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Abstract

Traditional fault detection methods for power generation systems use cen-
tralized fault processing analysis, which leads to long accuracy and response
time of fault detection. To address these problems, a data mining-based
distributed power generation system fault artificial intelligence detection
method is studied. The depth-first search tree algorithm is used to divide the
grid of distributed generation system. The network structure is modified to
locate fault zones by processing anomaly mining of the system data after
grid division. The combination of fuzzy logic and wavelet singular entropy
is used to complete the detection and identification of system faults. Through
simulation experiments, it is verified that the response time of the detection
method is only 0.016 s, and its detection error rate and false negative rate are
1.23% and 1.25%, which are far lower than other methods.

Keywords: Data mining, distributed generation systems, grid faults, artifi-
cial intelligence, fault detection.

Introduction

Due to the continuous expansion of the scale and complexity of the structure
of distributed power system, when the power system fails, a large number
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of alarm information will flood into the dispatching center in a short period
of time, which is far beyond the handling capacity of the operator, thus
causing some difficulties for the dispatcher to identify the fault signal quickly
and accurately. Therefore, it is very important to study how to analyze and
judge these signals quickly and accurately and take corresponding effective
measures for the normal operation of distributed generation system [1].
Domestic and foreign scholars have proposed methods such as expert system
(ES), artificial neural network (ANN), Petri network, genetic algorithm and
Bayesian network, etc. Most of these methods can achieve more satisfac-
tory results for accurate and complete signals of the control center. These
traditional fault detection methods are mostly centralized processing of data,
assuming that all data are concentrated locally for anomaly detection [2].
Among them, Bayesian network fault detection method is a fault diagnosis
model based on Bayesian network, which can deal with the uncertainty in
power grid fault diagnosis, and has the characteristics of accurate semantics,
fast reasoning and high learning efficiency. Petri net fault detection method is
to obtain a steady Petri net model according to the occurrence of transition,
and use graphical and analytical expressions to describe the power grid fault
diagnosis process, so as to realize the functions of information preprocessing,
startup detection, fault detection and so on. For distributed power systems,
which are increasingly used in practice, their functions are becoming more
and more complex, the size of the data sets are becoming larger, and the
power supply data sets all need to be distributed in different subsystems,
and the traditional centralized power system fault detection methods have
limitations. At the same time, in the case of complex fault diagnosis modes
such as incomplete signals, signal change or loss caused by the failure of
communication devices, none of the above detection methods can achieve
satisfactory results, and there are problems such as low detection rate and
unstable detection efficiency [3].

Data mining technology can extract key information from the massive
information, and in today’s era of informationization and networking, the
application of this technology covers all aspects of finance, economy, and
society. In the massive information system of smart grid, data mining technol-
ogy can play an advantage well and combine with the specialized knowledge
of power system to propose new solutions or countermeasures to many
traditional problems [4]. Distributed generation system will significantly
reduce energy consumption, save cost, and improve system flexibility if it can
effectively cooperate with large power grids. Besides, data mining technology
has the advantages of small investment, environmental friendliness, and high
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flexibility. As the role of distributed generation becomes more and more
obvious and the level of load electricity consumption increases, the threat
to the safe operation of the power system becomes more and more serious.
Based on the characteristics of the novel problems in this field, the advantages
of data mining technology can be brought into play. With respect to the above
analysis, this paper will investigate the artificial intelligence detection method
of distributed power generation system faults based on data mining.The
depth-first search tree algorithm is used to search all nodes of distributed
generation system, and grid division is carried out. The collected data is pre-
liminarily cleaned, converted and integrated by data mining method, which
avoids the large deviation caused by data redundancy and loss in data mining.
Using wavelet singular entropy to analyze the original data of one cycle after
the fault, the phase difference of the fault can be detected, and the wavelet
singular entropy value of the fault line is larger than that of the normal line,
thus realizing the fault detection.

1 Artificial Intelligence Detection Method for Distributed
Power Generation System Faults Based on Data Mining

1.1 Distributed Power Generation System Grid Partitioning

The fault detection problem of distributed power systems can be effectively
solved by artificial intelligence techniques. In order to improve the efficiency
of artificial intelligence in detecting faults in distributed power generation
systems, the network of power generation systems needs to be effectively
partitioned. A weighted depth-first search tree algorithm is used to grid
partition the distributed power generation system.

Depth-first search tree algorithm is a standard algorithm for searching all
nodes of the power system node graph when performing fault detection in
distributed generation systems. Assuming that G is a graph with n nodes, the
steps to form a weighted depth-first search tree are as follows [5, 6].

(1) Select the node with the largest number n, label it as 1, which is the
root node of the tree, and proceed to the next step with this node and the
corresponding label number as the initial condition.

(2) For node i with annotation number k (annotation number k indicates the
order of depth-first search), if all the nodes associated with i have been
annotated, go to step (3); otherwise, select the node with the largest node
number among the unannotated nodes associated with i and give it the
smallest unused annotation number in the depth-first search sequence
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{1, 2, . . . , n}. Repeat step (2) with this freshly annotated node and the
corresponding annotation number as the new starting point.

(3) If the labeling number k of node i satisfies k > 1 (i.e., node i is not
the root node), then backtrack from node i along the search path to the
previous node and repeat step (2) with this node and the corresponding
labeling number as the new starting point; conversely, if k=1 (i.e., node
i is the root node), the algorithm terminates. In order to balance the
computational load of each subgrid network after partitioning, each
node in the network is assigned a weight (the weight takes the value
of an integer), which is used to indicate the computational load of the
corresponding node. Related studies show that the computational load
of a sub-network is mainly determined by the total number of possible
faulty elements within that sub-network, so the weight of a node is
defined as the number of possible faulty elements (busbars, transmission
lines and transformers) associated with this node.

Assume that Yn is the node derivative matrix of a given power network,
where the nodes are arranged in descending order of the labeling number k.
For node i the number of all non-zero elements in row i of the upper triangular
array of Yn (including the diagonal elements) is taken as its weight, denoted
as Wnode(i) = wi. After considering the node weights, the tree generated by
the DFS algorithm becomes a weighted DFS tree. Let T [i] denote the subtree
with node i as the root node, then the total weight associated with this subtree
is defined as [7]

W (T [i]) =
∑

j∈T [j]

Wnode(j) (1)

For a graph G of n nodes with node n as the root of the DFS spanning
tree, i = P (i) indicates that node i is the parent node of node j, i.e., i is
an adjacent node of j in the path from j to the root node; also, j is called
a child node of node i. A node without children is called a leaf node. The
length of node i is defined as the number of nodes in the path from i to the
root node. According to the depth-first search tree algorithm given above to
partition the distributed power system network, if ng is the desired number
of sub-networks, the power system network is partitioned into ng connected
sub-networks by the algorithm, and the weights of each sub-network are made
as close as possible to W (T [i])/ng. Then the specific process of partitioning
the power system network is as follows [8].

(1) Let S denote the set of nodes of graph G, Cl denotes the set of nodes
of the lth subnetwork, where l = 1, 2, . . . , ng. Cw is the temporary
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working set that will be used in the algorithm. The initial conditions
of the partitioning algorithm are set as S = {1, 2, . . . , n}, Cl = Φ,
Cw = Φ =, l = 1, Φ is the empty set.

(2) All leaf nodes with the maximum length from the root node are selected
as the starting point of the search and added to the temporary set Cw.
Also, assume that the maximum length of the leaf node is k and use it as
a loop control pointer.

(3) Modify the loop control pointer k = k − 1 .
(4) Find the parent nodes of all nodes inCw, and do the following operations

for each different parent node (denoted as node p) in turn. Find the
children {j|p = P (j)} of the parent node p, and arrange the weight
values in descending order according to the weights W (T [i]) of the
corresponding subtree. Subsequently, judge these children nodes in turn
if T [j] satisfies the following relation [9].∣∣∣∣W (T [j])− W (T [i])

ng

∣∣∣∣ < ∣∣∣∣W (T [p])− W (T [n])

ng

∣∣∣∣ (2)

Then the subtree T [j] constitutes a subnetwork, i.e., Cl = T [j], and
correct l = l + 1, while node j and the set of nodes T [j] are removed
from Cw and S, respectively; conversely, if a child node does not satisfy
Equation (2), the child node is removed from Cw and its parent node p
is added to Cw. (If the parent node p has more than one child node at
the same time that does not satisfy Equation (2), then only the common
parent node p is retained in Cw). When all the different parent nodes are
tested go to step (5).

(5) Search all leaf nodes of length k and add them to the temporary set Cw.
Then go to step (3) and repeat the above steps until k = 0, i.e., S = Φ,
all nodes are searched and the algorithm terminates.

After using the algorithm to divide the distributed power generation
system grid, the data collected by the distributed power generation system
state data collector is mined for anomalies using the data mining algorithm
according to the results of the division.

1.2 Power Generation System Data Abnormal Mining

Preliminary data cleaning, data transformation and data integration process-
ing are performed on the collected data to avoid large deviations in data
mining caused by data redundancy and missing phenomena. Before data
mining, it is necessary to first analyze the data features corresponding to
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different faults of distributed power generation systems, compose the data
features into feature sets and evaluate them by feature subsets to obtain the
final fault data features.

According to the measurement of sequential search for fault data feature
subset search, the sequential forward search algorithm can be divided into the
following steps [10].

(1) Generate feature subset. Starting from the empty set, in the kth round,
each time l features are selected from d−k candidate features and added
to the selected optimal feature subset containing k features to form a new
candidate feature subset.

(2) Compare feature subset evaluation values. While generating the candi-
date feature subset, compare it with the optimal subset evaluation value
of the previous round, and update the optimal feature subset if it is
greater than the optimal evaluation value of the previous round.

(3) Output feature results. When the optimal feature subset is no longer
updated in a round, the search is stopped to output the optimal feature
subset.

The sequential backward search algorithm starts from the full set and
removes r features that contribute the least to the evaluation function each
time until the evaluation function value no longer increases. The two-
way search algorithm combines forward and backward search, increasing
l relevant features and decreasing r irrelevant features in each round, and
outputting the optimal feature subset when the optimal feature subset is no
longer updated after n rounds. Bidirectional search is faster than backward
search and has better performance than forward search. Therefore, this paper
uses the two-way search algorithm as the algorithm for feature subset search.

The relevance-based feature subset evaluation algorithm is selected as the
feature subset evaluation algorithm. The feature subset evaluation function
used in this algorithm can select the optimal feature subset with low redun-
dancy among features and high correlation between features and predictor
variables (i.e., strongly correlated features), and the weighted correlation
coefficient calculation method introduced in this algorithm can measure the
correlation between various types of variables [11].

The value of the evaluation function for the subset of fault characteristics
of the distributed generation system is calculated according to the following
equation [12].

e(F ) =
dr̄cf√

d+ d(d− 1)r̄ff
(3)
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In the above equation, e(F ) is the evaluation value of the candidate
subset; d is the number of features contained in the candidate subset F ;
r̄cf is the average correlation between all feature variables and predictor
variables in the candidate subset F ; r̄ff is the average correlation between
feature variables in the candidate subset F . If the feature redundancy within
the feature subset is higher, i.e., the larger r̄ff is, the smaller the value of
e(F ) is; the more strongly correlated feature variables in the candidate feature
subset F , i.e., the larger the value of r̄cf is, the larger the value of e(F )
is. Therefore, by comparing the evaluation values of the candidate feature
subsets calculated by Equation (3), redundant and non-strongly correlated
variables can be eliminated and the optimal feature subset that is strongly
correlated with the predictor variables can be selected.

Based on the optimal feature subset selected by the above process,
the C4.5 decision tree algorithm is used for distributed generation system
anomaly data mining. First, the information gain and gain rate of the can-
didate features (obtained by random sampling of candidate features without
putting back from the feature set) are calculated. The information gain and
gain rate of the candidate division features dividing the training sample set D
are calculated by the following formula [13].

Gain(D, a) = Ent(D)− Enta(D)

Gainr(D, a) = Gain(D, a)/IV (a)

IV (a) = −
V∑

v=1

|Dv|
|D|

log2
|Dv|
|D|

(4)

In the above equation, Gain(D, a) is the information gain of the features
of different data types; Gainr(D, a) is the gain rate of the data features;
Ent(D) is the information entropy of the data set D; Enta(D) is the infor-
mation entropy after dividing the data set D according to the features; Dv is
the information entropy of all the samples in the sample set D with the value
av of feature a at the vth branch node of the decision tree. After calculating
the information gain and gain rate of the sample set, the features with higher-
than-average information gain are identified from the candidate division
features, and then the feature with the highest gain rate is selected from them
as the split node, and the initially selected feature is used as the root node of
the decision tree. The current samples are divided according to the different
values of the features on the split node to construct branches. Leaf nodes
are generated when the samples in a branch belong to the same class. When
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all branches are generated leaf nodes, the tree construction is completed by
pruning process using post-pruning method [14, 15]. The subset of fault
features of the power generation system generated by the evaluation is used
as the division criterion, and the constructed decision tree is used for data
mining. After the decision tree algorithm processes the data collected by the
data collector of the distributed power generation system, different types of
fault data of the power generation system are obtained. After mining the
abnormal data, in order to quickly locate the possible locations of faults in
the power generation system, corrections for changes in the power generation
system grid structure are performed in order to intelligently isolate the fault
areas.

1.3 Power Generation System Grid Structure Change
Correction

In this paper, the node-branch correlation matrix L is defined based on the
idea of connected system. It can be adapted to the change of network topology
only by correcting the fault information matrix Gp or tripping switch vector
Ds which contains fewer elements.

To improve the reliability of power supply, a contact switch is usually
connected between two main sources in the distribution network. When the
branch line structure is changed, the contact switch will not close; while
when the main line structure is changed, the contact switch may close and
the backup power supply will continue to supply power to part of the line.
This section investigates the structure correction algorithm based on the state
of the contact switch after the network topology is changed. First, the switch
state vector K =

[
k1 k2 . . . km

]
is defined, where element ki on the line is

defined as [16]:

ki =


1, switch on

0, switch off

−1, unknown

(5)

When the removed line is a branch line, the contact switch does not
operate, and the main line and the remaining branch lines are still powered
by the original main power supply. If a fault occurs in the system, the fault
detection and isolation algorithm does not need to be modified. Since the
corresponding switch is disconnected when the line is removed, the elements
of the trip switch vector Ds need to be modified based on the original
algorithm in order to avoid issuing a trip command to a switch that is already
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disconnected when performing fault isolation as follows [17].

d′i = di & ki (6)

When the removed line is the main line, the contact switch is closed in
order to improve the reliability of the power supply, and the power supply is
continued from the backup power source to the non-faulted section, which
affects the original fault detection algorithm because the power supply has
been changed in some lines. In this case, the definition of the element gi
in the fault information vector Gp needs to be amended: gi takes “0” when
the fault direction detected by the measurement point on the main line is in
the opposite direction, otherwise it takes “1”; “1” when the fault direction
detected by the measurement point on the branch line is in the positive
direction, otherwise it takes “0”. After the correction of the grid structure,
the system fault zone can be determined, and the theory of wavelet transform
combined with fuzzy logic is used for fault detection and identification.

1.4 Distributed Generation System Fault Detection
Implementation

Calculate the positive sequence components of the anomalous data of the
power system after data mining processing, and use the wavelet coefficient
matrix of the power generation system obtained by Haar wavelet analy-
sis. The obtained wavelet coefficient matrix is subjected to singular value
decomposition, and the SVD decomposition is defined as follows [18].

A = U∗Q∗W (7)

In the above equation, A is the wavelet coefficient matrix of the anoma-
lous data of the power system; W and U are the You matrices of the singular
value decomposition; Q is the matrix composed of the diagonal elements
of the matrix M ; the matrix M is the diagonal matrix composed of non-
zero singular values. The singular value matrix is analyzed, and if a larger
entropy value is obtained, the greater the singularity of the signal. When
a fault occurs in the line, there will be a high frequency signal, so that a
large singularity will occur. The wavelet transform combined with Shannon
entropy is defined as wavelet singular entropy to represent the degree of order
of the time-frequency coefficient matrix after the wavelet transform of the
data. By applying the wavelet singular entropy to analyze the raw data for 1
cycle after the occurrence of a fault, the phase difference of the fault can be
detected and the wavelet singular entropy value of the line where the fault
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occurs is larger compared to the normal line. The wavelet singular entropy is
defined as follows [19].

WSE(n) =
n∑

i=1

∆pi (8)

Where, WSE(n) denotes the wavelet singular entropy of the nth order;
∆pi is the incremental wavelet singular entropy, and the calculation formula
is shown in (9).

∆pi = −

(
λi∑n
j=1 λj

)
log2

(
λi∑n
j=1 λj

)
(9)

In the above equation, λi and λj denote the singular values on the
diagonal matrix. Fault detection and identification is performed by combining
fuzzy logic with wavelet singular entropy. The distributed generation system
fault detection process is shown in Figure 1 below [20, 21].

Calculate the system anomaly data and its 
posit ive sequence components

Wavelet transform to obtain coefficient matrix

The s ingular value decomposition yields the 
decomposi tion matrix

Obtain the wavelet s ingular entropy of the system 
data signal

Calculate the probabil ity statis tics matrix

Input Fuzzy Logic System

Fuzzy rule processing

Output defuzzification vector

Detection of system faults based on output 
variable values

End 

Start

Figure 1 Fault detection process of distributed generation system.

In the fuzzy system, four inputs are set and two trapezoidal high and low
affiliation functions are used for fault detection. two trapezoidal high and low
affiliation functions correspond to the same input index, and the output of the
fuzzy inference system editor selects the triangular affiliation function and
sets the affiliation function values for normal and various fault cases. Then,
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according to the final calculated output, the specific fault location and fault
type in the fault zone can be determined and detailed fault detection results
can be obtained. Thus, the research on the artificial intelligence detection
method of distributed power generation system faults based on data mining
is completed.

2 Simulation Experiment

The artificial intelligence detection method of distributed power generation
system fault based on data mining is proposed above, and this section will
simulate and study the fault detection method.

2.1 Simulation System Modeling

Figure 2 below shows a simple distributed power system simulation model
consisting of one distributed power supply unit connected to the load through
the PCC common point. The transformer is placed at the end of the distributed
power supply unit, which ensures that current and voltage signals are avail-
able in different situations. The simulation is performed in MATLAB 2015
and the fault occurs at the PCC.f in the figure is the fault occurrence point.

DG

Transformer

S

PCC

Load

f

Figure 2 Distributed power system simulation model.

Distributed power supply DG: capacity 9 MVA, voltage 400 V, fre-
quency 50 Hz. transformer: capacity 10 MVA, frequency 50 Hz, rated
ratio 400 V/20 kV, transformer one winding resistance R1 = 0.00375 p.u.,
impedance X1 = 0.1 p.u., magnetoresistance Rm = 500 p.u., electromag-
netic impedance Xm = 500 p.u. Distribution line: PI-type model, length
is 5 km , rated voltage 20 skV, rated capacity 20 MVA, line resistance
R0 = 0.1948 Ω/km, R1 = 0.027 Ω/km, C0 = 9e-9F/km C1 = 12.7e-9 F/km,
L0 = 2.067e-3H/km, L1 = 0.88586e-3H/km. load: capacity of 3 MW.
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2.2 Experimental Procedure

This simulation experiment uses a comparative format to compare the fault
detection method proposed above with the Bayesian network-based fault
detection method and the Petri network-based fault detection method in two
stages: the response time of fault detection and the detection of false misses.
The experiments are done in MATLAB software. After establishing the power
system simulation model shown in Figure 2 above, different faults are set
and the simulation experimental study is completed after comparing the data
corresponding to the experimental indexes.

2.3 Experimental Results

The fault is set to occur at 1s, and the fault occurs at 2.5 km. Figure 3 shows
the time taken by each method to detect the fault under various faults. If the

Fault value
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Reaction t ime/s

0
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4

6

8

a
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1.035 1.040 1.045 1.0501.0301.0251.0201.0151.010
Reaction t ime/s

0
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4

6
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b

Fault value

1.040 1.045 1.050 1.0551.0351.0301.0251.0201.015
Reaction t ime/s

0

2

4

6

8

c

Figure 3 Detection response time of fault detection methods.
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fault time period is refined, the response time of each detection method can be
seen. In Figure 3 below, Figure 3(a) shows the fault detection response time
of the method in this paper; Figure 3(b) shows the fault detection response
time of the method based on Bayesian network; and Figure 3(c) shows the
fault detection response time of the method based on Petri network.

Analysis of the curves in Figure 3 above shows that the fault is detected in
1.016 s for the method in this paper starting at 1s, in 1.037 s for the Bayesian
network-based method, and in 1.045 s for the Petri network-based method,
showing the rapidity of the method in fault detection in this paper.

Table 1 below shows the comparison of the false and missed detection
rates of the three fault detection methods for different fault types of faults.

Table 1 Comparison of fault detection methods in terms of misjudgment rate and false
missing rate

Bayesian Network-based Petri Network-based
Method in this Article Approach Approach

Fault Misjudgment Missing Misjudgment Missing Misjudgment Missing
Type Rate/% Rate/% Rate/% Rate/% Rate/% Rate/%

AG 1.14 1.24 3.84 2.79 3.77 3.09

BG 1.20 1.26 3.53 2.87 4.01 3.08

CG 1.38 1.24 3.51 2.84 4.24 3.12

ABG 1.19 1.24 3.58 2.75 4.13 3.14

ACG 1.31 1.24 3.86 2.93 3.76 3.16

BCG 1.13 1.26 3.77 2.88 3.83 3.13

AB 1.13 1.25 3.69 2.72 4.21 3.19

AC 1.37 1.26 3.84 2.76 4.18 3.03

BC 1.22 1.26 3.83 2.75 3.74 2.95

ABC 1.21 1.24 3.74 2.83 3.96 3.01

ABCG 1.19 1.25 3.54 2.81 3.85 2.94

Analyzing the data in the above table, it can be seen that the false positive
rate and the leakage rate of the method in this paper are much lower than the
other two fault detection methods when detecting different types of faults.
The average false alarm rate and leakage rate of this method are 1.23%
and 1.25%, respectively; the average false alarm rate and leakage rate of
the Bayesian network-based method are 3.70% and 2.81%, respectively; the
average false alarm rate and leakage rate of the Petri network-based method
are 3.97% and 3.08%, respectively. In summary, the artificial intelligence
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detection method of distributed power generation system based on data
mining proposed in this paper has a superior detection performance.

3 Conclusion

The joint development of technology, public environmental policies and the
expansion of the electricity market have made distributed generation an
important energy option in the new century, and the application of distributed
generation systems has effectively improved the reliability of electricity
services and power quality. It is difficult to ensure stable and high correct
diagnosis rate when using traditional fault detection methods for distributed
generation systems. Therefore, in view of the problems of traditional fault
detection methods, this paper investigates the artificial intelligence detection
method of distributed power generation system faults based on data mining ,
the grid data of distributed generation system is divided by depth-first search
tree algorithm, and the abnormal data is analyzed by fuzzy logic and wavelet
singular value method, and the fault detection is determined., and verifies
the effectiveness of the method through simulation experiments.However, the
application of this method in fault detection of power generation system still
has some limitations. For different types of power plants and power stations,
it needs to be adjusted according to the needs in actual use, and its adaptive
performance should be further improved in future research.
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