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Abstract

Demand side management has become inevitable in today’s smart grid
environment to balance electricity supply and demand. Many methodolo-
gies/algorithms have been developed for realizing and implementing this
technique at different levels of distribution systems. Advanced metering
infrastructure and the latest communication technologies have empow-
ered residential consumers to participate in the demand side management
schemes. After careful investigations and analyses, the authors of this paper
have made a decisive effort to propose a novel sequential strategy for devel-
oping an energy management system for scheduling loads of residential
consumers. The proposed work aims at a fuzzy logic and an evolutionary
algorithm-based approach of demand side management that considers the
users’ preference of operating time of the appliances at the residence of their
choice, which has not been addressed earlier. This approach reduces the peak
demand and cuts the cost of electricity per billing period for a consumer.
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This study also encourages the consumers to install solar rooftop PV systems
by indicating the cost benefits reaped over a more extended period. The
proposed framework is implemented in MATLAB, and the case studies prove
the effectiveness of using this algorithm from the consumers’ perspective.

Keywords: Demand side management, optimization, fuzzy logic, energy
management system.

1 Introduction

The ever-increasing electrical energy demand and the difficulty in satisfying
the same have initiated the necessity of modifying the complete structure and
protocol of operation of generation, transmission, and distribution. The smart
grid envisioned as the future of power systems gives better managing capabil-
ities both from the supplier and the consumer sides [1]. Research has proven
that the smart grid is the future of energy requirements, integrating advanced
sensors, communication protocols, and control technologies at transmission
and distribution energy systems to distribute electricity efficiently and user-
friendly. The ability to accommodate different energy generation and storage
possibilities, operation based on the electric market, and user-friendliness
make the smart grids more adaptable [2].

Demand Side Management (DSM) is a smart grid practice that balances
demand and supply through various schemes such as time-based use, price-
based use, price incentives, etc. It hence achieves a better load profile, reduced
peak to average ratio (PAR), management of decentralized energy resources,
bill reduction for consumers, etc. [3]. Bureau of Energy Efficiency, Ministry
of Power, Government of India, states demand side management initiatives
as a traditional, significant intervention to reduce energy demands while
ensuring continuous development [4]. With advanced metering infrastructure
(AMI) and communication facilities, DSM strategies respond actively and
take action to reshape the load profile [5]. DSM implementation is beneficial
for both consumers and the utility.

Broadly, DSM techniques are classified as direct load control (DLC) and
indirect load control (IDLC). In DLC, the supply utility cuts off the load
during peak or emergency periods. On the other hand, the IDLC scheme
encourages the consumers to participate and reduce the load demand by
incorporating suitable methodologies of DSM programs.

Peak clipping, valley filling, shifting of loads, strategic growth in load,
strategic conservation, and flexibility in load curve are some of the DSM
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techniques employed. Peak clipping is where the utility uses direct load
control of the consumer’s connection to grid for reducing the peak load. On
the other hand, valley filling incorporates building off-peak loads. This is
achieved by offering lesser price during off-peak load period and attracting
the consumers to connect to the grid during off-peak period. Shifting of load
involves moving loads from on-peak to off-peak period. In this method, the
consumers are advised to schedule their time of use of home appliances
depending on the electricity tariff. Different electricity tariffs in use are the
time of usage (TOU) tariff, real-time pricing (RTP), tariff based on peak
demand, etc. Strategic growth in load is encouraged by the utility to increase
the sales so as to change the load-shape. In contrary, strategic conservation
also changes the load-shape which is achieved by motivating the consumers
to use energy efficient appliances. Flexible load curve is achieved through
offering various incentives in exchange with the deviations in quality of
service to the consumers [6–8].

In India, 24% of total electricity consumption is accounted for by the
residential sector in 2019 and is anticipated to rise considerably in the near
future, according to figures compiled by the central electricity authority
(CEA) from distribution corporations [9]. Primarily driven by increased
usage of appliances and apparatus, it is attributable to several factors and
better access to electricity.

With the advent of smart devices and control techniques, the implemen-
tation of DSM strategies has become easier now-a-days. Residential load
management has gained attention recently because of the reward obtained
by implementing load control. More benefits are reaped by the consumers
when combined with renewable energy sources, viz., solar photovoltaic (PV),
and wind. In the recent past, detailed research has been done for developing
an energy management system (EMS) for residential consumers. EMS is
essentially an intelligent load management system that interfaces between
the consumer and utility grid. Information such as the energy being drawn
at a time or for a specified period, tariff structure if it is a variable, etc.,
are exchanged. EMS provides a choice-based solution to the residential con-
sumers to effectively schedule and control the home appliances and control
their energy consumption [10, 11].

Reducing PAR and the consumer bill amount are the main objectives of
most of the EMSs. One significant component of EMS in achieving the goal
is efficiently employing optimization algorithms. [12] proposes an automated
demand response algorithm modelled as a mixed-integer nonlinear problem
aiming to reduce the consumer bill by proper operation coordination among
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the different domestic appliances while increasing the consumers’ comfort
under dynamic electricity prices. A peak management strategy is applied
in [13], where the loads are shifted from peak to non-peak periods using
a hierarchical decentralized algorithm. Loads that desire to receive energy
sooner are given preference through the quality of service being variable.
In [14], the authors propose a simple hopping scheme to lessen the peak
to average ratio and retail energy price, which doesn’t require a sophisti-
cated communication infrastructure. Three algorithms are proposed for peak
reduction in smart homes, considering both consumer and utility perspec-
tives [15]. The study also presents an incentive scheme to draw consumers’
attention to participate in the demand response program. [16] combines
various operational strategies with different pricing and peak power limiting
plans of a demand response program, including EV, ESS, and PV generation.
Customers’ satisfaction-based HEM system is developed in [17] considering
the availability of EV and distributed renewable source uncertainty.

Authors in [18] formulated the demand response program considering
the electricity bill and consumer convenience as a non-convex problem under
the real-time pricing paradigm is solved using a heuristic algorithm. Total
energy cost is minimized by scheduling energy consumption and sharing the
energy amid neighbours [19]. Minimization of energy cost is achieved by
optimizing the genetic algorithm for a residential consumer considering the
driving pattern of EV, degradation of the battery of EV and ESS, and supply
from PV source. [20, 21] realizes a demand response strategy by utilizing
EV and storage system energy bi-directionally under a peak power limit-
ing and dynamic-pricing environment in a residential energy management
system. In [22], the exchange of electricity with the grid is minimized by
real-time matching between domestic loads, local renewable generation, and
EV consumption using an optimization algorithm. In [10], a metaheuristic
optimization solver is proposed for real-time pricing and demand charge tariff
to minimize a home’s energy cost.

Recently, DSM problems are solved using the game theory approach.
In [23], a real-time distributed energy management system is proposed to
maintain a flat load profile for residential consumers. The solution aims
to mitigate the renewable energy sources intermittency, and energy storage
systems (ESS) and electric vehicles (EV) are used to supply the energy for
the loads. The energy cost and peak to average ratio is relatively reduced by
scheduling the residential appliances using Game theory [24].

Optimizing the consumption cost, the comfort of the end-users, and the
peak to average ratio is achieved through fuzzy logic with game theory
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(GT) [25]. Fuzzy Inference System (FIS) combined with deep learning
prediction models optimally schedule few home appliances to bring down
electricity costs [26].

At this juncture, this paper proposes a novel sequential algorithm to
manage four types of residential loads based on the above discussions. A
nature-inspired heuristic algorithm called Whale Optimization Algorithm
(WOA) is combined with Fuzzy Logic (FL) to give an optimized schedule
of residential appliances. WOA is a swarm based meta-heuristic optimization
algorithm which imitates the behaviour of humpback whales during hunting.
The WOA algorithm is proved to be competitive by comparing the perfor-
mance of 29 mathematical benchmark functions [27] with other well-known
and popular meta-heuristic techniques [28–32]. The advantages of the WOA,
such as better performance even with the low number of parameters, absence
of local optima entrapment and faster convergence rate inspired the authors to
implement the algorithm for the proposed work. Furthermore, WOA has not
been applied for the DSM programs in the earlier literature to the best of the
authors’ knowledge. A comparison of the literature using WOA is presented
in Table 1 [33].

The paper’s novelty is that a heuristic algorithm is used to schedule the
residential loads in the first stage. In the second stage, FL is used to select
an optimum schedule based on the consumer’s preference of load operating
time. Also, actual data is used for the study taken from a residential area load
dispatch centre increasing the adaptability of the proposed work with that of
the real world scenario. Specific contributions of this paper are:

• Scheduling the appliances of residential consumers according to the
consumer preference using a fuzzy logic-based optimization algorithm
iteratively.

• Reduction in electricity bill for the billing cycle by reducing the peak
power consumed and integrating renewable energy resources for a
demand-based tariff environment.

• Analysis of cost-benefit gained for various case studies and the payback
period for the proposed system implementation.

• The algorithm is realized at the consumer end, and it does not require
any communication with the utility, avoiding any communication errors
and protecting the consumer’s confidentiality.

The rest of the paper is organized as follows: Section 2 describes the
system model considered, the proposed approach and work flow. Section 3
gives the details of the input data taken for the proposed study. Section 4
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Table 1 Comparison of WOA implementation in the literature [33]
References Problems Addressed Achievement
[34] Optimal power flow and

transient stability constrained
OPF problem

Fuel cost reduction, solution quality, and
convergence speed improvement

[35] Maximum power point Enhanced efficiency and accuracy by
maximizing tracking speed, and energy
consumption is reduced

[36] Optimal sizing of DG Reduced system loss, improved voltage
profile

[37] Optimal power flow problem Better voltage profile, reduction in fuel cost,
total power loss and Co2 emission

[38] Economic Dispatch problem Reduction in total fuel price
[39] Optimal sizing and placement

of capacitors in a radial
distribution system

operating cost is reduced through stabilizing
the line losses and bus voltage

[40] Parameter estimation for
photovoltaic cell design

Accomplished better configuration for solar
cell, enhanced accuracy and robustness

[41] Unit commitment Problem Cost of power generation is reduced
[42] Combined economic

emission dispatch problem
Minimization of resource load, decreased
fuel cost and emission value

[43] Optimal power flow Reduced fuel cost, active power loss, and
reactive power loss

[44] Maximum Power point
tracking problem

Improvement in accuracy and speed to track
global maximum power point (GMPP)

[45] Optimal capacitor allocation
in distribution system

Enhanced voltage profile, reduced power
loss

deliberates the results and discussions. Finally, the conclusion is given in
Section 5.

2 Proposed System

The test system under consideration is a locality with a group of consumers
at the geographical location of 12.9425◦ N, 77.5626◦ E. There are 141
residents in the considered locality. The load consumption data of each of
the consumers is collected for the study. The data collected is further grouped
based on the average power demand per month.

i. The first group is where a house consumes less energy (LC).
ii. The second group of consumers consumes comparatively more energy

than the first group (MC).
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iii. Third group of consumers consumes high energy (HC).
iv. Fourth group has very high energy-consuming houses (VHC).

Further, the appliances of each consumer’s house are classified as:

• Schedulable Appliances (SA): These are the appliances that can be time-
shifted. They do not have any constraints on the starting time. The
washing machine, dishwasher, etc., belong to this category.

• Non-Schedulable Appliances (NSA): These appliances have the highest
priority since they cannot be time-shifted. The appliances are switched
ON as per the consumer’s desire. Light loads, fans, TV, etc., are NSAs.

• Temperature Controlled Appliances (TCA): Water heaters and air con-
ditioners are TCAs. They can be toggled between ON/OFF when the
desired temperature is met.

• Electric Vehicles (EV): These loads can perform the roles of both load
and the source based on the available state of charge (SoC).

This study assumes that all the consumers are equipped with smart meter
(SM) infrastructure with communication capabilities in their households. The
block diagram in Figure 1 illustrates the structure of the energy management
system for a single house. The Load Control Unit (LCU) receives information
such as energy from the main grid, price of the energy, solar PV output
available, and the consumer load data with the preferable time of operation
for the appliances. The LCU is necessarily a decision-making algorithm that
takes suitable action to decrease the peak demand, the overall electricity
cost by suitably scheduling the loads and matching the available solar PV
energy. Figure 2 demonstrates the sequential workflow followed to validate
the performance of the proposed algorithm.

2.1 Mathematical Model Adopted

The proposed energy management strategy aims to schedule the connection
time of the shiftable appliances so that the difference in the peak and Sanc-
tioned Maximum Demand (SMD) set by the utility is reduced, resulting in a
decreased electricity cost for a billing period. The billing period is a calendar
month in this study. The objective function is formulated as:

Objective Function = RMSE

=

√∑T
t=1 (P

n
t − PMD)

2

24
n = 1 . . .N (1)
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Figure 1 Block diagram of the proposed EMS.
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Figure 2 Experimental workflow of the proposed algorithm.

where PMD = SMD beyond which the consumer will be penalized
N = Total number of appliances at a residence
Pn
t = power consumption by the nth appliance at any time t. It is given by

the equation:

Pn
t = Base Load(t) + Connected Load(t)−Disconnected Load(t) (2)
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where Base Load(t) is the load present during the entire time t, Connected
Load (t) is the load shifted to time t from its desired time of operation,
Disconnected Load (t) is the load shifted away from time t by the LCU.

The objective function is subject to the constraints:

(i) Power balance constraint: The power drawn by the consumer should be
balanced according to the equation:

PTOTAL = PGRID + PPV (3)

(ii) Appliance time-shifting constraint: This constraint is based on the con-
sumer preference for the number of time slots by which the appliance
start time can be shifted. The equation representing the constraint is:

T1 < TSTART < T2 (4)

where T1 and T2 are the consumer-preferred time shift for the starting
time of the appliance.

The Residential rooftop solar PV (RSPV) output is calculated based on
the equation:

PPV = YPVfPV

[
GT

GT,STC

]
[1 + αP(Tc − Tc,STC)] (5)

where:

YPV = PV array rated capacity under standard test conditions (STC)
[kW]
fPV = PV derating factor [%]
GT = incident solar radiation on the PV array [kW/m2]
GT = incident radiation under STC [1 kW/m2]
αP = power temperature coefficient [%/◦C]
Tc = PV cell temperature [◦C]
Tc,STC = temperature of PV cell under standard test conditions [25◦C]

Rooftop Solar Photovoltaic (RSPV) is a scheme launched by the Ministry
of New and Renewable Energy (MNRE), Government of India (GoI). This
scheme was introduced for residential and group housing societies with
financial assistance to encourage the residential consumers to install solar
PV panels on the rooftop of their residence [46]. The consumers can avail
a subsidy of 40% of the benchmark cost for up to 3kW capacity solar PV
installation. The capacity of the solar panel is limited to the consumer’s
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Sanctioned Maximum Demand (SMD). Also, the consumers can export the
excess solar power to the grid and get relief from the electricity bill. If a
consumer installs 1 kW capacity rooftop solar PV, the capital cost is $732.09.
The subsidy of 40% received from MNRE is $292.84, and with this, the
consumer investment is only $439.25.

2.2 Proposed Algorithm

In this study, a heuristic optimization algorithm called Whale Optimization
Algorithm (WOA) based on whale behaviour is applied to obtain the optimal
schedule of residential loads to minimize the peak power consumption and
reduce the bill amount of a consumer. WOA is proven to be a very competitive
algorithm compared to state-of-the-art optimization approaches [39]. The
bubble net feeding method is a unique hunting method of humpback whales
that WOA adapts. The prey is encircled and hunted by creating typical
bubbles like a circle, spirally by the whales as shown in Figure 3(a). The
same concept applies to the algorithm where the search agents move towards
the optimal solution in hypercubes within the n-dimensional search space.

Humpback whales first spot the prey location and encircle them. Later
whales move towards the prey in a circular fashion, every time updating their
position.

This behaviour is represented mathematically by the equations given as:

−→
D =

∣∣∣−→C · −→X∗(t)−
−→
X(t)

∣∣∣ (6)

−→
X(t + 1) =

−→
X∗(t)−

−→
A ·
−→
D (7)

Figure 3(a) Bubble-net feeding in WOA [27].
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Figure 3(b) Spiral position updating in WOA.

where t is the present iteration, A and C are coefficient vectors, X is the vector
of current position of whales, X* is the vector of the best solution obtained
so far, which is replaced with better solution after each iteration. The vectors
A and C are calculated as:

−→
A = 2−→a · −→r −−→a (8)

−→
C = 2 · −→r (9)

where ‘a’ is linearly reduced from 2 to 0 with every iteration and ‘r’ is a
random vector in the range [0, 1].

Spiral update of position is as shown in Figure 3(b) and mathematically
represented as in Equation (10):

−→
X(t + 1) =

{−→
X∗(t)−

−→
A ·
−→
D if p < 0.5

−→
D · ebt · cos(2πl) +

−→
X∗(t) if p ≥ 0.5

(10)

where ‘p’ is a random number between [0, 1] representing the shape of
logarithmic spiral, ‘l’ is between [−1, 1] and ‘b’ is a constant which describes
the spiral shape.

The flowchart in Figure 4 depicts the functioning of the proposed EMS.
This flowchart applies to any type of load, viz., residential and commercial
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Figure 4 Flowchart for the proposed residential energy management system.

loads. The inputs to the algorithm are: residential load data, available PV
power, and the grid power. Based on the history of appliance usage at a
residence, total power required by the connected loads at each time interval
is calculated. This is fed to the WOA which schedules the loads so as to keep
the total power drawn at any instant within the sanctioned maximum demand.
The optimization algorithm generates time schedule of the schedulable loads
based on Equation (1).

Subsequently, the schedule generated by WOA is fed into the Fuzzy
Inference System (FIS), which decides whether to accept or decline the
generated schedule based on the consumer preference given in Equation (4).
The user preference time of operation of the appliances is modelled as fuzzy
membership function and the rules are formulated. Each input is fuzzified via
a triangular membership function, which describes the associated ranges of
the acceptable time of operation. These are used to select the best time for the
operation schedule of the appliances. Mamdani type of FIS system is used in
this study [47].
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Figure 5 Membership function of washing machine.

The comfort level of the user to operate an appliance is represented in
Figure 5 with categories, Likely (L), Very Likely (VL), Moderately Likely
(ML), and two types of Not Likely (NLa, NLb) to reflect the degree of user
acceptance regarding the selected hour to be scheduled. The output has three
levels: Accepted (A) and Not Accepted (NAa, NAb), as shown in Figure 6.
The FIS evaluates the inputs based on the If-Then rule database. The if-then
rule database in this study has 75 sets of rules, representing the combination
of all the six input membership degrees. This rule base includes rules which
are structured as given in Table 2. Depending on the rule strength and output
membership function consequence is drawn. The later decision is taken upon
the defuzzification process using centroid method. This method finds the
center of area of fuzzy set and returns the equivalent crisp value.

Once the acceptable schedule is generated, the algorithm checks the
availability of solar power at that time interval. If the appliance operating
power is lesser than the available solar power, the appliance is powered by
solar. If not, as an alternative the appliance is connected to the grid. If there
is a surplus solar power available, it is fed to the grid. Different case studies
are analysed and presented in the subsequent section.
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Figure 6 Output membership function.

Table 2 Rule base of FIS implemented
Rule # Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Output
1 VL VL VL VL VL VL A
2 L NLa VL L ML VL NA
3 ML VL L L VL ML A
4 NLa ML L VL NLa L NA
· · · · · · · ·
· · · · · · · ·
75 NLa NLa NLb NLa NLb NLa NLa

3 Simulation Study Details

3.1 Load Data

As explained in Section 2, a locality with different consumer types is val-
idated in this study. Table 3 gives the average energy consumption/ billing
cycle (month) for various types of consumers in the residential community
considered.

VHC and HC consumers have a rooftop solar panel with a capacity of
2 kW, and MC and LC consumers have a 1 kW capacity rooftop solar panel.
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Table 3 Average energy consumption
Type of Consumer Energy Consumed kWh/Month

VHC 693

HC 256

MC 150

LC 80

Table 4 Tariff for electricity
Sanctioned Load Fixed Charge (FC) Consumption Energy Charges (EC)

FC For 1st kW 0.94 $ 0 to 30 kWh 0.054 $

FC For addl. kW 1.08 $ 31 to 100 kWh 0.074 $

FC for EV 0.94 $/kW 101 to 200 kWh 0.094 $

Above 200 kWh 0.11 $

EV 0.067 $/ kWh

A scheduling range of 24 hours with a 1 hour interval period is considered
for implementing the proposed work on a typical day.

3.2 Tariff and Cost of Electricity

The electricity supplied for the considered locality is Bangalore Electric
Supply Company (BESCOM), Karnataka. The tariff for calculating the cost
of electricity for a typical billing period is taken from [48]. BESCOM follows
a demand-based tariff, which is made up of a Fixed Charge (FC) ($), and
consumption Energy Charge (EC) ($/kW) is calculated based on the con-
nected load. Fixed charges are levied based on the SMD recorded, whichever
is higher, regardless of the connected load. If the recorded SMD is higher
than the sanctioned load, penal charges shall apply twice the regular rate.

The Table 4 summarizes the tariff of the supply company for a residential
consumer:

3.3 HOMER Data

The solar PV output data is obtained from Hybrid Optimization Model for
Electric Renewables (HOMER) database, which is a computer model devel-
oped in 1992 by the U.S National Renewable Energy Laboratory (NREL)
[49]. Daily solar irradiation on hourly basis for a day in the considered
locality of this study is as shown in Figure 7, and the corresponding PV output
is calculated according to Equation (5).
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Figure 7 Daily Solar irradiation at the test location.

 

Figure 8 EV arrival and departure time.

3.4 Electric Vehicle (EV) Data

In this study, EV is considered as a load. Depending on the state of charge
(SoC) available, it is used for powering the home appliances. EV arrival
time is regarded as a Gaussian distribution with a mean value of 19.62
and a standard deviation of 3.62. Similarly, for departure time, the mean
value is 10.53, and a standard deviation is 3.26. The data for EV is taken
from [50]. Figure 8 shows the plot of EV arrival and departure time. Out of
141 consumers, 90 consumers are assumed to own EVs.
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All programs are implemented in the MATLAB platform and executed
on a DELL workstation. The EMS is run to obtain the day-ahead operational
planning of the residential appliances.

4 Results and Discussions

The proposed work is validated for a residential locality in Bengaluru, Kar-
nataka, considering real-time residential load data and solar irradiation. The
cost of electricity for a typical month is ascertained for different scenarios.
Consumers are encouraged to implement the DSM strategy by offering cost
benefits for various circumstances. For this study, 6 VHC, 35 HC, 73 MC,
and 27 LC homes are considered. A typical load curve for the four types of
consumers considered is as shown in Figure 9.

It is observed that the load exceeds the allotted SMD before applying
the DSM strategy, and when every time this happens, the consumer attracts
an additional charge, which is twice the regular electricity charges as given
in Table 5. The proposed approach is implemented to avoid the extra costs
and reduce the peak load due to excess power consumed by the connected
loads. The algorithm tries to minimize the power drawn by the loads by
time-shifting the schedulable loads without compromising consumer com-
fort. Table 4 gives the peak power drawn from the grid before and after
implementing the DSM program. It is seen that there is a substantial decrease
in the peak power demand.
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Table 5 Peak reduction in power drawn from the main grid
Without DSM (kW) With DSM (kW)

VHC 3600 2600 (27.78%)
HC 2300 1150 (50%)
MC 1315 1140 (13.30%)
LC 720 570 (20.8%)

Figure 10 depicts the number of loads that are ON at a particular time of
the day before and after implementing the algorithm for VHC consumers. It is
observed that the algorithm fairly distributes the number of loads connected
at a given time in such a way that the peak power drawn is minimized. For
instance, in Figure 10(a) there are three time periods i.e. at fifth, sixth and
eighteenth hour there are five connected loads. In order to reduce the number
of connected loads, the proposed algorithm pushes some of the connected
loads to the time period where the number of connected loads are less in num-
ber while satisfying the consumer preference. It is seen in Figure 10(b), where
the time instances mentioned above have less connected loads compared to
Figure 10(a). This process is carried out for other consumers too.

Further, when the rooftop solar is used to power the connected loads,
the net power drawn further reduces, and the electricity bill is also reduced
subsequently. When a consumer doesn’t want to implement any DSM but has
rooftop solar for the dwelling, it still gets benefitted by reducing the power
drawn from the grid and hence the cost of electricity. Figure 11 gives the load
curves for all the case studies. It can be observed that there is a substantial
reduction in the peak power drawn by each consumer type.

Also, with RSPV, except for the VHC consumer, the other three types
of consumers are over the power required for their residential load usage at
certain time intervals. This excess power is either stored as a battery backup
or is sent to the grid.

BESCOM provides the consumers with the benefit of connecting solar
power to its grid. For this, the consumers will be paid an amount of
0.041 $/kWh. Another case is when the consumer wants to send the entire
solar-generated power to the grid and uses the power requirement by the grid
alone. This case also benefits the consumer but not as much as the DSM plus
PV implementation.

Figure 12 shows the cost of electricity paid for a month for various case
studies carried out. The cost of electricity paid to the utility and the percentage
reduction compared to the base case of regular consumption without proposed
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Figure 11 Load Curve for different cases under observation.

 
Figure 12 Cost of electricity for different cases observed.
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Table 6 Cost of electricity and percentage savings in the cost of electricity paid to the utility
Without Without DSM and With With DSM and With DSM and
DSM ($) with PV ($) DSM ($) PV to Home ($) PV to Grid ($)

VHC 169.97 161.31 (5.82) 167.54 (1.49) 157.79 (7.17) 163.87 (3.59)
HC 110.03 102.46 (6.94) 108.94 (0.99) 101.37 (7.87) 103.92 (5.55)
MC 98.08 94.79 (4.47) 98.08 (0) 93.70 (4.47) 91.97 (6.22)
LC 88.40 85.83 (2.9) 88.40 (0) 85.83 (2.9) 82.29 (6.9)

 

VHC HC MC LC
PV power required

(kW) 322.32 -101.87 -20.03 -102.38

 Cost benefit ($) 0 302.5644 59.5092 304.0887

Figure 13 PV usage and savings for residence when the grid is OFF.

algorithm implementation are summarized for each of the cases analysed in
Table 6.

Figure 13 illustrates the condition when the residence is self-sustained
with only PV power for the residential load. The negative value indicates
that the installed RSPV power generation is over the total load requirement
of the residence for a day. The generated RSPV power is stored in suitable
storage systems for later use. It is observed that only VHC consumer is
short of the total power required to operate the appliances for a day while
other three consumers are over the power needed. For VHC consumers, a
higher value of RSPV is suggested. The savings because of the extra RSPV
power is also depicted in Figure 13. Since there is no excess RSPV power for
VHC consumer, savings is null, whereas other types of consumers enjoy cost
benefits.
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Figure 14 CO2 emission reduction comparison.

With the installation of RSPV, the contribution to environmental pollution
is significantly reduced. In India, coal-based thermal power plants are the
majority of power generators that release a considerable amount of carbon
dioxide (CO2). An average of 980 g of CO2 is released to the atmosphere
by thermal power plants for one unit (kWh) of electricity generation [51].
For a VHC consumer, an average of 720 g of CO2 is produced for the
corresponding electricity consumption of 734.7 units of energy. Installation
of RSPV reduces 295.4 g of CO2 emission per household and, over the
lifetime of the RSPV, 2953.92 g of CO2 emission is reduced. Figure 14 shows
the emission by the thermal power plant for the required electricity usage
and the corresponding reduction in emission when PV is used for fulfilling
a certain amount of electricity usage for each type of household, i.e., VHC,
HC, MC, and LC consumers.

From the consumer point of view, the payback period is an essential factor
to measure the benefits over a period of time. A simple way of calculating
the payback period is attempted, based on the investment and the annual
income [52], which is given as:

Payback Period =
Investment

Annual income
(11)
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For a 1 kW RSPV installation, the total investment is 441.22 $, whereas
the annual income is 20.98 $. With these values, the payback period is
7.08 years, which is significant against the lifespan of 20 years for RSPV
installation. This payback period is an encouraging figure for the consumers
to install RSPV, reduce power drawn from the grid, and reduce emissions.

5 Conclusion and Future Scope

This paper has presented a sequential evolutionary algorithm and fuzzy logic-
based energy management system for various residential consumers in a
locality of South India. Real-time data for the residential loads have been con-
sidered for the presented study. A demand-based tariff has been investigated
in this work, and the consumer preference for the operation of appliances
is realized using a fuzzy inference system that meets the given constraints.
The cost benefits earned for different scenarios confirm the adaptability of
the proposed work. In this work, load scheduling is done on the previous day,
although implementing in real-time is the future work. The proposed model
can be implemented practically for residential consumers, ensuring the DSM
scheme’s effectiveness in a real-world application.

Authors are working on integrating the Internet of Things (IoT) and
developing a graphical user interface as future work. Also, vehicle to home
and vehicle to grid implementation is to be pondered.
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ment in distribution networks using the whale optimization algo-
rithm,” in 2017 9th International Conference on Electronics, Com-
puters and Artificial Intelligence (ECAI), 2017, pp. 1–6, doi:
10.1109/ECAI.2017.8166465.

[46] R. No, R. Energy, G. H. Societies, R. W. Scheme, C. F. Assistance, and
T. Cfa, “Guidelines for Grid Connected Solar Rooftop Program under
SOURA GRUHA YOJANE ( SGY ) scheme for FY,” 2020.

[47] E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis
with a fuzzy logic controller,” Int. J. Man. Mach. Stud., vol. 7, no. 1,
pp. 1–13, 1975, doi: 10.1016/S0020-7373(75)80002-2.

[48] K. Electricity and R. Commission, “Bangalore Electricity Supply Com-
pany Ltd.,” pp. 307–346, 2021.

[49] “How HOMER Calculates the Radiation Incident on the PV Array.”
[50] T. K. Lee, Z. Bareket, T. Gordon, and Z. S. Filipi, “Stochastic mod-

eling for studies of real-world PHEV usage: Driving schedule and
daily temporal distributions,” IEEE Trans. Veh. Technol., vol. 61, no. 4,
pp. 1493–1502, 2012, doi: 10.1109/TVT.2011.2181191.

[51] S. K. Yadav and U. Bajpai, “Performance evaluation of a rooftop solar
photovoltaic power plant in Northern India,” Energy Sustain. Dev.,
vol. 43, pp. 130–138, 2018, doi: 10.1016/j.esd.2018.01.006.

[52] V. Boddapati, A. S. R. Nandikatti, and S. A. Daniel, “Techno-economic
performance assessment and the effect of power evacuation curtailment
of a 50 MWp grid-interactive solar power park,” Energy Sustain. Dev.,
vol. 62, pp. 16–28, 2021, doi: 10.1016/j.esd.2021.03.005.



A Novel Residential Energy Management System 585

Biographies

S. Nethravathi received bachelor’s degree in Electrical and Electronics Engi-
neering in 2005 and a master’s degree in Power Systems Engineering in 2008
from Visvesvaraya Technological University, and currently working towards
a doctorate in Electrical and Electronics Engineering at National Institute
of Technology Tiruchirapalli. Her research areas include demand side man-
agement, energy routing, internet of energy, and optimization techniques for
energy management systems.

Venkatakirthiga Murali (M’13–SM’19) received B.E. degree in Electrical
and Electronics from Bharathidasan University, Tiruchirappalli, India, in
2000, and the M.Tech. degree in Power Systems and the Doctorate degree in
distributed generation and microgrids from the National Institute of Technol-
ogy Tiruchirappalli (NITT), Tiruchirappalli, in 2004 and 2014, respectively.
She is currently working as an Associate Professor with the Department
of Electrical and Electronics Engineering, NITT. She has total teaching
experience of 18 years. She is also serving as a reviewer to many reputed
international journals. Her research interests include power systems, HVDC
transmission systems, distribution systems, and electrical machines. She is
also a Fellow Institution of Engineers, India.




	Introduction
	Proposed System
	Mathematical Model Adopted
	Proposed Algorithm

	Simulation Study Details
	Load Data
	Tariff and Cost of Electricity
	HOMER Data
	Electric Vehicle (EV) Data

	Results and Discussions
	Conclusion and Future Scope

