatched energies, in merit order [1, 35]. Regional electricity
companies (RECs) and electricity distribution companies (EDCs) are the pri-
mary buyers (retailers) in the wholesale electricity market. These companies
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Figure 3 (a) Iran’s electricity market supply and demand curve [1]; (b) Iranian wholesale
market over three months of 2021 (May–June) [36].



Performance of a Hybrid Neural-Based Framework 413

are able to supply their demand through the wholesale day-ahead market,
power exchange, and bilateral contracts. Generally, industrial end-users are
supported by RECs. At the same time, large industrial end-users (demand
exceeding 5 MW) can buy their required power bilaterally. Retailers buy the
power needed from power exchange and supply their customers. Therefore,
RECs and EDCs are considered as the retailers in Iran’s energy market. They
are responsible for delivering the electricity to the end-users based on the
market price. Each DEC is responsible for supplying electricity to a specific
district. Microgrids are connected to DECs and trade energy according to the
regulations. Figure 3(b) shows a typical price electricity pattern in the Iranian
wholesale market over three months of 2021 (May–June) [36].

3 Electricity Price Forecasting Methodology

In this section, the proposed method for predicting electricity prices is
described. First, the MLP neural networks mathematical formulation is
explained. Then, the basis for RBF neural networks is provided. Finally,
the suggested formulation for the hybrid forecasting of neural networks is
described.

3.1 MLP Neural Networks

Artificial neural networks have received significant attention in recent years
and are considered an alternative for electricity price prediction [37–39]. Neu-
ral methods are beneficial for approximating any degree of complexity and
with no prior knowledge of the problem. The MLP neural networks is a type
of feed forward (FF) neural network based on the different perceptron layers.
MLP is structured on three individual layers as the input layer, hidden layer,
and output layer. Input data are imported to the input layer, and the output
layer exports the systems’ output (forecasting output). Figure 4 shows the
fundamental structure of the MLP neural networks. From the mathematical
point of view, the following formulation can be used for describing neuron k,
as follows [40]:

yk = Φ(uk − θk) Where uk =

p∑
1

wkjxj (1)

In (1), yk is the neuron’s output signal, Φ() is the activation function, uk
is the linear combiner output, θk is the threshold, wkj is the weight between
the kth input neuron and the jth hidden layer, xj is the value of the jth input
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Figure 4 Simplified framework of MLP neural network [40].

neuron. Also, in the model, the activation function for each neuron is selected
as a sigmoid function, which is available in the Matlab library. The following
Equation (2) represents the activation function:

Φ(j) =
1

1 + e−a
a > 0 and a =

p∑
1

wli + bs (2)

In the above equation, bs is the network bias unit, wli updates over the
training process. An error term is also defined for testing the accuracy of
learning of the MLP neural networks, as below:

Ec = 0.5×
M∑
1

(yn − ŷn)2 (3)

In (3), N is the number of the sample, ŷn and yn are ith forecasted and
real data. The algorithm that is responsible for this method is called the
learning rule. The most commonly used one is the backpropagation algorithm
which is responsible for this method. The backpropagation algorithm uses the
steepest descent algorithm for minimizing the mean square error (MSE). The
backpropagation algorithm is formulated as below:

wkj(n+ 1) = λ∆wkj + η

(
∂Ec

∂wkj

)
+ wkj(n) (4)
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In (4), λ is the momentum rate, ∆wkj is the change of weight during the
last iteration, η is the learning rate.

3.2 RBF Neural Networks

Like MLP neural networks, the RBF neural network is a type of FF artificial
neural network that works using a single hidden layer. RBF neural networks
are supervised neural networks that are identical to MLP networks. The
fundamental framework of an RBF network with n inputs and output is
illustrated in Figure 5 [10]. The RBF networks’ input and output layers can
be formulated as follows [40]:

ui = G

(
|x− ci|
κi

)
i = 1, . . . , n (5)

y = Cu (6)

In (4) and (5), parameters ci, κi, C, y, u, and x respectively present
the center of the ith neuron, the variance of the ith neuron, weight matrix,
the network output, the output of the hidden layer, and the input of the
hidden layer. In addition to this, Gaussian and the distance is Euclidean
described in (6):

Φ(h) = e
−r2

κ2
h (7)

The RBF neural networks merely depend on the distance between the
center of the RBF and the input, presenting by r. The parameter κi shows

( )ix t n

( 1)ix t n

( )ix t

ˆ( )y t ( )y t
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TDBP

0w
1w

2w
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Figure 5 Simplified framework of RBF neural network [40].
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the width of the Gaussian function and updates during training. Hence,
the algorithm is continued until the least mean square (LMS) condition is
achieved. The weight could be updated by the mentioned backpropagation
algorithm.

3.3 The Proposed Hybrid Framework

Both MLP and RBF neural networks are advanced CI methods for forecasting
different non-linear patterns, which have been used in previous years. How-
ever, there are some differences between them. One of the major differences
could be in the hidden layer of RBF neural networks, which is different from
MLP. To put it differently, it requires additional computations. Each hidden
unit acts as a point in input space and activation/output for any instance,
depending on the distance between that particular point and instance. There-
fore, RBF is accompanied by learning two types of parameters: (1) Weights
from the linear combination of outputs achieved from hidden layer; (2)
width and centers of RBF neural networks. To benefit from both methods,
a hybrid utilization of the methods can be considered for any forecasting.
Figure 6 shows the overview of the introduced hybrid method. According to
this figure, both MLP and RBF are initialized simultaneously and perform
price forecasting for the same data. Using the control system, the system
operator observes hourly forecasted values and chooses the combination of
the predicted values according to the mean values of the outputs. Considering
this approach, we will advantage features of both models and improve the
forecasting accuracy. The formulation for considering both models is as

     

 {1,...,8760}, {1,...,8760}

mlp rbf

k m
y yy n

k m

1
( ) ( )m

j j
f x w h x

2

2
( )

( )
x c
rx e

Figure 6 The proposed hybrid framework based on MLP-RBF neural networks.
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follows:

yo =

Φ (
∑p

1 wkjxj − θk)− C ×G
(
|x−ci|
κi

)
nρ


∀ o, i, k ∈ {1, . . . , 8760}, ∀nρ = {2} (8)

yo =
(|ymlpk − yrbfi |)

nρ
(9)

In literature, there are various error indices for displaying the system
states’ accuracy prediction to evaluate the algorithms. According to the
indicated main features of the criteria and their similarity, in this paper, MSE,
Root MSE (RMSE), and coefficient of determination (R2) are used for com-
paring the forecasting performance of the models as formulated below [41]:

MSE =
1

N

N∑
1

(ŷi − yi)2 (10)

RMSE =

√√√√ 1

N

N∑
1

(ŷi − yi)2 (11)

R2 = 1−
∑

i(yi − ŷi)2∑
i(yi − µ)2

(12)

STD =

√√√√ N∑
1

(ŷi − yi)2
N − 1

(13)

4 Test Results

In this section, we will test different forecasting methods, including the pro-
posed hybrid framework. In order to have a better evaluation of the methods,
three case studies are introduced as follows:

Case 1: Forecasting Iranian electricity market price using MLP neural net-
works like the method of [42].

Case 2: Forecasting Iranian electricity market price using RBF neural net-
works like the method of [43].

Case 3: Forecasting Iranian electricity market price using the proposed
hybrid MLP-RBF framework.



418 G. Lei et al.

Before performing price forecasting, it is important to analyze the input
data, which is hourly electricity price over 168 days in Iran’s electricity
market. The real data is obtained from Tehran Power Distribution Company
and is set as times-series input data [44]. Different factors affect day-ahead
pricing in Iran. The first factor is the weather conditions. Extreme tempera-
tures can increase demand for heating and cooling, and the resulting increases
in electricity demand can push up fuel and electricity prices. Rain and snow
provide water for low-cost hydropower generation, and wind can provide
low-cost electricity generation when wind speeds are favorable. However,
when there are droughts or competing demand for water resources, or when
wind speeds drop, the loss of electricity generation from those sources can put
upward pressure on other energy/fuel sources and prices. The second factor
is fuel prices, especially for natural gas and petroleum fuels, may increase
during periods of high electricity demand and when there are fuel supply
constraints or disruptions because of extreme weather events and accidental
damage to transportation and delivery infrastructure. Higher fuel prices, in
turn, may result in higher costs to generate electricity. In addition, power plant
costs should not be neglected. Each power plant has financing, construction,
maintenance, and operating costs which may impact the electricity pricing.
Figure 7 shows the electricity price values over 168 days (1 Jan 2020 – 18
Jun 2020). It is clear that the load data is accompanied by uncertainties and
non-linear patterns are visible. Therefore, utilizing classical methods would
not certainly result in desirable accuracies. Knowing that, we focused on
analyzing CI methods, especially the mentioned models in Section 3.

MATLAB 2020b is utilized for coding the forecasting algorithm, also the
proposed hybrid MLP-RBF framework. A delay of 24 hrs (t–24) is applied to
predict the next-day electricity price. In addition, In addition, 70 percent of
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the values are designated for training the model, and the other 30 percent of
price values are considered for testing the algorithms [42].

4.1 Case 1

In this case study, prediction results based on the implementation of MLP
neural networks are presented. The algorithm is implemented in MATLAB
software. Forecasting results for the electricity price data using the RBF
neural network are indicated in Figure 8. In Figure 8(a), training data (70
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Figure 8 Forecasting results of electricity price using MLP neural networks: (a) training
data; (b) testing data; (c) validation data; (d) all data.
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Figure 8 Continued

percent of the actual data) is shown in four parts. Hourly training values
show that the model could learn the non-linear patterns using the backprop-
agation algorithm. Therefore satisfying results are achieved considering the
fact that the variation of the data is high on an hourly scale. As shown in
Figures 8(a) and 8(b), MSE and RMSE values are in an acceptable range.
Validation results in Figure 8(c) also prove the training and testing results,
and similar outcomes are achieved. Figure 8(d) shows the forecasting results
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Table 1 MLP-ANN statical results for predicting electricity price data
Type R MSE RMSE STD Mean
Train 0.5468 0.0003347 0.01829 9.3711 × 10−5 0.01829
Test 0.5899 0.0003295 0.01815 0.0002625 0.01816
Validation 0.5614 0.0002830 0.01682 −8.7435 × 10−5 0.01683
All Data 0.5554 0.0003262 0.01806 9.1863 × 10−5 0.01806

Table 2 Effect of different number of neurons on the forecasting criteria
No. Neurons RMSE STD
1 0.01988 0.01911
2 0.01201 0.02110
3 0.01806 0.01806
4 0.01463 0.03632
5 0.01233 0.03101
6 0.02000 0.03988
7 0.01578 0.01154
8 0.01835 0.01856
9 0.01922 0.01902
10 0.01709 0.01805

for all data. MLP-ANN statical results for predicting electricity price data
are shown in Table 1. According to this table, MSE and RMSE values
are obtained 0.0002830 and 0.01682, respectively. Also, mean and standard
deviation values are achieved 0.0002625 and 0.01816, respectively. The R-
value is obtained at 0.5558, which can be improved by considering some
enhancements in the forecasting framework.

In this paper, the number of hidden layers is considered as three neurons.
However, the impact of a different number of neurons on the forecasting
criteria of the paper is analyzed in Table 2. It was shown that increasing the
number of a neuron does not improve forecasting results. Therefore, with a
low number of neurons, it is possible to reach a satisfying accuracy criterion.
However, the error values and R show that some improvements are necessary
for having a more accurate prediction. Therefore, for price patterns with such
rigid variations, it would be more reasonable to implement other CI models
to evaluate as well as validate the forecasting results.

4.2 Case 2

In Case 2, electricity price forecasting is performed using RBF neural net-
works. In the following MATLAB implementation for training, the RBF
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network is provided. In addition, specifications of the network including,
the goal, spread, and the maximum number of neurons in the network, are
indicated.

Forecasting results based on RBF networks are illustrated in Figure 9.
According to the results, the accuracy of the prediction is satisfying compared
to the actual price values. In comparison with the MLP network, RBF also
has satisfying outcomes. However, the need for improvement is necessary for
this algorithm. Figure 9(a) shows forecasting results for the training phase.
According to this figure, the R-value is obtained 0.5741, and the MSE value
is achieved 0.0021. Figure 9(b) indicates testing results. It can be seen that
while testing the data, inaccuracies are increased using the RBF algorithm.
Apart from this, the value of R is lowered, which shows the inability to
predict non-linear patterns of hourly electricity prices. Figure 9(c) illustrates
forecasting results for all the data. According to this figure, we found that
RBF neural networks with all their characteristics are unable to have accurate
forecasting of price values solely; hence, we have to enhance the network
structure using other models to get the maximum precision in the forecasting.
RBF-ANN statical results for predicting electricity price data are shown in
Table 3. The value of R is achieved 0.44001, MSE and RMSE values are also
obtained 0.0038 and 0.0197, respectively. Also, it was found that the number
of neurons has a limited effect on achieving the desired accuracy goal. To put
it differently, increasing the number of neurons (epochs) does not necessarily
enhance the accuracy level. In this study, the best performance is achieved
at 0.002143 after 15 epochs (Figure 10). It can be observed that the accuracy
level has not been changed from epochs 3. Therefore, the optimum number of
neurons to perform forecasting on this particular type of data is three neurons.

4.3 Case 3

In this case, which is the proposed method of this study, a hybrid framework
based on MLP and RBF is used for predicting hourly values of electricity
prices. Figure 11 shows forecasting results using the proposed hybrid method.
In Figure 11(a), the prediction results of the hybrid method and the actual
electricity price data are illustrated. It can be seen that in most hours, we
have an accurate prediction of the non-linear patterns. Figure 11(b) compares
the proposed method with other neural networks such as MLP and RBF
models. The adequacy of the proposed model in comparison to the other ones
is visible from this figure. Figure 11(c) also shows the error values of the
predicted values. Comparing the error values of this case study with those
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Figure 9 Forecasting results of electricity price using RBF neural networks: (a) training
data; (b) testing data; (c) all data.
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Table 3 RBF-ANN statical results for predicting electricity price data
Type R MSE RMSE STD Mean
Train 0.5741 0.0002143 0.01464 −9.2036 × 10−7 0.01464
Test 0.3131 0.0007953 0.02130 0.003316 0.02801
All Data 0.4400 0.0003886 0.01971 0.0009941 0.01969
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Figure 10 Best performance of the network under 15 epochs.
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Figure 11 (a) Forecasting results of the hybrid model and real electricity price data; (b)
Comparison of the proposed model with MLP and RBF models; (c) Error values of the
predicted values.
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Table 4 Comparison results of the proposed method and the conventional methods for
predicting electricity price data

Type R MSE RMSE STD Mean
MLP-ANN 0.5554 0.0003262 0.01806 9.1863 × 10−5 0.01806
RBF-ANN 0.4400 0.0003886 0.01971 0.0009941 0.01969
Hybrid Method 0.7145 0.0003157 0.01770 0.0009342 0.01753
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Figure 12 R diagram of input and output values according to the hybrid model.

of others, we clearly see that the error values are decreased significantly.
Another result that claims attention is the value of R in this case study.
Comparison results of the proposed method and the conventional methods for
predicting electricity price data are indicated in Table 4. While the value of R
in previous cases achieved 0.55 and 0.44 for cases 1 and 2, in the current case
study, the value of this criterion is improved significantly to 0.7145. Figure 12
shows the R diagram of input and output values. Comparing this diagram
with similar ones in other case studies, it can be seen that the proposed
model enhanced the prediction accuracy. In addition to this, MSE and RMSE
values are achieved 0.00031573 and 0.0177, which show improvement in the
prediction results. Therefore, the prediction results of the proposed indicate
the successful performance comparing to RBF and MLP neural networks.
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5 Conclusion

In this paper, a hybrid framework on the basis of MLP and RBF neural
networks is presented. The proposed forecasting model is tested for real
electricity price data of Iran’s electricity market. In the proposed method, both
MLP and RBF neural networks are initialized simultaneously and perform
prediction for the same data. Then, the algorithm selects the combination
of the predicted values according to the mean values of the outputs. The
forecasting models are tested on 168 days of data (in hourly time scale).
Forecasting results for MLP and RBF show the reasonable accuracy of the
MLP neural networks over RBF networks. The value of R for the MLP
neural networks achieved 0.55, while this value is obtained 0.44 for the
RBF neural networks. In addition, the values of MSE and RMSE for MLP
reached 0.0002830 and 0.01682, respectively. However, the proposed algo-
rithm performed better than both RBF and MLP considering MSE, RMSE,
and R. Results showed that the value of R obtained 0.71, and for MSE, RMSE
achieved 0.00031573 and 0.0177, respectively. In future works, the authors
will enhance the forecasting accuracy by combining reinforcement learning
and corrective actions with the presented method.
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