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Abstract

In order to improve the prediction effect of ultra short term power of offshore
wind power, the prediction model based on support vector machine optimized
dragonfly algorithm is constructed. Based on summary of the prediction
methods of wind power, the support vector machine optimized by dragonfly
algorithm is established. Finally, prediction simulation analysis of offshore
wind power is carried out, results show that the proposed prediction model in
this research can effectively improve the computing prediction precision.

Keywords: Support vector machine, dragonfly algorithm, offshore power
prediction.

Introduction

The global energy is in short supply currently, the wind energy attracts a
lot of attentions in the world, the grid connection and utilization of wind
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power generation have been increasing quickly in the past ten years. Recently,
the grid connection installing ability of wind farm increases constantly, the
prediction of wind power has significant meaning. The specific intermittent
and arbitrariness of wind speed come as the great challenge for reliability of
wind power generator. Therefore, the correctness of predicting the offshore
wind power is a critical factor of improving the quality of grid quality.
The random tremor of wind power output greatly influences the safety and
stability of wind power system. The accurate prediction of ultra short term
wind power is an important means of ensuring stable operation of power
system and improving offshore wind power consumption. The need of grid
changes with electricity consumption of user, the accurate power prediction
can satisfy the requirement of power system in various regions.

Chinese wind power has abundant wind energy resource, approaches the
load center and is easy to be absorbed. Therefore the offshore wind power
development have become the main direction of wind power development
in China. Chinese coastal provinces have drawn up offshore wind power
projects, Shandong province put forward a project that the installing capacity
of offshore wind power attains 12.75 million kW, Guangdong province wants
to increase 70 million kW wind power before 2030. The offshore wind power
will become one of important power forms of coastal provinces and cities in
China.

Increasing wind farm distribution area has obvious effect on fluctuation
of wind power output. But repair of offshore units exists great difficulty,
and the operation fee of assigning transmission cables is very expensive,
offshore wind farm usually possesses the distributing features of “high con-
centration”, which brings output fluctuation attain to a large extent. Under
different meteorological conditions, the hourly offshore wind power output
can illustrate completely different fluctuation features, it greatly affects the
whole performance of offshore wind power prediction model, therefore the
difficulty of ultra short term offshore wind power prediction is to accurately
predict wind power under different fluctuation features.

1 Related Research Progress

Recently, more attention has been given to some research scholars, and
there are some outstanding progresses. Lin Wang et al. designed a deep
learning model according to physical truths of wind power, and the effect
of random variations of the surrounding environment is ignored [1]. Md
Alamgir Hossain et al. established a comprehensive deep learning model with
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a novel neural network that could enhance predicting accuracy of ultra short
term wind power [2]. Shuang Han et al. applied coupla transform and neural
network with higher memory ability to carry out wind power prediction, and
the predicting effectiveness of this theoretical model was validated according
prediction simulation among different prediction models [3]. D.Y. Hong et al.
used filter with higher frequency and twin similarity search model to predict
ultra short term wind power, and obtained higher precision and efficiency [4].
Marcelo Azevedo Costa et al. designed a new simulation model to carry
out wind power prediction, and through comparison results showed that
this model can obtain higher prediction accuracy and quick convergence
speed [5]. Fei Li et al. established an improved neural network to achieve the
wind power prediction, the novel method had better prediction precision, and
better prediction stability was obtained [6]. The existing models can obtain
the better prediction effect of wind power, but the prediction precision needs
to be improved, and the generalization ability also needs to be strengthened.
In order to improve prediction effect of wind power, an proper algorithm
should be selected. The support vector machine was put forward by Vapnik
et al, it is a statistical learning theory. The support vector machine can deal
with small sample learning problems. The support vector machine is an
effective method for statistical learning when the number of samples is insuf-
ficient. So far the support vector machine has been applied in many fields.
Bikram Kumar and Deepak Gupta proposed a new support vector machine
for electroencephalogram signals, and the simulation analysis verifies the
effectiveness of the proposed model [7]. Ran An et al. established a novel
twin support vector machine, and this method had feature of rough margin,
and the novel support vector machine was solved based on a improved
decoposition algorithm. This method could obtain the higher analysis effect
[8]. Hao Zhang et al. applied firefly algorithm to optimize the main param-
eters of support vector machine, and the optimized support vector was used
to assess credit risk of supply chain finance, and the proposed model has
better assessing effect through simulation analysis [9]. Ricardo ManuelArias
Velásquez applied support vector machine to detect the partial discharge, and
it could improve the detecting accuracy [10]. Tao Sun et al. established a
novel assessment model, this method could achieve the online evaluation of
lithium-ion batteries correctly [11]. Hongfei Zhu applied improved support
vector machine to detect the carrot appearance, the proposed method could
achieve online detection [12]. To obtain the best parameters of support
vector machine, the intelligent algorithm can be selected to obtain the best
parameters of support vector machine. The dragonfly algorithm belongs to a
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new intelligence algorithm, it was established by mirjalili et al. in 2015. Its
main inspiration comes from the static and dynamic clustering behavior of
dragonflies. Dragonfly groups have only two purposes: predation and migra-
tion. The former is named as static group, and the latter is named as dynamic
group. In the static group, dragonflies build groups and return to a small area
to search other flying prey. The main characteristics of the static group are
local movement and temporary changes in flight. In the dynamic population,
a large number of dragonflies make the population migrate long distances
in one direction. The main idea of dragonfly algorithm is to conduct global
and local search by simulating the behavior of dragonfly group navigation,
predation and avoiding foreign enemies. The process of finding prey is the
process of algorithm optimization. Therefore the support vector optimized by
dragonfly algorithm is used to prediction ultra short term wind power.

2 Active Power Control Theory of Wind Farm

Active power control of wind farm is mainly divided into four steps:

Step 1: The power dispatching value of the power grid is processed by using
the limits of the national grid standard.

Step 2: The maximum output capacity of each wind turbine in the next con-
trol cycle is predicted through the ultra short-term power prediction
link, and the predicted power is fed back to the power distribution
module [13].

Step 3: Through a specific power allocation strategy, the dispatching power
is allocated to each wind turbine according to the unit state, predicted
power and other information.

Step 4: The wind turbine controller responds to the power scheduling of the
outer control to enable the unit to output the corresponding active
power within its active power output capacity.

In order to achieve the control goal of reducing power generation cost,
avoid frequent startup and shutdown of wind turbine units and minimize the
loss of units, the power distribution objectives are as follows: (1) give priority
to regulate the units in operation, and execute the startup and shutdown opera-
tion when the operating units have reached the maximum regulation capacity
and still can not meet the system requirements; (2) When the dispatching
power of the power grid is greater than the current active power output of
the wind farm, the wind farm needs to increase the active power output. At
this time, the minimum number of start-up units is taken as the distribution



Ultra Short Term Power Prediction of Offshore Wind Power 469

target; (3) When the power grid dispatching power is less than the current
active power output of the wind farm, the wind farm needs to reduce the
active power output. At this time, the minimum number of shutdown units is
taken as the allocation target [14].

(1) Unit classification

In order to distinguish the operating status of wind turbines and treat the
units in different states differently in power distribution, so as to facilitate
the formulation of distribution algorithm, a classification method of wind
turbines is designed. The classification of wind turbines shall ensure that each
unit has and only has a unique category. Based on the operation changing
rules, minimum generating power and predicted power of wind turbines, wind
turbines are compartmentalized into the following classifications:

The first classification is low capacity unit, the characteristics of it is listed
as follows: the predicted power of the operation unit is no more than the
minimum set power.

The second classification is high capacity unit, the features of it are listed as
follows: predicted power of operation unit is no less than the minimum set
power.

The third type is named as the shutdown unit, its predicted power is no less
than the minimum set power.

The fourth type is named as shutdown fault unit or shutdown unit, its
predicted power is less than the minimum set power. It also does not take
part in distribution of wind power. The specific classification algorithm is as
follows [15]: 

C = 1, Fi = 0, Ni = 1 Pi,m > Pi,p 6= 0

C = 2, Fi = 0, Ni = 1 Pi,m ≥ Pi,p 6= 0

C = 3, Fi = 0, Ni = 0 Pi,m ≥ Pi,p 6= 0

C = 4, Fi = 1, or Si = 0 and Pi,m < Pi,p

(1)

where C illustrates the classification of wind power unit, C ∈ {1, 2, 3, 4},
Fi illustrates whether the unit i trigger shutdown fault, (“0” represents
that no shutdown failure occurred; “1” represents that the shutdown failure
occurred.) Si illustrates the current status of unit i, (“0” represents control-
ling shutdown status, “1” represents normal running status). Pi,p illustrates
the predicted power of unit i, Pi,m represents the minimum setting power
of unit i.
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(2) Lifting power margin calculation

The lifting power margin is calculated according to the current actual power
and predicted power of the second type of unit, that is, the adjustable amount
of lifting power under the condition of maintaining operation, and generate
the power up queue and power down queue respectively according to the size
of the lifting power margin. Total power lifting margin is calculated by [16]

∆Pi,plm =

n2∑
i=1

(Pi,p − Pi,r) (2)

where ∆Pi,plm represents the total power lifting margin of unit i, Pi,r
represents the real power of unit i.

The total power reduction margin is computed based on the following
expression

∆Pi,pdm =

n2∑
i=1

(Pi,p − Pi,m) (3)

where ∆Pi,pdm represents the total power reduction margin of unit i.

(3) Lifting and reduction power distribution

When power is needed to be enhanced, when the maximum power enhancing
ability of the second type unit satisfies with power enhancing requirement,
the power enhancing distribution should be be implemented based on the
distribution rate of the wind power increase margin of the second type unit,
and the set power of unit i can be computed based on expression (4) [17]

∆Pi,s = Pi,l +
Pi,plm
P2,plm

∆Pl (4)

where ∆Pl represents the power of wind farm needed to be increased.
When power reduction is required, if the maximum power reduction

regulation capacity of the second type unit can meet the power reduction
demand, the power reduction distribution shall be carried out according to
the proportion of the power reduction margin of the second type unit in the
total power reduction margin. The set power of unit i is calculated by

∆Pi,s = Pi,r +
Pi,prm
P2,prm

∆Pr (5)

where ∆Pr represents the power of wind farm needed to be reduced.
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According to the model mentioned above, the role of ultra short-term
power prediction of wind turbine in active power control of wind farm is
as follows [18]:

(1) Power prediction provides classification criteria for unit classification:
the predicted power is used as the reference value of unit generation
capacity, together with real-time power and minimum set power as the
classification criteria to judge whether the unit has the ability to increase
or decrease power; The predicted power, together with the minimum set
power, is used as the judgment standard to judge whether the shutdown
and start-up unit is qualified for start-up.

(2) The power raising capacity of each unit in the second type of unit can
be obtained by predicting the power and real-time power, so as to obtain
the total power raising capacity of the second type of unit, and generate
the power raising queue based on the power raising capacity.

(3) When power increase is required, when the maximum power increase
regulation capacity of the second type unit can meet the power increase
demand, the power distribution of the second type unit is realized
based on the predicted power; When the maximum power up regulation
capacity of the second type of unit cannot meet the power up demand,
the second type of unit takes the predicted power as the set value, and the
third type of unit takes the predicted power as the set power reference
value for start-up operation.

3 Support Vector Machine Model Optimized By Dragonfly
Algorithm

For the classification problem in the case of nonlinear classification, the basic
thinking of support vector machine is to map the input space data to a high-
dimensional feature vector space depending on the nonlinear transformation,
then establish the better classification hyperplane in the feature space for
linear classification, and finally map back to the original space to become
the nonlinear classification in the input space [19].

The linear separable sample is defined by (Xi, Yi), i = 1, 2, . . . ,m,
Xi ∈ Rn, Yi ∈ {−m,m},m represents the total number of training samples,
Yi represents the classification signal of sample. The optimal classification
hyperplane is shown in Figure 1.

The circle and box respectively represent two different kinds of samples,
HP represents the hyperplane that can separate the two kinds of samples
correctly, and the normal vector of the hyperplane is used as the direction
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Figure 1 Optimal classification hyperplane diagram.

of it. HP1 and HP2 respectively represent the plane parallel to the hyperplane
and passing through the nearest distance from the hyperplane HP in the two
types of samples, and the distance between them is called the classification
interval. The optimal classification hyperplane means that the obtained hyper-
plane can not only figure out the two kinds of samples in perspective and
obtain complete correct results, but also obtain the maximum classification
distance between the two kinds of samples. The linear discriminant function
in d-dimensional space is expressed as follows [20]

G(X) = ω ·X +B (6)

The hyperplane model is listed as [21]

ω ·X +B = 0 (7)

Where ω ∈ Rn represents the parameter vector, that is normal of hyper-
plane, B represents the classification threshold, ω · X is the inner product
operation of two vectors.

Normalize to make G(X) ≥ 1, samples closest to classification plane
satisfy G(X) = 1, at this moment the classification interval is 2

‖ω‖ . The
classification plane is correct for all samples, the following condition should
be satisfied:

Yi · (ω ·Xi +B) ≥ 1, i = 1, 2, . . . ,m (8)

For linearly separable samples, they are distinguished by the optimal
classification hyperplane. For linearly non separable cases, some data does
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not meet the requirement of expression (7), therefore the classification error
can be obtained, in order to avoid this problem, a relaxation variable ξ is
introduced into the constraint conditions. To deal with the error problem
effectively, expression (7) can be converted to the form of expression (8) [22]:

Yi · (ω ·Xi +B) ≥ 1− ζi, i = 1, 2, . . . ,m (9)

When 0 < ζi < 1, the classification of sample points is right; when
ζi ≥ 1, the clarification of point Xi in samples is wrong. In order to deal with
this problem, the penalty item λ

∑m
i=1 ζi is introduced into the minimizing

objective function. Where λ > 0 is used to control penalty degree for mis-
classification. The optimal problem can be expressed by

min Ψ(ω, ζ) =
1

2
‖ω‖2 + λ

m∑
i=1

ζi

s.t. ω ·Xi +B ≥ 1− ζi
i = 1, 2, . . . ,m

, (10)

where
∑m

i=1 ζi represents the upper bound of the number of misclassified
samples in the sample set.

To deal with this optimization model, the optimal classification can be
converted into dual form based on Lagrange function [23]

max L(β) =

m∑
i=1

βi −
m∑
i=1

m∑
j=1

βiβj · YiYj(XiXj)

s.t. 0 ≤ βi ≤ λ,
m∑
i=1

Yiβi = 0

, (11)

The linear classification after a nonlinear transformation can be achieved
depending on an proper inner product function K(xi, xj) in the optimal
classification surface. At present, the commonly used kernel functions mainly
include polynomial kernel function, radial basis function (RBF) kernel
function, hyperbolic tangent kernel function and so on.

This research uses RBF kernel function to construct support vector
machine, and the form of kernel function is listed as follows

K(xi, x) = e−
‖xi−x‖

2

2σ2 (12)
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The classification decide equation is listed as follows

F (x) = sgn

 m∑
j=1

βiYiK(Xi ·X) +B

 (13)

This research applied dragonfly algorithm to optimize the parameters
λ and σ.

4 Basic Optimal Procedure of Support Vector Machine
Based on Dragonfly Algorithm

Choosing kernel function has an important impact on the analysis ability of
support vector machine. RBF kernel function has good convergence region
and good adaptability whether it is high-dimensional data or low-dimensional
data. Therefore, the RBF kernel function with wide adaptability is selected as
the kernel function of SVM classification and prediction. The main param-
eters affecting the classification performance of RBF kernel support vector
machine are penalty parameter λ and kernel parameter σ. Dragonfly algo-
rithm takes into account all possible factors of group behavior (separation,
alignment, cohesion, food attraction, natural enemy exclusion and random
walk of location), so that it can quickly converge near the optimal value, and
has good global optimization ability and stability [24].

Based on the above advantages, it is applied to the parameter optimization
of support vector machine to find the most suitable penalty parameter λ and
kernel parameter σ under the condition of ensuring the maximum classifica-
tion accuracy of SVM. The optimization steps of SVM parameters based on
Dragonfly algorithm are as follows.

Step 1: Initialize parameter settings. The main parameters of dragonfly algo-
rithm are: the number of dragonflies and the maximum number of iterations
of dragonflies; The main parameters of support vector machine are: the upper
and lower limits of penalty parameter λ and kernel parameter σ.

Step 2: Set the corresponding data set of support vector machine. The corre-
sponding data sets are set according to the same proportion. The main data
sets are: training set and training number label, test set and test set label.

Step 3: Initialize the parameters of dragonfly: dragonfly position ~x, the
position change step ∆~x, and the parameter combination (λ, σ) is set as the
combination to be optimized for support vector machine for each dragonfly.
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The first row of ~x stores the value of penalty parameter λ, the second row of ~x
stores the value of kernel parameter σ. The dragonfly is initialized randomly
according to range of penalty parameter λ and kernel parameter σ.

Step 4: Calculate the fitness value, the support vector machine model is
trained according to training set and signal of training set, and the model
is applied to classification prediction of objective set and objective signal
set, the classification accuracy rate of support vector machine is considered
as current fitness of each dragonfly. When dragonfly carried out a behavior
operation, the maximum fitness value of current dragonfly is calculated one
time. If the maximum fitness value of the current dragonfly is bigger than
the stored fitness value, the current fitness value of the dragonfly is used
to replace the initial stored optimal fitness value. The better value is used
as optimal of the current dragonfly, the parameter combination (λ, σ) of
dragonfly corresponding to the current optimal value is stored. Otherwise , the
initial fitness value and its corresponding dragonfly parameter combination
(λ, σ) are still saved.

Step 5: Look for adjacent dragonflies, The Euclidean distance is used to judge
whether there are adjacent dragonflies between dragonflies. If it exists, the
position is calculated by [25]

~xt+1 = ~xt + ∆~xt+1 (14)

∆~xt+1 = (dDi + aAi + gGi + cCi + eEi) + φ∆~xt (15)

where t represents the current iteration times, ~xt represents the position of
current tth generation population, ∆~xt+1 represents the updating step of
location of next population. ~xt+1 represents the position of next generation
population, d represents the separating weight, Di represents the separating
degree of ith dragonfly; a represents the alignment weight, Ai represents
the alignment degree of ith dragonfly; g represents the cohesion weight, Gi
represents the cohesion degree of ith dragonfly; c represents the food weight,
Ci represents the food of ith dragonfly; e represents the enemy weight, Ei
represents the enemy of ith dragonfly; φ represents the inertia weight.

If it does not exist, the location updating formula is listed as follows [26]:

~xt+1 = ~xt + L(d)~xt (16)

L(d) = 0.01
R1µ

|R2|
1
ε

(17)
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Where R1 and R2 are random number, which range from 0 to 1, is
calculated by

µ =

[
Γ(1 + τ) sin πτ

2

Γ
(
1+τ
2

)
τ
τ−1
2

] 1
τ

(18)

Step 6: Calculate the behavior degree of each dragonfly. Calculate the sepa-
ration Di, alignment Ei, cohesion Gi, food attraction Ci and natural enemy
repulsion Ei of each dragonfly according to formulas (17)–(22).

Di =
N∑
j=1

~x− ~xj (19)

Ai =

∑N
j=1 vj

N
(20)

Gi =

∑N
j=1 ~xj

N
− ~x (21)

Ci = ~x+ − ~x (22)

Ei = ~x− − ~x (23)

where vj represents the velocity of jth adjacent dragonfly, ~x+ represents the
location of food source, ~x− represents the location of enemy.

Step 7: Update the location of individual. The location is updated according
to step 6, and the step size is calculated by formulation (13) [27].

Step 8: Judge whether the adjacent dragonflies meet the termination con-
ditions of the algorithm: judge whether the preset maximum number of
iterations of the dragonfly is reached. If so, output the parameter combination
(λ, σ) of the dragonfly corresponding to the maximum fitness value and the
optimal value of the dragonfly. Otherwise, increase the number of iterations
by 1 and jump to step 4.

5 Case Study

In order to verify the effectiveness of the proposed support vector machine
optimized by dragonfly algorithm (SVM-DA), the simulation is carried out by
using measured power data of an offshore wind farm and numerical weather
forecast (NWP) data in 2018 and 2019. The unit capacity is 5 MW, the total
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Table 1 Prediction results based on different prediction model
MAE/% RMSE/%

Time SVM-PSA SVM-FA SVM-DA SVM-PSA SVM-FA SVM-DA
January 8.69 7.63 6.75 9.57 8.33 7.66
February 8.43 7.39 6.65 9.35 8.26 7.48
March 8.54 7.46 6.73 9.43 8.43 7.75
April 8.39 7.35 6.63 9.26 8.23 7.32
May 8.28 7.19 6.32 9.18 8.12 7.15
June 8.35 7.32 6.61 9.24 8.35 7.43
July 8.51 7.44 6.71 9.46 8.46 7.46
August 8.94 7.79 6.84 9.85 8.83 7.83
September 8.82 7.85 6.94 9.74 8.92 7.91
October 8.73 7.68 6.70 9.65 8.68 7.73
November 8.25 7.15 6.29 9.13 8.27 7.35
December 8.47 7.44 6.72 9.38 8.55 7.49

installed capacity is 115 MW, and the hub height is 80 m. The data in 2018
is used as the training set and data in 2019 is used as the test set. The data of
7 days at the end of each month in 2018 are used to train the error correction
model, and the data of the other days of each month are used to train the
proposed prediction model. In order to eliminate the data dimension, it is
necessary to normalize all the data.

In addition, the support vector machines optimized by particle swarm
algorithm (SVM-PSA), and firefly algorithm (SVM-FA) are used to carry
out prediction simulation analysis. The mean absolute error (MAE) and root
mean squared error (RMSE) are used as evaluation indexes.

The prediction results based on different prediction model are listed in
Table 1.

As seen from Table 1, the MAE of SVM-DA is less than other two predic-
tion models, and the MAE of SVM-PSA is biggest among the three prediction
models, therefore the proposed SVM-DA has best prediction prediction of
ultra short term wind power.

The wind power of part time point in December of 2019 is predicted
based on SVM-PSA, SVM-FA and SVM-DA respectively, and the simulation
results are shown in Figure 2. As seen from Figure 2, the prediction value
of wind power based on SVM-DA is closer to real value than other two
prediction models, therefore the proposed SVM-DA in this research has best
prediction effect among the three prediction models.

The simulation results show that the proposed mode can effectively
reduce the training time, and the prediction efficiency can be improved. The
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Figure 2 Prediction diagram of wind power of part moment in December of 2019.

prediction precision of the proposed model is also improved. Therefore, the
proposed model is an effective method of predicting ultra short term power,
which can reliable support of offshore wind power, and ensure the stability of
offshore wind power system.

6 Conclusions

With the rapid development of the global wind power industry, the cor-
responding technology tends to mature, and then the installed capacity of
wind power will continue to increase. If this continues, in the next decade,
wind power will be paid more and more attention by countries and regions
all over the world, and wind energy will also receive more attention and
be developed and utilized. Wind power prediction has great significance.
In this research, the research status of wind power prediction at home and
abroad is analyzed, and the basic theory of wind farm and main factors
affecting power output is studied. The prediction model based on support
vector machine optimized dragonfly algorithm is constructed. The simulation
analysis of wind power prediction is carried out based on SVM-PSA, SVM-
FA and SVM-DA respectively, and results show that the proposed SVM-DA
has better prediction precision, which can obtain the better prediction effect.
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