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Abstract

The paper proposes a new unit commitment model that can promote car-
bon emission reduction in distributed renewable energy power systems. The
model first comprehensively considers the optimal combination of low-
carbon demand-side resources such as supply-side resources and demand
response, electric vehicles, and distributed renewable energy power gener-
ation. Secondly, the model unit scheduling rules fully consider the carbon
emission target and the economic target and propose a fuzzy dual-objective
optimization method that can consider the relative priority of the target. When
solving the optimization model, we improved the particle swarm optimization
algorithm. We introduced the “cross” and “mutation” operators in the genetic
algorithm to improve the particle swarm algorithm’s global optimization
capability. The paper verifies the effectiveness of the model and algorithm
through the analysis of a ten computer system.
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1 Introduction

The power industry, which is regarded as a significant emitter of greenhouse
gas emission reduction, shoulders a huge emission reduction task. Therefore,
the unit combination, which is an essential part of the power system’s
operation, should be changed accordingly. On the one hand, the optimal
combination of various resources on both sides of power supply and demand
should be pursued [1]. Traditionally, the balance of supply and demand is
to call the supply side’s resources according to the load demand. The unit
combination only arranges the start, stop and output of each unit on the
supply side. With the development of intelligent grid-related technologies,
demand-side resources such as demand response (DR), electric vehicles, and
distributed renewable power sources can play a more significant role in bal-
ancing supply and demand. Demand-side resources are mostly low-emissions
or even zero-emissions. The marginal cost of increasing unit output on the
supply side during peak load periods is high, so demand-side resources also
have economic advantages to a certain extent. At present, some experts have
begun to consider electric vehicles, user interaction and response separately
when studying unit combination problems. Still, few studies integrate various
demand-side resources into a unified consideration.

On the other hand, the optimization goal should pursue the minimum total
cost and organically integrate the economic goal with the carbon emission
goal. Therefore, the unit commitment problem should be a dual-objective
optimization problem. Some experts have considered these two goals simul-
taneously, using some relatively simple methods such as direct weighted
summation or transforming one of them into constraint conditions to con-
vert dual-objective optimization into single-objective optimization. Because
economic indicators and carbon emissions indicators do not have the same
dimension and range of change, how to more effectively integrate the two
goals for optimization remains to be further studied [2]. Concerning the
solution method of unit commitment, more and more researchers have begun
to use intelligent optimization algorithms for calculations, especially the late
particle swarm optimization (PSO) algorithm. But this method has the prob-
lem that it is easy to fall into the local optimum and converge prematurely.
Therefore, some scholars have begun to improve the PSO algorithm to a
certain extent.

Under the above background, this paper proposes a new unit commitment
model. Simultaneously, several types of demand-side low-carbon resources
are considered and combined with traditional units for optimization [3]. We
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adopt fuzzy dual-objective optimization methods and propose methods that
can consider the relative priority of the objectives to integrate economic
objectives and carbon emission objectives effectively. In the solving algo-
rithm, new improvements have been made to the PSO algorithm to solve the
unit commitment problem better.

2 Unit Commitment Model Considering Low-Carbon
Resources on the Demand Side

2.1 Objective Function

2.1.1 Economic goals
The economic objective considers the power generation cost of conventional
power plants and various demand-side resources’ deployment costs. In this
paper, the respective collections of DR, electric vehicle discharge to the grid
(V2G), and distributed power generation (DG) are regarded as a particu-
lar generator set. Considering the participation characteristics of user-side
resources, the marginal cost should increase with the increase of the call
volume, so the cost function is nonlinear, which is represented by a quadratic
function in this article.

(1) Cost of conventional power plants
The fuel cost of generator set i in period t is:

CFi(Pi,t) = ai + biPi,t + ciP
2
i,t (1)

Pi,t is the output of unit i in period t; ai is the cost coefficient of unit i.
The start-up cost of generator set i in period t is:

CSi,t =

{
hSi MDi ≤ Xoff

i,t ≤MDi + Ti

cSi Xoff
i,t > MDi + Ti

(2)

MDi is the minimum continuous shutdown time of unit i; Xoff
i,t is the

time that unit i has been continuously shut down during period t; Ti is the
cold start time of unit i.

(2) DR cost

CDP (PDRt) = aDR + bDRPDRt + cDRP
2
DRt (3)

In the formula: PDRt is the “output” of the demand response resource
in period t (the power load is reduced); aDR, bDR, cDR is the cost coeffi-
cient of DR.
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(3) V2G cost

CV 2G(PV 2Gt) = aV 2G + bV 2GPV 2Gt + cV 2GP
2
V 2GT (4)

In the formula: PV 2Gt is the power returned to the grid by the electric
vehicle operating in mode V 2G during the period t; aV 2G, bV 2G, cV 2G is the
V 2G cost coefficient.

(4) DG cost
In this paper, DGa is used to denote DG for user’s use, and DGb is used to
denote DGwhich is connected to the grid. The cost of DGB is:

CDG(PDGbt) = aDGb + bDGbPDGbt + cDGbP
2
DGbt (5)

In the formula: PDGbt is the power of DG connected to the grid during t
period; aDGb, bDGb, cDGb is the cost coefficient of DG connected to the grid.
In summary, the total cost of system operation is:

C =
H∑
t=1

N∑
i=1

[CFi(Pi,t)Ii,t + Ii,t(1− Ii,t−1)CSi,t]

+
H∑
t=1

[CDR(PDPt) + CV 2G(PV 2Gt) + CDG(PDGbt) (6)

In the formula: H is the total number of periods of the research cycle,
usually 24; N is the number of generators that can be called by the system;
Ii,t is the switch status of unit i in t period, taking 1 to indicate on, and 0 to
indicate off. The economic goal of the unit commitment problem is: minC.

2.1.2 Carbon emission target
In recent years, as energy conservation and emission reduction have become
more and more severe, there has been a unit combination optimization
problem with the minimum total emissions as the objective function [4]. The
carbon emissions of generator set i in period t are:

Ei(Pi,t) = ai + βiPi,t + γiP
2
i,t (7)

ai, βi, γi is the emission coefficient of unit i. We believe that demand-side
resources are all zero emissions, so the total emissions of the system are:

E =
H∑
k=1

N∑
i=1

[Ei(Pi,t)Ii,t] (8)
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Then the carbon emission target for the unit commitment problem is
minE.

2.2 Constraints

Traditionally, unit commitment problems include power balance constraints,
spinning reserve constraints, unit maximum and minimum output constraints,
and minimum start-up and stop time constraints [5]. Combining with the
various demand-side resources considered in this article, we have performed
some of the above constraints. The modifications are as follows:

(1) Power balance constraints

N∑
i=1

(Pi,tIi,t) = Ot − PDRt + PG2V t − PV 2Gt − PDGat − PDGbt + Lt

(9)

In the formula:
∑N

i=1(Pi,tIi,t) is the total output of each conventional
unit; Ot is the original load level of the system in period t; PG2V t is the
power delivered by the grid to the electric vehicle in the mode V 2G in period
t (the reserve load of V 2G); PDGat is the user’s use in period t Lt is the net
loss of the system in period t. This article assumes that the net loss has been
considered in the system load Ot.

(2) Spinning reserve constraint

N∑
i=1

(Pi,tmaxIi,t) + PDRt,max + PV 2Gt,max + PDGat + PDGbt,max

≥ Ot + PG2V t + Lt +Rt (10)

Pi,tmax is the maximum adjustable output of unit i during t period;
PDRt,max is the maximum adjustable power DR during t period; PV 2Gt,max

is the maximum adjustable power V 2G during t period; PDGbt,max is the
maximum adjustable power DGconnected to the grid during t; Rt is the
system spinning reserve capacity.

(3) Output constraints of conventional units

Pi,min ≤ Pi,t ≤ Pi,max (11)

Pi,min, Pi,max is the minimum and maximum output of unit i, respec-
tively.
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(4) The minimum on-off time constraints of conventional units{
(1− Ii,t+1)MUi Ii,t = 1

Ii,t+1MDi ≤ Xoff
i,t Ii,t = 0

(12)

In the formula: MUi is the minimum continuous operation time of unit i;
Xon

i,t is the time that unit i has been continuously operating during period t.
Given that this article considers several low-carbon demands-side resources,
some new constraints need to be added. DR is divided into two parts: produc-
tion electricity and residential electricity to consider its reduction potential.
According to users’ electricity consumption characteristics, the two types
of loads have different upper limits that can be reduced in each period [6].
Besides, taking into account the public image and work requirements of the
grid company, it is believed that there are requirements for the upper limit of
the proportion of the hourly load reduction and the upper limit of the total
daily load reduction.

(5) The upper limit constraint can be reduced for production and residential
electricity load in each period

PDRt ≤ PDRat,max + PDRbt,max (13)

(6) The upper limit constraint of load ratio can be reduced

PDRt ≤ aOt (14)

In the formula: α is the upper limit of the load ratio to be reduced per
hour to the original load.

(7) Upper limit of daily total load reduction

H∑
t=1

PDRt ≤ PDRdmax (15)

For V 2G, set the car battery capacity constraint and the car controllable
state constraint. Besides, to protect the battery life and facilitate car owners’
use, the upper and lower limits of the battery state of charge (SOC) are taken
into account. And believe that SOC will not be lower than the initial level
after a scheduling day [7]. Finally, because of the reverse power flow caused
by V 2G, the paper sets an upper limit for each period V 2G from power grid
security.
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(8) Electric vehicle V 2G capacity constraints

H∑
t=1

PV 2Gt,i ≤ Bi (16)

Bi is the battery capacity of the ith electric car.

(9) Constraints on the controllable state of electric vehicles

PV 2Gt,i = 0t /∈ [ti1, ti2] (17)

In the formula: ti1 and ti2 are respectively according to the agreement
between the owner of the ith electric car and the dispatcher, the car can be
dispatched for the period of V 2G.

(10) SOC upper and lower limit constraints

Smin ≤ St,i ≤ Smax (18)

St,i =
C0,i +

∑t
u=1 PG2V u,i −

∑t
u=1 PV 2Gu,i

Ci
(19)

In the formula: St,i is the SOC of the i electric vehicle in time t; C0,i is
the initial power in the i electric vehicle battery, and Ci is the battery capacity
of the i electric vehicle.

(11) Constraints on the SOC relationship between the beginning and end of
the scheduling day

S24,i ≥ S1,i (20)

(12) V2G power grid security constraints

PV 2Gt =

n∑
i=1

PV 2Gt,i ≤ PV 2Gmax (21)

n is the number of electric vehicles dispatched according to the V2G mode.
According to the time distribution characteristics of related resources, DG
has different callable upper limits in each period [8]. At the same time,
considering the social responsibility of grid dispatching to promote the inte-
gration of distributed renewable energy power generation, the lower limit of
the total daily use of DG resources is set. Besides, considering the volatility
and intermittent news of distributed renewable energy power generation and
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its impact on the power grid’s operation, we also need to ensure that its
penetration rate does not exceed the upper limit.

(13) The upper limit of DG resources that can be called in each period

PDGbt ≤ PDGbt,max (22)

(14) Constraint on the lower limit of total daily invocation of DG resources

H∑
t=1

PDGbt ≥ PDGbdmin (23)

(15) DG permeability upper limit constraint

ηt =
PDGbt∑N

i=1(Pi,tIi,t) + PV 2Gt + PDGbt

≤ ηmax (24)

ηt is the penetration rate of distributed renewable energy power generation in
period t.

3 Fuzzy Dual Objective Optimization Method

3.1 Fuzzy Dual-objective Optimization Regardless of the Priority
of the Objective

In this paper, the fuzzy solution method is used to deal with the dual-objective
optimization problem. The main steps are as follows.

(1) The paper takes the lowest cost as the objective function to optimize the
calculation and obtains the lowest cost as F1m, and obtains the emission at
this time as F2m. (2) The paper uses the most negligible emission as the
objective function to optimize the calculation to obtain the lowest emission
level as F2m, and the cost at this time as F1m. (3) We fuzzify the optimal
attribute of the objective function value and establish a mapping from the
single objective function value to the degree of membership [9]. It is assumed
here that the membership function is determined according to the linear rule,
then the membership of the economic objective function value:

µ(f1) =


1 f1 ≤ F1m

F1M − f1
F1M − F1m

F1m < f1 < F1M

0 f1 ≥ F1M

(25)
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The membership degree of the carbon emission objective function value:

µ(f2) =


1 f2 ≤ F2m

F2M − f2
F2M − F2m

F2m < f2 < F2M

0 f2 ≥ F2M

(26)

(4) Integrate the membership degrees of the two objective functions:

F = min{µ(f1), µ(f2)} (27)

The optimization goal is maxF or min(−F ), this article takes the latter.

3.2 Fuzzy Dual-objective Optimization Taking Into Account the
Priority of Objectives

If there is a relative priority relationship between two targets, we can distin-
guish the targets’ priority by selecting different membership functions. The
membership function only needs to satisfy µ(F1m) = 1 and µ(F1M ) = 0.
The membership function selection rule can be: µ(f1) = ( F1M−f1

F1M−F1m
)q, where

q = 1, 2, 12 , 3,
1
3 , . . .. The faster the membership function decreases near the

optimal solution, the stronger the objective function’s emphasis. For example,
when target 1 is more important than target 2, if the membership function
of target 1 is still selected according to formula (28), then the membership
function of target 2 can be taken as:

µ(f2) =


1 f2 ≤ F2m(
F2M − f2
F2M − F2m

) 1
2

F2m < f2 < F2M

0 f2 ≥ F2M

(28)

4 Improved PSO Algorithm Introducing Crossover and
Mutation Operators

PSO is a new evolutionary algorithm developed in recent years and is widely
used in unit commitment research by domestic and foreign scholars. One of
the main disadvantages of PSO is that it tends to converge prematurely and
fall into a local optimum. To solve this shortcoming of PSO and enhance
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the algorithm’s global optimization ability when solving multi-dimensional
optimization problems. This paper introduces the “crossover” operator and
“mutation” operator in the genetic algorithm based on the traditional PSO
algorithm [10]. In each iteration of the PSO algorithm, when all particles’
position is updated, the crossover and mutation of the particles are carried
out with a certain probability to enhance the motivation of each particle to
jump out of the optimal local solution and continue to search for the best
solution.

5 Case Analysis

The paper takes the 10-machine system commonly used in the study of unit
commitments as an example to verify the effectiveness of the model and
algorithm proposed in this paper. The system has ten conventional units and
demand-side resources. Assume that the spinning reserve Rt = 0.1 Ot. We set
the upper limit of the reduction of production electricity load between 08: 00
and 18: 00 to 50 MW per hour, and the upper limit of 10 MW for the rest of
the period; the upper limit of reduction of residential electricity consumption
between 08: 00 and 18: 00 is 20 MW per hour. The upper limit for the rest
of the period is 70 MW. The upper limit of the total response during DR is
5% of the load, and the upper limit of the total daily response is 1400 MW·h.
Assume that electric vehicles in the V2G mode are charged in the late night
and early morning hours when the original load demand is the lowest and can
be dispatched to the grid during the evening peak hours. The upper and lower
limits of the SOC of each car are 90% and 40%, respectively, and the initial
state is the lower limit level. Assuming that each vehicle’s battery capacity is
18kW·h, the number of electric vehicles in V2G mode is 5000, and the upper
limit of the grid receiving and transmitting power is 120 MW each hour.
Because photovoltaic power generation will become the main component of
DG for some time in the future, this article assumes that the power generation
of DG during the day (07: 00-17: 00) is relatively high, at 150 MW, and as
low as 15 MW in other periods. Two-thirds of them are for self-use, and one-
third can be connected to the grid. The lower limit of the total daily call of the
grid-connected DG is 250 MW·h. The upper limit of DG permeability is 6%.

In this paper’s calculation examples, the optimization solutions under five
objective functions are carried out: single economic target, carbon emission
single target, non-priority fuzzy dual target, economic priority fuzzy dual
target, carbon emission priority fuzzy dual target. Table 1 compares the total
cost and total emissions under the five scenarios. It can be seen that the fuzzy
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Table 1 Total costs and total emissions under the five scenarios

Scene Number Aims Total Cost/USD Total Emissions/t

1 Economic Single Target 542710 259324

2 Single carbon emission target 717716 95746

3 Fuzzy dual goals (no priority) 607096 158928

4 Fuzzy dual goals (economic
goals first)

594878 183779

5 Fuzzy dual goals (Priority to
carbon emission goals)

635230 148573

Table 2 Demand-side resource utilization under five scenarios

Scene Demand-side Resources
Number Aims “Output”/(MW·h) Proportion/%

1 Economic Single Target 611 2.32

2 Single carbon emission target 2381 9.05

3 Fuzzy dual goals (no priority) 1662 6.31

4 Fuzzy dual goals (economic goals
first)

1490 5.66

5 Fuzzy dual goals (Priority to carbon
emission goals)

1764 6.7

dual-objective optimization method can effectively balance economic goals
and carbon emission goals for collaborative optimization. By comparing the
results of the latter three scenarios, it can be seen that the model proposed in
this paper can reflect the relative priority between targets.

When optimizing according to the single economic goal, the output of
traditional units is relatively large, especially the units with a better economy
but higher emission levels represented by Unit1 and Unit2. When optimizing
following carbon emission targets, low-carbon demand-side resources can be
mobilized to the greatest extent. In the three fuzzy dual-target scenarios, the
output of traditional units and the demand-side resource “output” are between
the single economic and single carbon emission targets. Table 2 lists the
demand-side resource utilization in each scenario and its proportion in the
supply and demand sides’ total resource output.

It can be seen from Table 2 that the contribution of the total “output”
of demand-side resources in the balance of power supply and demand in
the five scenarios is between 2% and 10%, which is a relatively reasonable
range, and it has effectively played its role in promoting the carbon of the
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power system. The advantages of reducing emissions are more practical and
feasible. The total amount of demand-side resources in Scenario 3, Scenario
4, and Scenario 5 is 2.72, 2.44, and 2.89 times that of Scenario 1, respectively.
It can be seen that the fuzzy dual-objective model proposed in this paper can
effectively mobilize demand-side resources according to the priority of the
object.

Combining Tables 1 and 2, we can see the relationship between demand-
side resource utilization and carbon emission reduction. In the five scenarios,
the more outstanding the contribution of demand-side resources to the bal-
ance of power supply and demand, the smaller the total emissions. The two
show an apparent positive correlation trend. From an economic point of view,
even in the economic single-target scenario, some demand-side resources are
used, indicating that demand-side resources have the advantage of emissions
and have economic advantages in some cases. This is reflected in the peak
load period. It’s more noticeable. It can be seen that the unit commitment
model proposed in this paper can effectively integrate the resources of the
power supply side and the demand side and make the operation of the power
system more economical. The invocation of demand-side resources reduces
the fluctuations in the output of thermal power units. For example, in Scenario

Figure 1 Traditional PSO and improved PSO iterative optimization performance compari-
son.



Optimal Combination Control Technology of Demand Side Resources 215

1, after considering demand-side resources, the peak-to-valley rate of thermal
power output fluctuation dropped from 50.0% to 39.6%. The reason is that
demand-side resources will be used more during peak load periods, and the
maximum total output of thermal power will be reduced. It can be seen
that demand-side resources can alleviate thermal power units’ peak shaving
pressure and improve their operating efficiency. In terms of algorithm, we
compared the effect of using traditional PSO with the improved PSO solution
proposed in this paper. Figure 1 shows the changes in the fitness value of the
two typical iterative optimizations. It can be seen that the improved algorithm
proposed in this paper enhances the global optimization capability, especially
in the middle and late stages of the iterative process. As the probability of
the “crossover” and “mutation” operators increases, the particles have greater
motivation to jump out of the optimal local solution.

6 Conclusion

This paper proposes a new unit combination model that considers demand-
side low-carbon resources. In the day-ahead market, various demand-side
resources such as DR, V2G, DG, and supply-side resources are comprehen-
sively dispatched, aligning with the development characteristics and energy
saving of intelligent grids. Platoon requirements. Simultaneously, the model
adopts a fuzzy dual-objective optimization method to combine economic
goals and carbon emission goals organically and take into account the relative
priorities of the objective functions. In the solution method, the crossover and
mutation operators are introduced based on traditional PSO, enhancing the
ability of multi-dimensional global optimization. The calculation examples
show that the model proposed in this paper can significantly reduce the carbon
emissions of the power system operation.
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