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Abstract

The major purpose of this work is to design the controllers for controlling the
variable speed, variable pitch wind turbine (WT) with doubly fed induction
generator (DFIG). Vector control strategy is adopted for controlling the
DFIG active and reactive power. Generator torque is control to provide the
regulated real power with minimum fluctuation. The fixed gain proportional-
integral (PI) controller designed to the converter of rotor side and grid
side has limited operating range and inherent overshoot. Gain scheduling
PI controller is designed to minimize the overshoot and fluctuation exists
in proportional-integral controller. Since DFIG based wind energy conver-
sion system (WECS) works in uncertain wind speed, stochastic distribution
control (SDC) method is proposed to control the probability distribution
function (PDF) of DFIG based WECS. It copes with nonlinearities in the
WECS and contiguous variations at operating point and provides satisfactory
performance for the whole operating region. It improves the performance
together with power quality of generated electric power thereby maximizing
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the lifespan of installation and ensures secure and acceptable operation of the
DFIG based WECS.

Keywords: PI controller, probability distribution, reactive power control,
stochastic processes, wind turbine.

1 Introduction

WECS has benefited from static advance on technology; also improvements
are made at components that handle utility interface, electric machine,
electronic power converter, control proficiency [1]. Howbeit, the nature of
unpredictable wind inflict the utility operators to realize contrasting around
electric power generation [2]. An elegant-designed control system helps effi-
cacious energy production, great power quality, also aerodynamic lessening,
mechanical loads, as a consequence increasing the life of installation. As a
result, the control system would have straightforward brunt in the cost of
generated energy [3, 4]. Stochastic control is considered more powerful in
control theory and applications to simplistic reason that various real industrial
processes are under several randomness sources [5].

At controller design of DFIG based WECS is to diminish the stochastic
at closed loop system is the significant problem. Moreover, the nonlinearity
of system, stochastic variations of wind speed, physical obstacles in system
variations make hard of control design. The classical PI controller along with
Fuzzy PI design is delineated at [6]. At variable speed turbines the torque
control is mainly utilized to increase the energy under the rated wind speed
as well as control rated upper torque limit [7]. To manage the nonlinearity of
system, usage of gain-scheduling Linear Quadratic Gaussian (LQG) controller
isdescribedon[8].Gainscheduledcontroller isdefinedon[9,10].TheAdaptive
Fuzzy Gain Scheduling of proportional Integral (AFGPI) Controller design to
WECS is delineated at [11], where the optimization of Fuzzy rules is used to
correct the PI controller parameters in terms of error and their first derivative.

This paper concentrates at designing stochastic distribution controller to
produce efficient power with better quality for variable speed horizontal axis
WT with DFIG of 2 MW capacity.

2 Wind Turbine with DFIG

A wind turbine with DFIG has three bladed WT rotor connected with
wound rotor induction generator via gear box. WECS is fabricated along
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subsystems, such as aerodynamic, drive train, DFIG and voltage source
converter (VSC) system. VSC system has Rotor Side Converter (RSC) and
Grid Side Converter (GSC) coupled to DC link. The dynamics and the aero-
dynamic modeling together with drive train system of DFIG based WECS
is given in [13]. Wind speed is taken in range from 4 to 26 m/sec [12]. The
dynamic characteristics between wind speed, pitch angle and real power are
received from designed DFIG based WECS.

DFIG control strategy is classified into two types. They are scalar control
and vector control. Scalar control has sluggish response, due to inherent
coupling effect. It is overcome by vector control method. Vector control
strategy and DFIG system modeling at synchronous rotating frame is given
in [14]. DFIG’s ratings and specifications are indicated in Appendix. The
output of the generator is supplied to the VSC. Two back-back voltage-
fed current controlled converters are coupled with rotor circuit. By DC-link
capacitor the two converters are connected with each other [13].

The step changes in wind speed is given as input moreover dynamic
parameters of WT like generator speed, active and reactive power are
obtained in open loop DFIG based WECS. The rotor voltage and DFIG
current are fluctuating owing to uncertain wind speed then it makes the
stator voltage and current to fluctuate more, which should be reduced and
kept constant, because it is directly coupled with grid. The stator real power,
directly coupled with grid is fluctuating and has large steady state error owing
to uncertainty present at wind speed. At open loop DFIG based WECS the
reactive power is high and unstable.

3 Design of Controllers

DFIG based WECS is represented in d-q synchronous reference frame [15].
The vector control [16, 17] strategy and direct power control [18] is utilized
to regulate the Wind turbine active and reactive power with DFIG system.
DFIG modeling at d-q reference frame along the orientation of stator field
displays that rotor current could be controlled independently [18]. RSC
permits for controlling the active and reactive power through performing at
directly together with rotor voltage quadrature components. It performs active
and reactive power’s disconnected control. The RSC operates in varying
frequencies similar to variable rotor speed demand depending on the wind
speed. RSC uses torque controller for regulating the DFIG real power. Vector
control strategy for GSC is the grid voltage based disconnected control.
It keeps the active power independent control to zero [17] also improves
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Figure 1 Block diagram of DFIG based WECS with controllers.

the power factor of rotor side and maintains active power control grid side
converter DC-link voltage in reference value [16].

When compared with direct power control the scheme of vector control
has accurate with low power quality problems. GSC controller adopts PI
control strategy; whereas RSC controller is incorporated with proportional
integral controller, gain scheduling proportional integral controller and SDC.
Figure 1 depicts the DFIG block diagram based WECS with controllers.

3.1 Proportional Integral (PI) Controller

Figure 2 delineates the control structure of PI controller remove the steady
state error and minimize the fluctuations at real power of DFIG based WECS,
thereby increases the system response.

Proportional integral controller is utilized to regulating the torque, speed
and power to its reference value. The controller output specifies reference
rotor current to generate the desirable torque. With the rotor voltage refer-
ence, internal PI control loop is utilized to control the rotor current error for
their reference value. Rotor side converter is used to autonomously regulate
the stator active power Ps together with reactive power Qs [16, 17].

Figures 3–6 defines the control structure considered for designing the
RSC controller. The error signal is received from the variation in between
the desirable real power and measured real power. The error signal is given to
the controller, which generates Iqr reference signal. It is then compared with
measured Iqr furthermore the error is given to the controller, which produces
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Figure 2 Control Structure of PI controller.
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Figure 4 Control structure to obtain V∗dr.

the reference Vqr. According to the Figures 5 and 6 the measured values of
Vqr and Vdr are obtained. The measured values of Vqr and Vdr are given
into the dq0 to abc transformation. Vabc is given to GSC with PI controller to
produce the desired output.

GSC is accountable for holding direct current link voltage stable in the
reference value with enhancing the rotor side power factor [16]. The GSC
incorporated with PI controller, operates at voltage based synchronously
rotating reference frame and regulates the reactive power Qg among GSC
and grid [14, 15].
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Figure 5 Block Diagram to obtain Vqr.

Figure 6 Block Diagram to obtain Vdr.

3.2 Gain Scheduling PI Controller

The inherently high non-linearity of DFIG based WECS makes PI controller
a bad choice to applications that require more dynamic efficiency across
the whole operating regions. In order to regulate generator electromagnetic
torque and controlling real power as well as generator speed, gain scheduling
PI Controller is designed. It ensures the system variable’s rapid and accurate
regulation throughout their operational constraints [19].

Figure 7 shows the control structure of fuzzy gain scheduling proportional
integral controller. The Kp implies proportional gain and Ki implies integral
gain of PI controller differ in the prescribed range that is Kp varies between
0.05 to 0.95 whereas Ki takes the range from 0.05 to 0.9. The Fuzzy rules
optimization is used to correct the PI controller parameter in terms of error
and their first derivative [6]. Depending on the error values and change in
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Figure 7 Control structure of fuzzy gain scheduling PI controller.

error, the fuzzy inference system defines the proportional and integral gains
values Kp and Ki respectively. It considered Kp and Ki of proportional
integral controller varies among the maximal and minimal ranges allowed [6].
The speed controller output specifies current reference (Iqr). Proportional
gain (Kp) and integral gain (Ki) are normalize amid zero and one applying
linear transformations represented in Equations (1) and (2). K′p and K′i are
defined by the set of fuzzy rules.

K ′p =
Kp −Kp min

Kp max −Kp min
(1)

K ′i =
Ki −Ki min

Ki max −Ki min
(2)

Since the DFIG based WECS needs a large control signal during the
transition period, to avoid overshoots the PI controller must contains a huge
proportional gain and tiny integral gain. When the generator achieves the ref-
erence speed, a small contro1 signal is needed for maintaining the generator
speed in the desirable value. It tunes PI controller to have a tiny Kp, huge Ki

to deal with steady-state error.
Depending on these attitudes, Kp or Ki varies amid the maximal and

minimal values to obtain adequate controller performance. Figures 8 and 9
depicts the input error membership function and change in error for gain
scheduling PI controller. The output membership function for K′P and K′I are
given in Figures 10 as well as 11. Tables 1 and 2 tabulate Fuzzy tuning rules
to Proportional gain K′p with integral gain K′i.
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Figure 8 The input membership function of error for gain scheduling PI controller.
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Figure 9 The input membership function of change in error for gain scheduling PI controller.
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Figure 11 The output membership function for K′I.

Table 1 Fuzzy tuning Rules for K′p
∆e
e NB NS ZO PS PB

NB B B B B B

NS B B B B B

ZO S S S S S

PS B B B B B

PB B B B B B

Table 2 Fuzzy tuning Rules for K′i
∆e
e NB NS ZO PS PB

NB S S S S S

NS S S B S S

ZO S B B B S

PS S S B S S

PB S S S S S

3.3 Stochastic Distribution Controller (SDC)

Stochastic distribution controller systems have 2-D properties concerning
time and random variable’s probability space. Stochastic systems are exten-
sively faced due to all control systems are under random signals emanating
from the variation of system parameter and sensor noise. The significant
problem of controller design is reduce the randomness at closed loop system.
It encouraged minimal variance control, aimed at minimizing variations or
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the tracking errors at controlled system outputs. SDC is attentive on output
mean control and stochastic system variation. SDC can be designed using the
given four methods

• Output PDF control utilizing neural network (NN).
• Output PDF control utilizing input-output system samples.
• Minimal error entropy control to non Gaussian stochastic systems
• SDC concept application to filtering design with fault diagnosis

SDC control design algorithms for output PDF control may typically cat-
egorized as two groups they are measurable output PDFs and not measurable
output PDFs. Control algorithms are used to measurable output PDFs are

• NN is applied for approximation the instant and measurable output PDFs
• NN parameter (weight with bias) is dynamically coupled with control

input.

Given simple B-spline estimate is utilized to estimated the system output
PDF in SDC

γ(y, uk) =

n∑
i=1

wi(u(k))Bi(y) + e(y, uk);∀y ∈ [a, b] (3)

where uk indicates input in the test time k, wi(uk) specifies approximation
weight for output PDF γ(y,uk), Bi(y) denotes fixed basis function. Because
γ(y,uk) incorporation is always same in their domain [a,b], only n-1 weight
is independent. Here, Vk implies independent weight vector, after that the
dynamic part may be declared as,

Vk+1 = f(Vk, uk) (4)

here f(Vk,uk) denotes vector function that indicates the dynamics among NN
weight vector and control input. Equations (3) and (4) make the structure
of typical modeling to stochastic distribution systems, here the input implies
time varying signal whereas output implies output PDF. To Gaussian input
this model is valid. To the system specified through Equations (3) and (4), the
controller design aim is realized the control of output PDF shape. To MIMO
systems the output PDFs all output variables PDF could be integrated. The
NN structure is selected once, PDF shape control could be considered as the
weights and biases control. To model 3 and 4, such output PDF control may
be assumed through Vk control. The output PDF is rated approximate by B-
Spline NN, comparatively simple solution is installed that reduces the given
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performance index [20].

J =
∑
k

∫
Ωe[a,b]

(γ(y, uk)− g(y))2dy + uk
TSuk (5)

The shape control of system output PDF utilizing linear B-spline model,
control input is developed that reduces the output entropy of closed loop
system. This controller may reduce the uncertainty of closed loop system
because entropy is randomness evaluate of provided stochastic variable [22].
The target is suitable in good for common minimal variance control of
Gaussian functions because reducing variation is equal to reducing the ran-
domness of output. To reach this target, a common measured rather than
the system output variance required to be assumed for Gaussian stochastic
system randomness. The reducing entropy is equal to the variance reduction
of Gaussian variables and the minimal variation control to ARMAX systems
(under Gaussian noise inputs) are minimal entropy control. Because entropy
contains typical meaning than variation to arbitrary variables, it could be
utilized to evaluate, generate design criteria to typical dynamic stochastic
systems subject to arbitrary input; its PDF may be any form [20].

At this research work, the entropy concept is used to controller design for
DFIG based WECS subject to arbitrary bounded random input. A linear B-
spline model is applied to create the system and performance functionality, in
which entropy duration and restriction of quadratic input are used as targets
for needed optimization. A local optimal control input is designed subject to
few conditions, also it is demonstrated that the control input is structured in
nonlinear form that is associated with system’s measured output PDF and past
inputs. The stability of closed loop is examined whereas local stability state is
installed. Although, the proposed control algorithm considers that the output
PDF is assessable. This research work focuses on the control of tracking error
entropy, where PDF of closed loop system tracking error is designed using the
random input PDF.

To suggest dynamic PDF model to closed-loop control intention, B-
spline NN is typically applied to output PDF approximations, where basic
weight function is computed from PDF fit, also the weight dynamics model
getting through least-square estimation or other regression approaches. In the
proposed SDC, wind speed is considered with non-Gaussian disturbances.
The real power output of DFIG based WECS is trained with NN controller
and the control strategy of Minimum Error Entropy (MEE) [24] to get the best
performance of the system. An algorithm of Gradient descent-type is adopted
with the approach of incremental perturbation to estimate corresponding
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Figure 12 PDF of DFIG based WECS obtained from neural network controller with mini-
mum error entropy control strategy.

Figure 13 Performance of neural network controller with minimum error entropy control
strategy.

gradient of non-Gaussian disturbances in wind speed. It effectively reduces
the non-Gaussian disturbances influence in wind speed and PDF of DFIG
based WECS real power output is generated.

The wind speed PDF obtained from neural network controller is estimated
with kernel density estimation (KDE) approach and sliding window (SW)
method. In KDE, the wind speed PDF can be estimated from the sample
sequences {e(1)ik, e(2)ik, . . . , e(N)ik}(i = 1, 2) given in Equations (6)
and (7).

At any time t, DFIG based WECS distribution shape of specified by its
PDF γ(y, u(t)) [23]. KDE approach with SW method is used to estimate the
PDF which is obtained from neural network controller with MEE control
strategy. Figure 12 depicts the PDF of trained DFIG based WECS is obtained.
Figure 13 represents NN controller performance with MEE control method.
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3.3.1 Non-parametric Estimation of objective Function
PDF of wind speed obtained from neural network controller is estimated
with kernel density estimation method and sliding window technique. In
KDE the wind speed PDF could be estimated from the sample sequences
{e(1)ik, e(2)ik, . . . , e(N)ik}(i = 1, 2) given in Equations (3) and (4). At
any time t, DFIG based WECS distribution shape is represented by its PDF
γ(y, u(t)) [22].

γeik(τi) ∼= γeik(τi) =
1

N

N∑
J=1

K(τi − e(j)
ik , σ

2
i ) (i = 1, 2), (6)

γeike2k(τ1τ2) ∼= γeike2k(τ1τ2)

=
1

N

N∑
j=1

k(τ1 − e(j)
1k , σ

2
1)k(τ2 − e(j)

2k , σ
2
2) (7)

where k(x, σ2) = 1
2πσ exp(

−x2
2σ2 ) indicates Gaussian Kernel function with

standard deviation δ [23]. The estimation of quadratic Renyi’s entropy
including mean value is declared given in Equations (8)–(10)

H(eik) ∼= − log
1

N2

N∑
j=1

N∑
l=1

k(e
(j)
ik − e

(l)
ik , 2σ

2
i ) (i = 1, 2) (8)

H(eik, e2k) ∼= − log
1

N2

N∑
j=1

N∑
l=1

k(e
(j)
1k − e

(l)
1k , 2σ

2
i )k(e

j
2k − e

l
2k, 2σ

2
2) (9)

E(e2
ik)
∼=

1

N

N∑
j=1

(e
(j)
ik )

2 (i = 1, 2) (10)

where H(eik) implies quadratic Renyi’s entropy [24] of every tracking error
eik (i = 1, 2), H(e1k, e2k) refers joint entropy of tracking errors e1k and e2k

and E(e2
ik) denotes every tracking error mean value eik (i = 1, 2) [23]. KDE

approach is validated to be an effectual PDF estimation method. Although,
N samples are produced in every instant k, this needs mass memory and
leads to higher computing load. In Sliding Window technique, in instant k,
quadratic Renyi’s entropy is determined in Equations (11) and (12). At PDF
the tracking error current model is used to get the stochastic estimate given
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in Equations (13) and (14).

H(eik) = − log

∫ bei

aei

γ2
eik(τi)dτi = − log(E[γeik(τi]) (i = 1, 2)

(11)

H(eik, e2k) = − log

∫ be1

ae1

∫ be2

ae2

γ2
e1k,e2k

(τ1, τ2)dτ2dτ1

= − log(E[γe1ke2k(τ1, τ2)]) (12)

H(eik) = − log(E[γeik(τi)]) ≈ − log(γeik(τi)) (13)

H(e1k,e2k) ≈ − log(E[γe1kγe2k(τ1τ2)]) = − log(γe1kγe2k(τ1τ2)) (14)

where eik (i = 1, 2) represents tracking error recent models on k
instant. It also estimates the (joint) PDF of tracking error on L models
{ei,−L, ei,k−L+1, . . . , ei,k−1}. After that, PDF estimation (joint) is specified
in Equations (15) and (16). Hence stochastic estimate of tracking error (joint)
entropy in instant k is given in Equations (17) and (18)

γeik(eik) =
1

L

k−1∑
j=k−L

k(eik − eij , σi) (i = 1, 2) (15)

γe1keek(e1k, eek) =
1

L

k−1∑
i=k−L

k(e1k − e1j , σ1)k(e2k − e2j , σ2) (16)

H(eik) = − log

 1

L

k−1∑
j=k−L

k(eik − eij , σi)

 (i = 1, 2) (17)

H(e1k, e2k) = − log
1

L

k−1∑
j=k−L

k(e1k − e1j , σ1)k(e2k − e2j , σ2) (18)

The non parametric estimated output obtained from KDE and sliding
window technique are given to the fuzzy controller, which in turn selects the
best estimated output. Fuzzy tuning Rules framed to get the maximum value
of PDF of DFIG based WECS is given in Table 3.

Fuzzy controller output is taken as V∗qr and V∗dr is obtained from PI
controller. V∗qr and V∗dr are given to dq0 to abc transformation. Vabc is given
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Figure 14 The input membership function for non parametric estimated output PDF
obtained from kernel density estimation.
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Figure 15 The input membership function for non parametric estimated output PDF
obtained from sliding window technique.
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Figure 16 The output membership function for PDF obtained from kernel density estimation
and sliding window technique.

to GSC with PI controller for generating the desired output. The PI controller
is designed for GSC to achieve stable DC link voltage then to enhance the
rotor side power factor. The input membership function for non parametric
estimated output PDF obtained from KDE with sliding window technique
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Table 3 Fuzzy tuning rules to get the maximum value of PDF of DFIG based WECS
γs
γk LB MB HB

LB MB MB HB

MB MB MB HB

HB HB HB HB

Figure 17 Flow chart for stochastic distribution controller designed to obtain the PDF
of V∗qr.

is given in Figures 14 and 15. The output membership function for PDF
obtained from KDE with sliding window technique is given in Figure 16.
Flow chart for Stochastic distribution controller designed to obtain the PDF
of V∗qr of the system is given in in Figure 17.
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4 Results and Discussion

The step changes are given in wind speed and efficiency of DFIG based
WECS is observed and analysed for PI, gain scheduling PI and SDC. PI
controller tries to minimize the steady state error of real power then makes
the DFIG based WECS stable. To overcome the fluctuations at real power of
DFIG based WECS, which is not reduced by PI controller, gain scheduling
proportional integral controller is developed. Gain Scheduling PI controller
adopts Fuzzy Logic method to adjust the controller gain values of PI con-
troller. The proportional gain Kp varies between 0.05 to 0.95 and integral
gain Ki takes the range between 0.05 to 0.9. The real power obtained from
the designed gain scheduling PI controller reveals that it does not minimize
the steady state error like PI controller, but it minimizes the fluctuations in
the real power compared to PI controller. To minimize the steady state error
and fluctuations at real power of DFIG based WECS, SDC is proposed. SDC
directly controls the RSC voltage (Vqr) depends on the PDF of DFIG based
WECS obtained from training the neural network controller with minimum
error entropy control strategy. SDC, referred to as PDF shaping control
[22, 25, 26] decreases the steady state error and fluctuations in the real power
of DFIG depend WECS. DFIG based WECS reactive power flowing from
grid to generator’s stator windings is very much reduced to maximize the real
power of DFIG based WECS. Average values of dynamic parameters like
active and reactive power, DFIG based WECS generator speed is compared
and given in Table 4.

Figure 18 shows the step changes in wind speed given as input. Figure 19
shows the generator speed of DFIG based WECS. SDC increases the genera-
tor speed compared to PI with gain scheduling PI controller. Figure 20 depicts
the real power of DFIG based WECS with PI and gain Scheduling propor-
tional integral controller. Gain Scheduling PI controller reduced fluctuations
of real power comparing with proportional integral controller. Figure 21

Table 4 Comparison of the average values of dynamic parameters DFIG based WECS
Average Value Stochastic
of System Without PI Gain Scheduling Distribution
Parameters Controller Controller PI Controller Controller

Real Power (p.u) 0.688 0.904001 0.892151 1.56

Reactive Power (p.u) 0.464 0.562007 0.556035 9.80392e-56

Generator Speed (p.u) 1.496 1.667081 1.655831 1.67276
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Figure 18 Wind speed with step changes.

Figure 19 Generator speed of DFIG based WECS.

indicates real power of DFIG based WECS with PI, gain scheduling PI and
SDC. It shows that stochastic controller minimizes the steady state error and
fluctuations on DFIG based WECS real power. Figure 22 represents DFIG
based WECS reactive power with proportional integral, gain scheduling PI
and SDC. DFIG based WECS reactive power with stochastic distribution
controller is reduced to a large extent.
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Figure 20 Real power of DFIG based WECS with PI and gain scheduling PI controller.

Figure 21 Real power of DFIG based WECS with PI, gain scheduling PI and stochastic
distribution controllers.

Figure 22 DFIG based WECS reactive power with PI, gain scheduling PI and stochastic
distribution controllers.
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5 Conclusion

This paper proposed a stochastic distribution control strategy for DFIG based
WECS. The proposed controller generator speed is strong against uncertain
wind speeds by controlling the real and reactive power. It maximizes the real
power of DFIG based WECS moreover attenuates the fluctuations to huge
extent. Simultaneously, it reduces the reactive power fascinated from grid. It
enhances the power quality of generated electrical power by WT with DFIG.
It has a desirable dynamic response and ensures the closed loop stability
on entire wind speed operating region. It increases the mechanical parts
life expectancy of the system and also guarantees the safe and acceptable
operation of WECS.
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