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Abstract

With the continuous transition of the traditional power system to the new
power system, the composition of the power generation side in the power
system has gradually begun to be dominated by renewable energy (at least
more than 50%). Among the renewable energy sources, wind power is the
most susceptible to weather and environmental influences. These factors
increase the complexity of the power generation mode, and put forward
higher requirements for the accuracy and stability of load forecasting. This
paper proposes a medium-term renewable energy load forecasting method
based on an improved deep belief network (IDBN-NN). The method includes
the construction of a deep belief network, the layer-by-layer pre-training
and fine-tuning of model parameters, and the application of the model.
In the process of model parameter pre-training, Gauss-Bernoulli Restricted
Boltzmann Machine (GB-RBM) is used as the first part of the stacked deep
belief network, so that it can process multiple types of real-valued input data
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more effectively. In addition, IDBN-NN uses a combination of unsupervised
training and supervised training for pre-training. Finally, the actual load data
is used to analyze the calculation example. When the number of RBM layers
is 3, the number of fully connected layers is 1, and Dropout is equal to
0.2, the MSE and loss values are optimal, which are 0.0037 and 0.0104,
respectively. The experimental results show that the proposed method has
higher prediction accuracy when the training sample is large and the load
influencing factors are complex.

Keywords: IDBN-NN, renewable energy, power system, load forecasting,
restricted Boltzmann machine, deep belief network.

Introduction

Accurate load forecasting is the basis for realizing safe and economical
operation of power systems and scientific management of power grids. This
is very critical to ensure the stable dispatch of the new power system. In
addition, accurate load forecasting is also an key point for optimal utilization
of power generation side. It is of great significance to the optimal combination
of units, economic dispatching, and power market transactions [1].

The methods currently used for medium-term load forecasting are mainly
divided into two categories: statistical methods and artificial intelligence
methods. Statistical methods include multiple linear regression, autoregres-
sive and autoregressive moving average (ARMA) [2] and so on. The advan-
tage of this type of method is that the model is simple, but the disadvantage
is that it cannot handle sample data, and it has high requirements for the
stationarity of the time series. Artificial intelligence methods include gray
system, fuzzy logic, SVM [3] and ANN [4, 18] and so on. BP neural network
has many advantages including strong self-learning and complex nonlinear
function fitting, but because the beginning parameters of the network are
gained by initialization, the generalization of BP neural network is poor
and it is easy to fall into local optimum. The SVM method could better
solve the issues of local minimums in traditional algorithms, but it also has
the disadvantages of low convergence and slow prediction accuracy when
meeting with time series problems.

As the concept of a new power system is put forward, while renewable
energy sources continue to increase, the types of user loads and influencing
factors are also increasing. These objective factors have made the complexity
of electricity consumption patterns increased. The access of large distributed
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power sources and the wide application of electric vehicles have increased
the volatility of the load [5]. At this stage, artificial intelligence-based load
forecasting methods are mostly three-layer shallow networks, and it is dif-
ficult to handle the relationship between input and output in this complex
environment. At the same time, the improvement of the informatization level
of the power system has brought challenges to the further improvement of the
accuracy of load forecasting. Effective analysis of these data has become the
key to improving the accuracy of renewable energy load forecasting.

This paper appropriately improves the traditional DBN used in the liter-
ature [15], and proposes a medium-term renewable energy load forecasting
method based on an improved deep belief network. This method uses a com-
bination training to perform supervised pre-training on the prediction model.
The purpose is to accurately characterize the complex nonlinear relationship
between the key factors affecting the load and the load to be predicted. In
addition, the first three layers of IDBN-NN include Gauss-Bernoulli RBM,
the purpose is to model the continuous data effectively in the input process of
the model. Experiments have proved that the method proposed in this paper
has better prediction accuracy when the load types are complex and there are
many influencing factors.

1 Related Research

In recent years, DBN has made significant progress in many areas. In the
aspect of human action recognition [6], difficult issues such as how to
segment the action sequence are solved, and a series of time series deep
confidence network (TDBN) models that can complete online human action
recognition are proposed. In terms of unlabeled data learning [7], through
the difficulty of extracting deep association features, scholars proposed an
improved DBN model and its learning algorithm based on glial cell chains
to extract more data information. The experimental results on the standard
image classification data set show that the proposed model can extract more
excellent image features and improve the classification accuracy. In terms
of transformer oil [10], in view of the problems of partial discharge, low
temperature and overheating in the fault diagnosis method of dissolved gas in
oil, scholars have proposed a combined DBN fault diagnosis method for the
analysis of dissolved gas in transformer oil. The results show that the overall
accuracy rate has increased from 80.9% to 90.1%. In terms of integrated
energy system [11], in order to further reduce environmental pressure and
improve energy efficiency, scholars have proposed a short-term electricity,
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heat, and gas load joint forecasting method based on deep structure multi-task
learning. The experimental results show that deep learning and multi-task
learning have good application effects in energy demand forecasting. It has
also been widely used in partial discharge pattern recognition [12] and other
fields, providing new ideas for load forecasting in complex environments. Lit-
erature [13] applied the 3-layer structure of DBN to the time series forecasting
problem, and proved that good initial values of network parameters can be
obtained by layer-by-layer unsupervised pre-training. Literature [14, 21–24]
used historical load data as input variables, and used the combination method
of DBN and SVM to predict the load in the next 1 h, and the results showed
that a better prediction effect can be obtained.

2 IDBN-NN Load Forecasting Method

Deep Belief Network (DBN) is an efficient unsupervised learning algorithm
proposed in 2006 [8], which includes a series of RBM stacks. The advantage
of DBN is that it combines the advantages of deep and feature learning, and
thus it can deal with a large amount of data in a short time, and it also has
a strong fitting ability to deal with data [9]. It is manifested in two aspects.
The first is that DBN uses a layer-by-layer unsupervised pre-training method
to obtain the initial network parameters, which can solve many problems
effectively caused by the traditional methods. The second is that DBN has
a effective over-fitting and under-fitting abilities.

Model Structure Design of IDBN-NN

For mid-term load forecasting in power systems, multi-point methods are
generally used for forecasting. The output y of the model is the load forecast
value of the forecast point, and the interval of forecast points is generally
24 h, 48 h, 72 h or longer time interval. The input data are various factors that
affect the load, including months, weeks, holidays, temperature, humidity,
light intensity, etc., peak and valley time-of-use electricity prices, etc. Each
influencing factor can be divided and classified in detail according to the
model training requirements, forming the input vector x = [x1, x2,. . . , xn] of
the load forecasting model. The input vector x and the corresponding actual
load value y constitute a training sample set {x, y}.

The structure of DBN proposed in this paper for renewable energy
medium-term load forecasting is shown in Figure 1. It consists of an input
layer, 3 hidden layers, multiple fully connected layers and an output layer.
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Figure 1 Model structure of IDBN-NN.

The input layer, the fully connected layer and all the hidden layers together
constitute the IDBN-NN model to realize the feature extraction of the input
data. The last hidden layer and the fully connected layer constitute a linear
neural network, as the regression layer of the network, taking the feature
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Figure 2 The model structure of RBM in DBN-NN.

vector extracted by DBN as input. The load prediction value is obtained by
processing the linear activation function ReLu. To simplify the description,
this article abbreviates the improved DBN network structure as IDBN-NN.
Among them, the weight w1 is the symmetric connection weight between the
first hidden layer h1 and the second hidden layer h2. b1 is the bias vector
composed of the bias of each neuron in the first layer.

2.1 Unsupervised Training of IDBN-NN

The first part of IDBN-NN is composed of a series of RBM stacks, and the
RBM training method can be used for layer-by-layer training [13]. IDBN-
NN obtains the initial network parameters W and B of the load forecasting
model in a complex environment through this process. The structure of RBM
is shown in Figure 2. For the Bernoulli-Bernoulli RBM (BB-RBM) where
both the visible unit and the hidden unit are binary random units. The values
of the visible unit and the hidden unit are Ii ∈ {0, 1} and hj ∈ {0, 1}, and
their energy functions are as follows [16]:

In the actual renewable energy load forecasting process, due to the huge
load sample size, we divide the training samples into several small batches
of data sets for training in sequence. In order to improve the calculation
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efficiency, the weight and bias update formula for the g-th data set containing
K samples can be expressed as [17]:

wij,g = wij,g−1 + εCD

[
1

K

K∑
k=1

(vi,khj,k − v′i,kh′j′k)

]

ai,g = ai,g−1 + εCD

[
1

K

K∑
k=1

(vi,k − v′i,k)

]

bj,g−1 = bj,g−1 + εCD

[
1

K

K∑
k=1

(hj,k − h′j′k)

] (1)

In this paper, the visible unit and hidden unit are linear random unit and
GB-RBM respectively. The first step is to convert the input data into binary
variables through GB-RBM. The second step is to use BB-RBM for further
processing. The energy function of GB-RBM is defined as [19]:

E(v, h; θ) =

n∑
i=1

(vi − ai)2

2σ2i
−

n∑
i=1

m∑
j=1

wij
vi
σi
hj −

m∑
j=1

bjhj (2)

Where: σi is the standard deviation of the Gaussian noise of visible unit
vi. In order to simplify the calculation in the solution process, σi is usually
set to 1, then the formula (4) can be replaced by [19]:

P (vi|h) = N

 m∑
j=1

wijhj + ai, 1

 (3)

In the formula: vi takes the real value and obeys the Gaussian distribution
with a mean of

∑m
j=1wijhj + ai and a variance of 1. Except that the

conditional probability distribution formula of the visible unit is different and
the learning rate εCD is smaller, the parameter update rule of GB-RBM is the
same as that of BB-RBM.

3 Experiment

In this paper, the method of combining unsupervised training and supervised
training is used to pre-train IDBN-NN [20]. When training the first layer, take
x = [x1, x2,. . . , xn] as the input vector of RBM1, and get its parameters {w1,
b1} after training. In the second step, the activation probability of the hidden
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Figure 3 The entire process of IDBN-NN model training.

unit of RBM1 is used as the input vector of RBM2, and its parameters {w2,
b2} are obtained according to Equation (1). The third step takes the activation
probability of the hidden unit of RBM2 as the input vector of RBM3, and
continues unsupervised training according to Equation (1). From this, the
initial parameters of the weight W and the bias B of the IDBN-NN network
can be obtained. The specific steps are shown in Figure 3.

The mid-term load forecasting solution process of IDBN-NN is as fol-
lows. The first step is to preprocess the original data set and select the training
sample set for the day to be predicted. The second step is to construct the
IDBN-NN renewable energy load forecasting model, and use the training
sample set to perform some supervised pre-training to obtain the initial values
of the network parameters of the load forecasting model. The third step is to
input the input data set at the time to be predicted into the trained IDBN-NN
model after the training is completed to obtain the load prediction value at
each time.

3.1 Selection of Experimental Data

The experimental sample data is based on the wind power load forecast
data set of the 2012 Global Energy Forecasting Competition. According
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to the load characteristics of the research object power grid, the input
variables of load forecasting are determined as month, week, holiday, tem-
perature, humidity, maximum temperature, minimum temperature, average
temperature, and the load of the previous 20 days.

3.2 Experimental Evaluation Index

The experimental evaluation index uses MSE, the calculation formula is as
follows:

MSE =
SSE

n
=

1

n

∑
i = 1mwi(yi− yî)2

3.3 Parameter Setting and Structure Selection

In this paper, the enumeration method is used to select the number of fully
connected layers and the dropout coefficient to verify the prediction effect of
the deep network structure. First determine that the number of RBM layers is
3 layers. Then sequentially increase the number of fully connected layers and
try the best value of the Dropout coefficient until the prediction accuracy no
longer improves.

Table 1 shows the respective parameters and calculation results. The value
of the number of RBM layers in this article is 3. When the number of fully
connected layers is 1, and the value of the Dropout coefficient is 0.1, the

Table 1 The prediction performance of the IDBN-NN model with different structures
RBM Layers Fully Connected Layers Dropout Coefficient MSE/% Loss/%
3 1 0.1 0.31 1.36
3 1 0.2 0.37 1.04
3 1 0.3 0.56 1.05
3 2 0.1 3.2 0.85
3 2 0.2 0.83 1.16
3 2 0.3 2.44 2.44
3 3 0.1 2.11 2.19
3 3 0.2 0.54 1.05
3 3 0.3 0.53 1.43
3 4 0.1 0.42 1.02
3 4 0.2 0.53 1.36
3 4 0.3 2.39 2.43
3 5 0.1 0.32 1.41
3 5 0.2 0.46 1.53
3 5 0.3 2 2.15
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value of the evaluation index MSE is the smallest, 0.0031. The value of the
evaluation index loss at this time is 0.0136, which is 0.0051 higher than the
value of the smallest loss. When the value of the Dropout coefficient is 0.2,
the value of the evaluation index MSE is 0.0037, which ranks third in the
smallest value. The value of the evaluation index loss at this time is 0.0104,
which is the smallest of all values. When the value of the Dropout coefficient
is 0.3, the value of the evaluation index MSE is 0.0056, which is 0.0025 and
0.0019 higher than the MSE values of the former two respectively. The value
of the evaluation index loss at this time is 0.0105, which is between the first
two. From the above data performance, when the number of fully connected
layers is 1, the value of the evaluation index MSE and the value of loss are
relatively close, the change is small, and there is a certain law.

When the value of the number of fully connected layers is 2, and the
value of the Dropout coefficient is 0.1, the value of the evaluation index MSE
is 0.032. This value is obviously an order of magnitude higher than when the
number of fully connected layers is 1. The value of the evaluation index loss at
this time is 0.0085, and the loss function at this time is an order of magnitude
higher than when the number of fully connected layers is 1. In this case,
although the value of loss is very good, the value of MSE is relatively high.
When the value of the Dropout coefficient is 0.2, the value of the evaluation
index MSE is 0.0083, and the value suddenly drops again. The value of the
evaluation index loss at this time is 0.0116, which is 0.0031 higher than the
former. When the value of the Dropout coefficient is 0.3, the value of the
evaluation index MSE and the value of loss are both 0.0244, which is worse
than the two values of the first two. And it is a set of data with the worst
performance when the number of fully connected layers is 2. From the above
data performance, when the number of fully connected layers is set to 2, the
value of the evaluation index MSE and the value of loss both change the most,
and there is no certain rule.

When the number of fully connected layers is 3, when the value of the
Dropout coefficient is 0.1, the value of the evaluation index MSE is 0.0211,
which is relatively large and shows no signs of convergence to 0. The value of
the evaluation index loss at this time is 0.0219, which is also relatively large
and does not approach 0. This set of data shows that the network parameter
settings at this time are not optimal, because the value of MSE and the value
of loss are both large, and neither approaching zero infinitely. When the value
of the Dropout coefficient is 0.2, the value of the evaluation index MSE is
0.0054, which is an order of magnitude lower than the former value. The
value of the evaluation index loss at this time is 0.0105, which is 0.0114
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lower than the value of the former loss. When the value of the Dropout
coefficient is 0.3, the value of the evaluation index MSE is the lowest and
the best among the three. The value of the evaluation index loss at this time
is 0.0143, which ranks second among the three. From the performance of the
above data, when the number of fully connected layers is 3, as the value of
the Dropout coefficient increases, the performance of the IDBN-NN network
is better.

When the number of fully connected layers is 4, when the value of the
Dropout coefficient is 0.1, the value of the evaluation index MSE is 0.0042,
which is relatively close to 0. The value of the evaluation index loss at this
time is 0.0102, which is a relatively small value among all loss values. This
set of data shows that the network is relatively stable at this time. When the
value of the Dropout coefficient is 0.2, the value of the evaluation index MSE
is 0.0053, which is 0.0011 higher than the former. The value of the evaluation
index loss at this time is 0.0136, which is 0.0034 higher than the value of the
former loss. When the value of the Dropout coefficient is 0.3, the value of
the evaluation index MSE suddenly increases to 0.0239, which is the largest
of the three. The value of the evaluation index loss at this time is 0.0243,
which is also the largest of the three. From the performance of the above
data, when the number of fully connected layers is 4, as the value of the
Dropout coefficient increases, the performance of the IDBN-NN network also
fluctuates greatly.

When the number of fully connected layers is 5, when the value of the
Dropout coefficient is 0.1, the value of the evaluation index MSE is 0.0032,
which is relatively close to 0. The value of the evaluation index loss at this
time is 0.0141, which is the smallest value among the three. When the value
of the Dropout coefficient is 0.2, the value of the evaluation index MSE is
0.0046, and the value at this time is closer to 0 than the former. The value of
the evaluation index loss at this time is 0.0153, which is 0.0012 higher than
the value of the former loss. When the value of the Dropout coefficient is 0.3,
the value of the evaluation index MSE suddenly increases to 0.02, which is
the largest of the three. The value of the evaluation index loss at this time is
0.0215, which is also the largest of the three. From the performance of the
above data, when the number of fully connected layers is 5, as the value of
the Dropout coefficient increases, the performance of the IDBN-NN network
also fluctuates greatly.

It can also be seen from Figures 4a and 4c that when the number of fully
connected layers is 1 and 3, the IDBN-NN network is the most stable. The
value of MSE and the value of loss are also close to 0. When the number
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Figure 4 Load under different parameters in IDBN-NN.

of fully connected layers is 1, the indicators of the IDBN-NN network are
optimal. Figures 4b, 4d, and 4f can be seen that when the number of fully
connected layers is 2, 4, and 5, as the dropout gradually increases, the IDBN-
NN network begins to fluctuate.

4 Conclusion

This paper proposes a medium-term renewable energy load forecasting
method based on an improved deep belief network. This method considers the
renewable energy load forecasting problem affected by multiple factors in a
complex environment. In the experiment, a supervised pre-training method is
used to initialize the parameters of the IDBN-NN model to a better solution.
Finally, the actual load data is used to analyze the calculation example. When
the number of Rbm layers is 3, the number of fully connected layers is 1,
and Dropout is equal to 0.2, the MSE and loss values are optimal, which
are 0.0037 and 0.0104, respectively. The experimental results show that the
proposed method has higher prediction accuracy when the training sample is
large and the load influencing factors are complex.
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