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Abstract

Smart Electricity Meters (SEMs) are widely used in distributed generation
system, and over 67% of its failure are caused by battery low-voltage.
Therefore, it is necessary to study the degradation of battery voltage. This
work explores the degradation mechanism of lithium battery and proposed to
use voltage as degradation index to estimate the health status of the system.
Four groups of batteries of the same type and batch are used for the test.
The purpose is to use multiple sets of data to train the model parameters
and enhance the robustness of the model. The Particle Filtering (PF) based
approach is used in this study to estimate the degradation state such that the
Remaining Useful Life (RUL) can be predicted. An accurate prediction can
provide the proper maintenance/replacement schedule for the SEMs before
the failure occurs.
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Introduction

Distributed generation is an important part of the country’s energy power gen-
eration, and it occupies an important position in the sustainable development
of energy. The energy generated by distributed generation will eventually
be distributed to thousands of households through SEMs. Improving the
reliability of SEMs can effectively enhance the power supply stability of
the power system. As one of the core components of SEMs, the state of
battery directly affects metering, clock, communication and data storage.
Muhammad et al. (2019) reviewed the potential of second-life batteries lies
in their State of Health (SOH) or RUL. Its normal service life is more than
5 years (Abdel-Monem et al., 2016). However, due to the variation of its
operating conditions, the battery failure may occur and the service life of
SEMs will be shortened.

The faults dataset of SEMs collected by Yunnan Power Grid includes a
total number of 643,000 fault events are shown in Table 1.

It indicates that the number of failures caused by battery low- voltage is
433722, accounting for 67.38% of the total fault data. Therefore, it is assumed
that the working life of the battery is the most important factor affecting the
reliable operation of SEMs.

The method based on Kalman Filter (KF) is usually used to estimate the
RUL of lithium-ion battery (Duan et al., 2020; Ma et al., 2019; Avadhanula

Table 1 Failure types of SEM
Order Number Fault Type Fault Number Proportion

1 Low-voltage 433722 67.38%

2 Clock error 101019 15.69%

3 Abnormal measurement 27325 4.25%

4 Abnormal electricity 26522 4.12%

5 485 communication error 20624 3.21%

6 Basic error 10447 1.61%

7 Clock error 5356 0.82%

8 Time switching 3466 0.54%

9 Crash 3440 0.53%

10 Black/White screen 2763 0.42%
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et al., 2020; Xie et al., 2019). Omariba et al. (2018) adopt PF algorithm to
predict battery capacity. The improved PF algorithms have contributed to
the prediction performance (El Mejdoubi et al., 2019; He et al., 2018; Jiao
et al., 2020). Song et al. (2018) uses correlation vector machine to output
a new estimator, and uses Kalman filter to optimize the physical degradation
model of the estimator, which improves the long-term prediction performance
of battery RUL prediction. Xiong et al. (2017) proposed a double-scale PF
method, which has strong robustness in practical application. The method
used in the above literatures is mainly based on capacity, power or impedance
characteristics to achieve the prediction of battery RUL, but do not directly
solve the problems raised in this paper.

However, the voltage of the battery could be also an important degra-
dation indicator and few works have focused it. Therefore, this paper wants
to employ the test bench to simulate the actual working state of the battery,
obtain the open circuit voltage data of the battery, and propose a PF-based
approach to predict the RUL of SEMs by estimating the time point of
the battery reaches the low-voltage status. Thus, the battery can be timely
replaced before the failure, so as to ensure the safety and stability of the power
system.

1 Methods

In this paper, PF-based approach is used to predict the time point of under
voltage of lithium battery to prognostics the RUL of SEM. In the selection
of degradation model, the polynomial model and exponential model are
compared to determine the most appropriate degradation equation, and the
initial parameters are optimized. The data used in the work comes from the
test bench.

The main task of prognostics is to estimate the remaining operating time
before failure and to assess the risk of one or more failure modes that exist or
will occur, The RUL refers to the expected continuous normal working time
of the components or subsystems of the system from the current moment
to the moment of potential failure. A typical degradation path estimation is
illustrated in Figure 1. The measurements are used to train the prognostic tool
during a learning period before the prediction time step tλ. Then the learned
behavior of the degradation path, such as the degradation trend, is used
to predict its future evolution. Each operating time can form a Probability
Density Functions (PDF) about the result, and the probability maximum point
corresponds to the prediction result. When the degradation curve reaches the
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Figure 1 Degradation state estimation and RUL prediction.

 
Figure 2 RUL predictions at different time steps.

Failure Threshold (FT), the system is deemed to have reached the End of Life
(EOL). Then, the RUL can be calculated.

Each time point can form a probability distribution about the result, and
the probability maximum point corresponds to the prediction result.

According to their uncertainties, RUL predictions can be performed at
different prediction time steps, as shown in Figure 2. Each of these prediction
results can be compared with the real RUL to evaluate the prediction per-
formance. The uncertainties of the predicted RUL are expressed by the PDF.
The uncertainty is smaller and smaller, and when the tλ is close to EOL, the
prediction results are very accurate.

In this paper, the initial state is divided into 5000 particles. particles
carrying the probability information of unknown state and model parameters
are transmitted through the degradation model. The new PDF is compared



Smart Electricity Meter Prognostics Based on Lithium Battery RUL Prediction 453

with the measured data for importance sampling, that is to remove the small
weight particles and copy the heavy.

1.1 Degradation Models

A system in operation is considered that deteriorate from brand new to its
EOL. Suppose the system and the observation describing the evolution of
the degradation can be governed by discrete-time state transition models.
They are composed of the transition (degradation) equation describing the
relationship between system input and state, and the observation equation
linking the measurements with the underneath true system’s state. A general
dynamic system can be described by the following discrete-time state-space
functions:

xk = fk(xk−1, ωk−1,Θk−1) (1)

zk = gk(xk, vk) (2)

Where x is the system state, Θ is the model parameters, z is the measure-
ment, ωk and vk are the process noise and measurement noise, respectively,
and noise is independent and identically distributed. From the viewpoint of
Bayesian theory, the problem of state estimation is to calculate the credibility
of the current state based on posterior knowledge. It requires recursive calcu-
lation through two steps of prediction and update. The prediction process is to
use the following transition model to predict the prior probability density of
the state (An et al., 2013). The update process uses the latest measured value
to correct the prior probability density to obtain the posterior probability
density.

xk = α · (tk − tk−1)
2 + β · (tk − tk−1) + xk−1 (3)

xk = xk−1 · e(−β)(tk−tk−1) (4)

Where, xk are the current state, α and β are the degradation model param-
eters, tk and tk−1 are the current time and the previous time, respectively.

It has been proven that Bayesian estimation techniques provide a frame-
work that can deal with high uncertainties in degradation processes (Dong
et al., 2020; Weddington et al., 2021). Bayesian estimation with particle
filtering is specifically used for non-linear or non-Gaussian processes. PF-
based approaches are more and more employed for prognostic purposes, and
this method is applied to degradation path estimation. For a comprehensive



454 Y. Chen et al.

description, the reader is referred to a recent review on PF-based prognostics
in (Jouin et al., 2016).

Battery Degradation Tests

Lithium is used as the negative electrode, carbon as the positive electrode, the
solution of as the electrolyte and the positive active material. Polypropylene
felt or glass fiber paper is used as the separator, and its open circuit voltage
is 3.65v. Generally accepted, the general reaction equation of lithium sulfite
chloride battery is as follows:

4Li + 2SOCl2 → 4LiCl ↓ +S + SO2 (5)

SO2 dissolved in SOCl2, S precipitated and deposited in cathode carbon
black, LiCl was insoluble. And there will be a certain degree of pressure
during the discharge, due to the production of SO2.

Vc = −E0

ze
− 1

ze
kTln

(
1

1
x − 1

)
+
µLi+

ze
(6)

It can be seen from formula (6) that the positive voltage and the percent-
age of lithium embedded in the positive electrode structure have a negative
growth relationship, that is, when the number of lithium subunits embedded
in increases, the electric quantity decreases and the voltage decreases. There-
fore, the working voltage of lithium battery is selected as the corresponding
health index (HI) to predict the under voltage of SEM battery.

The test bench used in the lithium battery aging test includes: customized
EIS equipment, data acquisition and experimental control based on PXI chas-
sis, programmable 4-channel DC power supply and programmable 4-channel
DC electronic load, etc. A fleet of four ER14250 batteries (identified as
ER13, ER14, ER15 and ER16) of the same type were used under continuous
operation. After charging to the cut-off voltage of 4.2V under constant current
or constant resistance, each battery is discharged under a random current load
between 0.5A and 5A until its voltage drops to the preset voltage (failure)
threshold of 3.2V, so as to better represent the actual battery usage. After
50 random discharge cycles, the off-line characteristics of the batteries are
extracted and recorded. The experiment lasted for 240 days. The working
temperature of the lithium battery is 0∼40◦C, and the charge or discharge
voltage varies between 3.2V and 4.2V. The battery is deemed to be down
once its Open Circuit Voltage is lower than 3.7V.
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2 Results

The voltage monitoring data during 240 days of the battery is used to train the
PF, the degradation trend of voltage evolution is estimated by the degradation
model described at Equation (4). Three degradation trajectories with the
same process are used for training and initialization of the degradation model
parameters for the RUL prediction.

Parameter Estimation

There are three undetermined parameters: degradation parameter β, system
noise ωk and measurement noise vk. In the literature, empirical method is
usually used to determine the parameters. In this study, those parameters
are sequentially estimated by PF applying on degradation trajectories of
ER14, ER15 and ER16. Once the historical degradation behavior is learnt,
the degradation model parameters can be determined in a certain range. An
example of the parameter estimation is shown in the Figure 3. The uncer-
tainty of degradation parameters decreases with the continuous updating of
particles, such that the value of the undetermined parameter can be finally
obtained.

Figure 3 Parameter estimation of ER14.

Table 2 Degradation parameter estimation

Parameter ER14 ER15 ER16 Mean

β 0.0002 0.0003 0.0003 0.0002

ωk 0.0018 0.0019 0.0029 0.0019

vk 0.0067 0.0099 0.0070 0.0058
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The regression result values are listed in Table 2. The mean value of each
parameter is used for the parameter initialization with ±10% uncertainties.
Then the PF-based prognostic approach is applied on data sets ER13.

2.1 RUL Prediction Results

With the learnt degradation behavior by PF-based estimation, the voltage
degradation tend of the battery can be predicted. Figure 4 shows a state
estimation and prediction example of ER13 at 150 days. The predicted EOL
is 190 (RUL = 40) days where the true EOL is 200 days.

The uncertainty of the predicted RUL at 150 days is shown in Figure 5.
The probability density at 40 days is the highest, and it is considered that

Figure 4 Voltage degradation estimation and RUL prediction at 150 days.

Figure 5 RUL PDF at 150 days.
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there will be 40 days until EOL, which is consistent with the results shown in
Figure 4.

2.2 Prognostic Performance Evaluation

In order to evaluating the average performance of RUL predictions (Saxena
et al., 2010; Saxena et al., 2012), it usually applies several RUL predictions
to obtain a series of predicted RULs. RUL prediction can be made from the
current moment to EOL at various time steps with their uncertainties. The
prognostic performance can be evaluated by comparing each prediction with
the true RUL, as shown in Figure 6. The black dashed line is the true RUL
computed from the measurement time reaches the FT. The red dots are the
predicted RULs from prediction time 50 days to 200 days with an interval of
10 days. The initial prediction was inaccurate, and later the predicted value
was getting closer to the real value.

The predicted RULs with their uncertainties are described by boxplots
shown in Figure 7. The boxplot represents the predicted RUL distribution.
The blue box represents the prediction uncertainty in the 80% confidence
interval. The red line in the box represents the median of PDF. As the
prediction point moves back, its uncertainty becomes smaller and smaller.

Then, the performance indexes of Accuracy Acct and Precision Prcλ are
applied on the prediction results for the prognostic performance evaluation
(M et al., 2016; Al-Dahidi et al., 2017; Zhang et al., 2019).

The accuracy Acct indicates the relative accuracy of the prediction
results:

Acct = 1−
|RUL∗

t − R̂ULt|
RUL∗

t

(7)

Figure 6 RUL predictions results.
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Figure 7 RUL predictions with uncertainties.

Table 3 Forecast performance evaluation results
Model Acc Prc
Polynomial 0.71 1.10
Exponential 0.75 0.96

This indicator is more cautious, and the classification threshold is higher.
where t is the prediction time index, Acct is the relative accuracy of moment
t, RUL∗

t and R̂ULt represent the actual value of RUL and the estimated value
of RUL at moment t, respectively. The larger the Acct value, the greater the
accuracy.

The precision Prct calculating the relative width of the prediction
interval, can describe changes in accuracy and recall:

Prct =
R̂UL

CI+

t − R̂UL
CI−

t

RUL∗
t

(8)

where R̂UL
CI+

t and R̂UL
CI−

t are the upper and lower bounds of the confi-
dence interval CI, respectively. The smaller the Prct value, the greater the
precision.

The average performance over 16 predictions (from 50 to 200 days) of
two degradation models are listed in Table 3. The final prediction perfor-
mance evaluation results are shown in Table 3: The prediction results of the
exponential model are better. The method to determine the initial value of
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parameters by training degradation curve is more scientific, and the prediction
performance is also well.

3 Discussion

The evaluation results show that the exponential model has a better predictive
effect than the polynomial model in this work. Therefore, the exponential
degradation model is selected as the transfer function in the prediction pro-
cess. At 150 days in the prediction process, the predicted RUL is 40 days
and the real RUL is 50 days. The predicted results are consistent with the
measured data. The results show that the predictions become closer and closer
to the true RUL. Boxplot of RUL predictions also implies that with more
degradation information learnt, the predictions become more accurate, which
enables the feasibility of using the PF-based method to estimate the battery
health state based on its voltage degradation.

4 Conclusions

In this work, the voltage data is used as the degradation indicator rather than
the capacity. Two transition models are tested for the degradation trend. It can
speed up the convergence speed of gradient descent, and reduce the problem
of gradient disappearance or gradient explosion caused by uninitialization
or improper initialization. Each model is trained by implanting itself on
multiple historical degradation trajectories, using PF techniques. Then the
battery RULs are predicted. The prediction results are consistent with the
experimental data. The proposed approach shows a satisfied performance in
terms of the accuracy and precision. This could provide an aspect for relia-
bility studies of smart meters and optimization of the maintenance schedule
of SEMs. Moreover, the degradation behavior could be better acquired if the
in-depth degradation mechanisms of the lithium battery and the smart meter
are well understood. The future work could be devoted to find out suitable
degradation indicators of the smart meters and its components to achieve a
better prognostic performance.
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