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Abstract

The distributed power generation in Gansu Province is dominated by wind
power and photovoltaic power. Most of these distributed power plants are
located in underdeveloped areas. Due to the weak local consumption capacity,
the distributed electricity is mainly sent and consumed outside. A key indi-
cator that affects ultra-long-distance power transmission is line loss. This is
an important indicator of the economic operation of the power system, and it
also comprehensively reflects the planning, design, production and operation
level of power companies. However, most of the current research on line loss
is focused on ultra-high voltage (=110 KV), and there is less involved in
distributed power generation lines below 110 KV. In this study, 35 kV and 110
kV lines are taken as examples, combined with existing weather, equipment,
operation, power outages and other data, we summarize and integrate an
analysis table of line loss impact factors. Secondly, from the perspective of
feature relevance and feature importance, we analyze the factors that affect
line loss, and obtain data with higher feature relevance and feature importance
ranking. In the experiment, these two factors are determined as the final
line loss influence factor. Then, based on the conclusion of the line loss
influencing factor, the optimized random forest regression algorithm is used
to construct the line loss prediction model. The prediction verification results
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show that the training set error is 0.021 and the test set error is 0.026. The
prediction error of the training set and test set is only 0.005. The experimental
results show that the optimized random forest algorithm can indeed analyze
the line loss of 35 kV and 110 kV lines well, and can also explain the
performance of 110-EaR1120 reasonably.

Keywords: Distributed power generation, 35 kV, line loss, random forest
algorithm.

Introduction

Line loss is caused by converting part of the current into heat in the process
of transmitting electric energy. Line loss is an important indicator of the
economic operation of the power system, which comprehensively reflects
the planning, design, production and operation level of the power enterprise.
Power Supply Company A is located in the north-central part of Gansu Power
Grid, and is responsible for the important task of power transmission from
the west to the east and from the north to the south. At present, a large-
scale regional power grid with 750 kV, 330 kV, and 220 kV as the main
grid is formed. With the continuous expansion of the scale of the power grid
in the jurisdiction, the grid structure changes relatively frequently, and the
difficulty of managing the line loss of the main power grid is increasing.
From the discovery of the abnormality of the line to the elimination, a lot of
human resources are used, which takes a long time, and affects the economy
and stability of the grid operation. In addition, the traditional monthly line
loss statistics method for the same period cannot accurately reflect the actual
abnormal root cause, and thus cannot effectively guide the development of
line loss management. Moreover, in the past few decades, most of the research
on line loss has focused on ultra-high voltage (=110 KV) transmission lines,
and less involved distributed power generation lines below 110 KV. In fact,
the calculation of line loss is a very complex task, especially for low- and
medium-voltage lines from 35 KV to 110 KV. The line is characterized by a
large number of lines, a high load, a large amount of data, and the calculation
is very complicated.

The theoretical calculation method of line loss can be roughly divided
into two categories. One method is mathematical processing ideas based on
the equivalent model. The limitation of these methods is that they ignore the
impact of weather on the route. Another method is to perform autoregres-
sion based on historical data. The disadvantage of this method is that the
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prediction accuracy is very low and cannot meet the needs of the current
power grid. With the continuous application of new digital technology sys-
tems in the power grid, the monitoring of medium and low voltage lines by
power grid companies has become more and more perfect. There are more
and more researches on line loss prediction and analysis of medium and low
voltage lines using machine learning methods. At present, many scholars have
done a lot of research on them. By evaluating the quality of line loss data,
Wang et al. [1] proposed an evaluation model for evaluating the quality of line
loss data in the same period based on the “rank sum” difference of penalty
variable weight, which solved the problem of selecting the traditional long-
term dependent index for line loss. Wang et al. [2] started from the perspective
of the continuous improvement of the capacity of photovoltaic power plants
integrated into the power grid, and made corresponding improvements to the
IEEE14 node model, and analyzed the stability and influences when photo-
voltaic power plants were integrated into the rural distribution network. Liu
et al. [3] proposed a data mining technology, which mainly extracted massive
amounts of information from various data source systems accumulated by
power companies, and built an anti-theft management system with resource
sharing and decision support functions. This model solved the power load
conditions such as line loss deviation, power difference, voltage and current
imbalance. Li et al. [4] took machine learning as an entry point, and used
neural networks to construct a relevant line loss model through a data-driven
approach, and finally realized the accurate judgment of the location of the
stealing. Xu et al. [5] studied how to use machine learning algorithms to build
an abnormal line loss recognition model in the station area, and to realize the
diagnosis of abnormal line loss in the power grid station area. In order to accu-
rately calculate the daily line loss rate in the low-voltage transformer area, He
et al. [6] proposed a multi-path network model with a denoising autoencoder
to accurately evaluate the quality of the sampled data set and eliminate the
line loss rate. Jin et al. [7] aimed at the problem of low accuracy of traditional
anti-theft prediction methods, and proposed an anti-theft prediction method
based on power big data. This method reconstructed the electricity theft data
sample according to the abnormal rules. The experimental results showed that
the prediction accuracy of this method was satisfactory, and it was efficient
and feasible in the identification of stealing users.

The above-mentioned research has made major breakthroughs in the
analysis of ultra-high voltage and power theft, but there is very little research
on the medium and low voltage line loss of distributed power generation.
Based on this, we take the 35 kV, 110 kV 1120 East Red Line (110-EaR1120)
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as the research object. Combining existing weather, equipment, operation,
power outages and other data, we make an analysis table of line loss impact
factors. From the two perspectives of line loss feature correlation and feature
importance, we analyze the line loss influencing factors, and obtained data
with higher feature correlation and feature importance ranking. Then, based
on the conclusion of the line loss influencing factor, the optimized random
forest regression algorithm is used to construct the line loss prediction model
of the line.

1 Related Theories

1.1 Line Loss Calculation Theory

Line loss theory plays a very important role in loss reduction and energy
saving, line loss management, etc. Through theoretical calculation of line
loss, the distribution law of power loss in the line can be found, so that
management and technical problems can be found. At present, the value of
line loss is obtained by metering on the line. The specific calculation method
is to subtract the value of the previous meter from the value of the latter.
In this article, we use the theory of daily line loss. For lines greater than or
equal to 35 kV, the line loss calculation is divided into two parts. The first
part is the calculation of the loss of the components in operation such as
transformers, lines, reactors, capacitors and main cameras. The essential idea
is to use the root mean square current method (electric power method). Due to
the different applications of new digital technologies in the power grid, each
area is fully equipped with SCADA monitoring conditions, and the operation
data within a day is also recorded and stored one by one. In order to reflect
the impact of power generation and load changes on line loss to the greatest
possible extent, this article assumes that the power output and load per hour
remain unchanged. The calculation formula of daily power loss is shown in
Equation (1), and the calculation formula of daily line loss rate is shown in
Equation (2) [8]:

∆Ad =

 n∑
i=1

(
3

24∑
t=1

I2tiRti

)
+

k∑
j=1

24∑
t=1

V 2
tjGmj

 ∗ 10−3 (1)

∆Ad% = (∆Ad/Ad) ∗ 100% (2)

Where: ∆Ad represents the daily power loss (kWh). n represents the num-
ber of power grid lines and transformer branches. k represents the number
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of power grid transformers and the number of branches grounded by other
components. Rti represents the resistance of the j − th branch at time t, and
it is basically a constant when temperature changes are not considered. Gmj

represents the conductance of each element in the j − th transformer. Iti
represents the current (A) of the j − th branch at time t. Vtj represents the
voltage (V) of the j − th node at time t. Iti and Vtj are obtained by solving
the nodal and power equations by Newton’s method.

1.2 Improved Random Forest Algorithm

1.2.1 Principles of random forest algorithm
Random forest is one of the classic algorithm models of machine learning.
In the past ten years, random forests have developed rapidly, especially
in the field of bioinformatics [9, 10], economic management [11], medical
field [12], criminal investigation field [13] and pattern recognition field. The
shortcoming of the random forest algorithm is in the classification of the data.
Therefore, many scholars have made a lot of improvements to the algorithm.
For example, Huang et al. [14] compared the performance of random forest
and support vector machine in processing unbalanced data, and found that
they are more sensitive to unbalanced classification data. But at present, there
are relatively few researches on the improvement of random forest. Therefore,
it is meaningful to optimize and improve the random forest and then apply it
to the line loss calculation of medium and low voltage lines [15].

Random forest is mainly realized through Bootstrap technology. In addi-
tion, there are many reports on the security protection of smart grids [17-20].
The first step is to randomly select k samples from the original training sample
set N to generate a new training sample set [16]. The second step is to gener-
ate k decision trees based on the sample set, and randomly combine them to
obtain a random forest [21, 22]. It is worth noting that the classification result
of the new data is determined by the number of votes formed by the decision
tree. D is the sample set, D1, D2, and Dk are the decision trees generated after
each random sampling [23, 24]. The schematic diagram of random forest is
shown in Figure 1.

The essence of the random forest algorithm is to arrange and combine
multiple decision trees. The establishment of each tree only relies on an
independent sample. The basic method of the random forest algorithm is to
split each node by a random method and compare the errors generated in
different situations. In general, the more decision trees there are, the greater
the probability of getting a better classification effect. After k rounds of
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Figure 1 The working principle of random forest.

training, a sequence {h1(X), h2(X), h3(X), . . . , hk(X)} is obtained, and
after voting, the final decision is shown in Equation (3):

H(x) = arg max
Y

k∑
i=1

I(hi(x) = Y ) (3)

Among them, H(x) represents the combined classification model, hi
represents the classification result of a single decision tree, Y represents the
output target variable, and I is the indicative function.

1.2.2 Improved random forest algorithm
The monitoring data of medium and low voltage lines are characterized by
multiple dimensions and complex types. One problem that is often encoun-
tered is serious lack of data. Therefore, before feeding a large amount of
data to the random forest algorithm, the data needs to be preprocessed. The
improvement of the random forest algorithm in this paper is mainly to add
the weights of multiple influence factors in the process of randomization
to generate the decision tree. The calculation process of the correlation
coefficient in the specific weighting process is shown in Equation (4), and the
calculation process of the correlation degree is shown in Equation (5). Finally,
we assign values to D1, D2, and Dk respectively to get a new vector. The
purpose is to embody key influencing factors in the process of randomization
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and weaken non-key influencing factors.

ς(k) =
mini mink |x0(k)− xi(k)|+ ρ ∗maxi maxk |x0(k)− xi(k)|

|x0(k)− xi(k)|+ ρ ∗maxi maxk |x0(k)− xi(k)|
k = 1, . . . ,m (4)

ri =
1

m

m∑
k=1

ζi(k) (5)

In the formula, ζ is the correlation coefficient, ρ is the resolution coef-
ficient, and the value range of ρ is between (0, 1). The smaller ρ indicates
the greater the difference between the correlation coefficients. Generally, the
value of ρ is 0.5, and ri represents the degree of correlation.

In the design process, in addition to considering the correlation between
the factors that affect the data during randomization, the correlation between
the various decision trees is also considered. The correlation degree here
uses the mean value method, that is, in order to prevent the difference from
being too large, Equation (6) is used here to make a second assignment of the
correlation degree for each decision tree. In this way, each decision tree will
get a result, and finally these results will be coupled to get the final result.
The improved algorithm structure is shown in Figure 2.

ζh =

∑k
i=1 ζhi∑k
i,j=1 ζij

(6)

Figure 2 Random forest algorithm with correlation degree assignment.
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2 Experiment

2.1 Data Preparation

This experiment selects 35 kv and 110 kv EaR1120. The data sources
are PMS2.0 system, power consumption information collection system,
integrated power and line loss management system, power transmission
and transformation online monitoring system and corresponding historical
weather data. It mainly includes model parameters and meter values of 35 kV
and 110 kV lines. The processing flow of all data is shown in Figure 3. When
the extracted data is abnormal data, we use smoothing numerical method to
fill it. The data obtained from the power system has some missing data. After
statistical analysis, it is found that the missing rate is 0.8%. This shows that
these missing data will not have a great impact on the original data, so this
paper also uses smooth numerical methods to fill them.

After all the key data is collected, in order to ensure the quality of the
data to meet the needs of data analysis and model construction, our first job
is to preprocess the data. The quality of data such as line model parameters
in the integrated power and line loss management system is relatively high.
However, due to meter failure, terminal disconnection, etc., many meter data
will be missing or counted abnormally. That leads to abnormal conditions

Figure 3 The overall data processing flow.
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Figure 4 Voltage distribution diagram before and after treatment.

such as null and 100% line loss rate. We filter out such data directly. We
replace the zero value of the voltage with a null value, and use the smoothing
value method to fill in the missing value of the voltage. And according to
the meter connection mode(three-phase three-wire system, three-phase four-
wire system), transformer transformation ratio and other data are converted
into line voltage, we unify the date format into numerical data, as shown in
Figure 4. The weather data is complete and of high quality, but the format of
each field is not uniform and cannot be used directly. We formulate different
cleaning strategies according to the respective characteristics of each field,
and convert the original data into numbers to facilitate the next calculation.

2.2 Synthesizing a New Data Set

When the data preparation is complete, the data needs to be converted
into a new data set that meets the requirements of the improved random
forest algorithm. The main reserved key fields in the new data set include
component number, measuring point number, component name, date, etc. At
the same time, we use data conversion to generate new variables, as shown in
Table 1.

After the data is converted, the dimension difference between the obtained
data is large. In order to eliminate the influence of the dimension on the
analysis results, we used the normalization method to eliminate the data with
a larger dimension, as shown in Figure 5. The normalized data is obviously
much smaller than the original data, which greatly reduces the difficulty of
data analysis.
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Table 1 Generating new variable name

Before the Variable Name Changed After the Variable Name Changed

A-phase voltage A-phase average voltage

B-phase voltage B-phase average voltage

C-phase voltage C-phase average voltage

Active power Average active power

Reactive power Average reactive power

Daytime and nighttime temperature Average temperature

Daytime and nighttime humidity Average humidity

Day and night wind Average wind

Daytime and nighttime precipitation Average precipitation

Figure 5 Data before and after normalization.

Finally, we get a new data set. The key fields included in the new data set
are line component number, metering point number, date, line loss, electricity,
voltage, active power, reactive power, and meteorological data. Part of the
data in the new data set is shown in Figure 6.

2.3 Experimental Results of the Improved Random Forest
Algorithm

In the experiment, the new data set is fed into the improved random forest
algorithm model. The first step is to analyze the current line loss status of
EaR1120 through the model, the second step is to analyze the key influencing
factors of the line loss, and the third step is to diagnose the health status of
the line. Finally, the adjustment strategy of the influence factor of line loss is
given.
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Figure 6 Key fields in the new data set.

Figure 7 Monthly line loss of EaR1120.

2.3.1 Analysis of the current status of line loss
We first use the improved random forest algorithm model to visually analyze
the new data set, and the analysis results are shown in Figure 7. The data
cycle of the line loss data of EaR1120 is from July 2018 to June 2019, a total
of 365 days. After removing missing values and abnormal value (line loss is
100%), the effective line loss days are 333 days. Among them, the number
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of negative loss days for the line was 47 days, accounting for 14.11%. The
number of abnormal days of line loss was 82 days, accounting for 24.62%.
The normal number of days for line loss is 197 days, accounting for 59.16%.
The number of high-loss days on the line is 7 days, accounting for 2.10%. The
number of days when the line loss was negative was 129 days, accounting for
38.74%. At the same time, Figure 7 shows that from July 2018 to June 2019,
the line loss of EaR1120 shows the overall characteristics of relatively stable
in the early period, volatility in the mid-term, and improvement in the later
period. However, there is a rebound trend in June 2019, and follow-up line
loss changes need to be paid attention to.

2.3.2 The importance analysis of influencing factors
In this part of the experiment, we first did an autocorrelation analysis on
the factors that affect the line loss. Many experiments have shown that the
component number, metering point number, etc. obviously have no effect
on the line loss. The relationship between other factors is shown in Table
2. As can be seen from Table 2, the correlation coefficient between input
power and output power is 0.99. The correlation coefficients among A-phase
voltage, B-phase voltage, and C-phase voltage all exceed 0.9. Therefore,
feature autocorrelation processing is required. Our approach is to delete the
output power, B-phase voltage, and C-phase voltage, and retain the input
power and A-phase voltage. Finally, the retained parameters are substituted
into the subsequent model.

After deleting the impact factors with high autocorrelation, we substi-
tute the data into the improved random forest model again. After proper
adjustment of the parameters, we calculate the feature importance of each
influencing factor. The calculation results are shown in Table 3.

According to the feature importance in Table 3, we choose the influencing
factor whose importance accounted for 85% as the key influencing factor
of line loss. At the same time, we define that when the importance of the
dependent variable exceeds 85%, it will be characterized as the determinant
of the line loss. Through this determination method, we discarded other less
important impact factors. Finally, the input power, active power, A-phase
voltage, and reactive power are determined as the main line loss influencing
factors of EaR112.

2.3.3 Diagnosis of line damage health situation
After determining the important influence factor of the line loss through the
improved random forest algorithm, we begin to design the entire line loss
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Table 3 The importance of features of each impact factor

Field Importance

Input power 0.3600

Active power 0.2376

Phase A voltage 0.1406

Reactive power 0.1328

temperature 0.0556

humidity 0.0403

Field importance

Input power 0.3600

Active power 0.2376

Figure 8 Line loss diagnosis and early warning indicator system.

diagnosis system. Combining expert opinions and business reality, we have
formulated a comprehensive line loss diagnosis and early warning indicator
system, which is implemented by implementing a deduction system of 100
points, as shown in Figure 8.

After the construction of the indicator system is completed, we first
diagnose the disconnection of the mid-term terminal. The specific definition
is that the three situations where the voltage missing item exceeds 40%,
the current missing item exceeds 40%, and the power at the bottom of the
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Figure 9 Medium- and short-term line loss of EaR1120.

meter are empty on the day are regarded as terminal offline events. We judge
the collection of line power consumption information in the last 30 days,
and calculate the percentages of missing fields in the collection of voltage,
current, and power at the bottom of the meter. Finally, we count the dropped
calls in the past 30 days. The specific scoring rules are as follows: 0.5 points
will be deducted for each day of disconnection, and 15 points will be deducted
for all disconnections within 30 days. According to this rule, the mid-term
terminal drop score of this line is diagnosed.

Immediately after that, we diagnosed the abnormal situation of the short-
term line loss. The lines in the last 30 days are classified according to the line
loss type. We respectively calculate the number of days and the proportion of
line loss under the three abnormal conditions of negative loss, high loss, and
small loss. If the sum of the proportions of the three types is less than 30%,
no points will be deducted. If it exceeds 30%, then 1 point will be deducted
for every 1%, until 20 points are deducted. Finally, the mid-term line loss
health status of the line is obtained. In the experiment, the line loss situation
of the last 3 days is analyzed. We focus on judging whether there are five
situations such as continuous negative loss, high loss, small loss, terminal
drop, and alternating fluctuations. The scoring rules are as follows: no points
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will be deducted if none of the 5 situations occurs. 25 points are deducted for
consecutive high or negative losses. 20 points will be deducted for continuous
terminal disconnection. 15 points are deducted for consecutive small losses.
10 points deducted for alternating fluctuations. Finally, the short-term line
loss health status of the line is obtained. Taking the line loss of EaR1120 as
an example, the calculation result is shown in Figure 9. It can be seen that, as
time goes by, the number of days with high or negative line loss will continue
to increase by the end of June.

2.3.4 Adjustment strategy of line loss
According to the main influencing factors of EaR1120 obtained above, we
have carried out a detailed analysis of EaR1120 from the four aspects of
voltage, active power, reactive power and daily electricity.

It can be seen from Figures 10a, 10b, and 10c that the law of the
three-phase voltage is basically the same. When the line loss is normal, the
operating voltage fluctuation range of EaR1120 is approximately 115750–
116250 V. When the line loss is abnormal, the voltage is basically the same
as when the line loss is normal. When the line loss is negative and high, the
voltage is higher than the voltage when the line loss is normal. When the line
is negative, it is about 350 V high. When the line is high loss, it is about
1000 V high. It can be seen from Figure 10d that when the line loss is high or
negative, the active power of the line has a big gap compared to the normal.
The line loss is about 50% of the normal line loss. When the line loss is high,
it is about 30% of the normal line loss. When the line loss is abnormal, the
active power is slightly higher than when the line loss is normal.

It can be seen from Figure 11a that when the line loss is abnormal, the line
reactive power is lower than the normal reactive power. Among them, when
the line is high loss, the low amplitude is the largest, and the reactive power
is about 50% of the normal time. When the line is negatively damaged, the
reactive power is about 80–90% of normal. When the line loss is abnormal,
the low amplitude is the smallest, and the reactive power is about 90% of
the normal. It can be concluded from Figure 11a that, within a certain range
of line loss, the line loss is inversely proportional to the daily power. That
is, with the increase of line power, the range of negative or high line loss is
gradually narrowing. When the daily power of the line exceeds 400,000kWh,
there will be basically no large line loss.

Based on the above influencing factors, it can be seen that when the line
loss of EaR1120 is normal, the load is large and the voltage drops. In order to
maintain voltage stability, reactive power compensation is increased, so the
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Figure 10 (a) Comparison of voltage characteristics of A-phase at EaR112000018333476,
(b) Comparison of voltage characteristics of B-phase at EaR1120 00018333476, (c) Compar-
ison of voltage characteristics of C-phase at EaR1120 00018333476, (d) Comparison of the
average active power at EaR1120 00018333476.

 

 

 

 

 

 

 

Figure 11 Reactive power and daily electricity.
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reactive power is maximum when the line loss is normal. When the line loss
is abnormal, the load is small and there is no obvious voltage drop, so the
reactive power is smaller than when the line loss is normal.

3 Conclusion

In short, for the line loss problem of medium and low voltage lines, this
paper proposes an improved random forest algorithm. From the perspective
of line loss feature correlation and feature importance, the line loss impact
factors are analyzed separately, and these two factors are determined as the
final line loss impact factors. Then, based on the conclusion of the line loss
influencing factor, the optimized random forest regression algorithm is used
to construct the line loss prediction model of the line. The prediction and
verification results show that the line loss condition of EaR1120 obtained
by simulation is completely consistent with the actual situation, and the
performance of EaR1120 can be explained reasonably. In the future, we will
extend the application of this model to circuits above 110kv for application.
In the application process, we will continue to improve the algorithm model
and strengthen the generalization ability of the algorithm model.
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