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Abstract

The world is moving towards more electric aircraft due to its benefits for
more efficiency and less dependence on conventional energy. However, as
conventional energy has its drawback of reduced total energy efficiency
for aircraft, the use of more electronics is accountable for higher losses,
unbalance currents, reduced power supply performance, and generation of
harmonics. In this paper, a comparison among three conventional control
techniques (Synchronous Rotating Frame, Sinusoidal Current Control and
Constant Instantaneous Power Control) and advanced control techniques
(ANN, fuzzy logic controller, genetic algorithm, adaptive blanket body cover
algorithm, the combination of ANN & fuzzy logic controller and ANN with
the application of genetic & adaptive blanket body search algorithm) for
aircraft shunt active power filter has been proposed. Furthermore, the best
control schemes for aircraft active power filters will be proposed to depend
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upon the THD of source current and voltage and the compensation time
(speed).

Keywords: Aircraft electric power systems, aircraft active power filter,
ANN, fuzzy logic control, adaptive blanket body search algorithm, genetic
algorithm, more electric aircraft.

1 Introduction

The world is slowly moving to remove the bar of dependency on the oil
industry to meet its energy demand and so the aerospace industry. The more
electric aircraft is one step towards this. Hopefully, shortly one can see the
all-electric aircraft [1-3]. It starts initially with a greater application of power
electronics in the aircraft. Recent power electronics researches have led us
toward power generation and conversion, actuators, and other control systems
to be used in the flight. However, everything good also comes with some
limitations [4]. The result is harmonics, unbalanced current, higher losses,
and reduced performance of aircraft systems [1, 5]. The one solution for all
the discussed problems is the aircraft active power filter. There are many
control techniques, i.e., “conventional (Constant Instantaneous Power Con-
trol (CIPC), Sinusoidal Current Control (SCC), and Synchronous Rotating
Frame (SRF)) and Artificial intelligence-based advanced control schemes
like ANN, Fuzzy logic control (FLC), Genetic algorithm (GA), PSO, Bee
algorithm (BA), adaptive blanket body search algorithm (ABBC), adaptive
mosquito blood search algorithm (AMBS), adaptive spider net search algo-
rithm (ASNS), adaptive neuro-fuzzy interference system (ANFIS) and many
more” [6-14].

The purpose of aircraft active filters is finally similar. “The primary goal
is to compensate for current harmonics in the aircraft system. A variety
of active filters also extend upon this initial goal to include reactive power
compensation and as an outcome of this power quality improvement. In real-
time, their controllers decide the compensating current reference and compel
a power converter to create it accurately. In this way, the active filtering can
be discriminating and adaptive. A shunt active filter can compensate only for
the harmonic current of a selected non-linear load. It can unremittingly trail
alters in harmonic content. This active filter model subtly compensates for
current harmonics and reduces the total harmonic distortion” [15, 16].

In this paper, the model of the system using three loads has been pre-
sented. “Three different loads have been connected to the aircraft system.
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The set of the load consists of a three-phase rectifier parallel with the induc-
tive load and an unbalanced load connected a phase with the midpoint; the
three-phase rectifier connects a pure resistance directly, three-phase inductive
load linked with the ground point and combined all three loads connected
with the system together at a different time interval to study of the effec-
tiveness of the control schemes verify the functionality of the active filter
in its ability to compensate for current harmonics” [6]. Most of the circuit
parameters used have been taken from [5]. “The simulation will be done for
15 cycles, and results will be analyzed based on the THD of current and
voltage” [17, 18].

2 Aircraft Active Power Filter

Figure 1 shows the model of the filter for an aircraft power system. “A shunt
active filter is believed a current source because it injects non-sinusoidal
current through the parallel branch of the network to compensate for the
current harmonic requirement of the non-linear load. The active filter con-
troller’s function is to sense and examine the load current and determine
the correct reference harmonic current for the inverter. Once the correct
reference harmonic content is decided, this reference current is fed through
an appropriate current controller, sent to the inverter for injection into the
network [1, 5].
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Figure 1 Model of the shunt active power filter for 400 Hz aircraft system.
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There are some troubles related to the dc capacitor voltages to works
out in the split-capacitor converter topology. This converter topology permits
currents to flow through one of the dc capacitors (C; or Cq) and to return to
the ac neural wire, causing voltage deviation between the dc capacitors. Once
this voltage deviation is controlled, the split-capacitor converter topology
can become an attractive solution to be generally applied in aircraft systems
since it uses an (n - 1)-leg PWM converter. For example, a 2-leg converter
could be used in a three-phase system, where two phases are connected to
the converter legs and the third one is connected to the midpoint of the dc
bus [7, 16]. Current control is employed through feedback modulation of a
dynamic hysteresis band PWM controller. The shunt line current trails the
reference current within a hysteresis band. By comparing the reference cur-
rents computed by the controller with the measured values of compensation
currents” [15, 19].

3 Compensation Techniques

An algorithm must be developed based on a power theory that can construe
the measured data to produce a reference signal to control a switching
compensator.

3.1 Conventional Compensation Techniques

This section will present the three techniques, i.e., CIPC, SCC, and SREF, to
develop the reference signal generating algorithms.

3.1.1 Aircraft constant instantaneous power control (ACIPC)
strategy

CIPC is the most popular conventional technique for compensation using the

active filter. With a little alteration in the 50/60 Hz applicable CIPC strategy,

it can also be used in a 400 Hz aircraft system. To function CIPC well in an

aircraft system, the LPFs need to be 6.4 KHz, shown in Figure 2. The model’s

further processing is the same as in the 50/60 Hz supply system [15, 16].

3.1.2 Aircraft sinusoidal current control (ASCC) strategy

It is well known that the ACIPC strategy does not perform very well in
case of unbalanced conditions. Therefore, a new strategy named an ASCC
strategy has been developed with some ACIPC strategy changes to overcome
this issue. “The modification includes a positive sequence detector shown in
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Figure 2 Control of aircraft active power filter (AAPF) using aircraft constant instantaneous
power control (ACIPC) strategy.
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Figure 3 Fundamental positive-sequence voltage detector for aircraft sinusoidal current
control (ASCC) strategy.

Figure 3, which replaced the 6.4 kHz cut-off frequency low-pass filters and
correctly finds the phase angle and frequency of the fundamental positive
sequence voltage component and shunt active power filter compensates the
reactive power of the load. The further processing of the model is of same as
in the ACIPC technique discussed above” [9, 20].

3.1.3 Aircraft synchronous rotating frame (ASRF) strategy
Synchronous Rotating Frame (SRF) Strategy is based on Park transforma-
tions. After the transformation into direct, quadrature, and zero-sequence
components, it can be analyzed very simply. The details of the functioning
of the techniques can be found in [17].

Little alterations in the model’s functioning shown in Figure 4 are also
required in this technique to perform well in the aircraft system. “For this
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Figure 4 Simulink model of the aircraft active power filter (AAPF) using aircraft syn-
chronous reference frame (ASRF) strategy.

reason, the zero-sequence component of current has not been considered.
So, the zero-sequence subtract block takes away the zero-sequence current
from the current and output current and comprises only positive sequence
and negative sequence components. After its park transformation, the output
current in the d-q frame is composed of only instantaneous active and reactive
current. A low-pass filter attains the division of the dc and ac components of
the active current for compensation of the harmonic and reactive current. This
active current passes through a low pass filter. The signal came from the dc
voltage regulator. Finally, a Park counter-transformation subtracting from the
load currents generates the reference current” [21].

3.2 Advanced Compensation Techniques

In this section, different advanced controllers/Algorithms have been dis-
cussed that may be used to optimize the conventional control strategies.
For example, ANN controller, Fuzzy logic controller, Genetic algorithm,
Adaptive blanket body search algorithm, and a combination of these have
been used to check these strategies’ improved performances.

3.2.1 Aircraft active power filter using artificial neural network
(ANN) controller

In this paper, an ANN comprises two hidden layers with ten neurons each. In
addition, one output layer with three neurons has been applied to CIPC, SCC,
and SRF strategies, respectively [11, 12, 22]. “The logarithmic activation
function is the base of the two hidden layers of neurons. The linear activation
function is n for the output layer neurons” [23]. Figure 5 presents the model
of the ANN controller.



Active Power Filters in Aircraft Electric Power Systems 905

Hidden Hidden Output Weights and bias
layer 1 layer 2

layer

adaptation

I Ica, Icb, Ice
|

Va, Vb, Ve, error | Mean square error

computation

¥

Tea, Ich, Iec

Onr

Neuron with loganthmic activation Newron with linear
function activation finction

Figure 5 ANN for modeling.

“The ANN has seven inputs (v,, vy, Ve, dc voltage error, i, ip, ic)
and three outputs (iya, iy, ixc) as observed in the different strategies. The
adaptation of the weights (W) and bias (b) in the ANN is based, first, on
the computation of the mean square error (MSE) between the outputs of
the PQ technique and those of the ANN, and secondly, on the execution of
‘Levenberg-Marquardt backpropagation’ algorithm™ [17, 23].

3.3 Aircraft active power filter using fuzzy logic controller

“The steps involved in designing a controller using fuzzy logic require a
certain set of information, which is explained in subsequent sections. Once
the design problem is identified, the algorithm is simple, i.e., the input and
output variables required and the desired kind of output” [24].

The fuzzy logic consists of the following four main parts. First, a few sets
of information/rules must be made based on the complexity and performance
requirements. The more the number of rules, the more the delay, but the
output may be more accurate [10, 18, 25]. Considering the balance between
the number of rules and output, a set of rules has been defined, as shown in
Table 1.

 Fuzzifier (Transformation 1)

* Knowledge Base

* The inference engine is the heart of FLC
e Defuzzifier (Transformation 2)
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Table 1 Fuzzy rules [24]

de/dt Error Negative Zero Positive

Negative Big Negative  Positive ~ Big Positive
Zero Big Negative Zero Big Positive
Positive Big Negative  Negative  Big Positive

3.3.1 Aircraft active power filter using genetic algorithm

“A genetic algorithm (GA) is a search technique used in computing to find an
optimal solution for a search problem. Commonly, the algorithm terminates if
a maximum number of generations has been produced or a satisfactory fitness
level has been reached for the population” [23, 25-28].

In this paper, the inductor filter’s optimum value (L¢) has been calculated
using a Genetic Algorithm. It has been done offline using a small program
written in MATLAB with defined limits, inequality, and bounds. Some of the
data has been used from the previous ANN model. The optimized value is
0.187 mH as compare to the previous of 0.25 mH.

3.3.2 Aircraft active power filter using adaptive blanket body
cover algorithm (ABBC)

The novel ABBC Algorithm was proposed by Khalid S. in 2017 [8]. This

algorithm functions efficiently as a search method for non-linear continuous

optimization issues.

Humans’ basic nature inspires this algorithm’s concept for using the
blanket to cover the body during chilled winter. “The blanket has been
initially folded to cover the upper body. When the body senses the cold in the
lower portion, the upper fold will be opened. After that, the lower portion of
the blanket will be folded to cover the body. Only the lower or upper portion
fold alone cannot cover the whole body when the full body senses the cold.
So, the full blanket will be folded such that the layer of the blanket will be
doubled” [8, 29].

This paper has applied this algorithm to search the optimum values for
Kp and Ki used in the PI controller of the voltage control loop of AAPF.

“The objective function (OB) is determined to give their optimum value
with the conditions of % overshoot, rise time, and settling time. Thus, the
objective function has an equation that has three variables, i.e., % overshoot,
rise time, and settling time. Initially, the Boundary of Kp and Ki, their higher
limits and lower limits, then radius value, ABBC backtracking conditions,
objective function, and stop criteria have been outlined” [29].
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Figure 6 presents the flow chart used to search the optimum values using
the ABBC algorithm. “The values initially used for Kp and Ki were 0.1 and
45, respectively. After the application of this algorithm, the new calculated
values are 0.184 and 14.32. It has been ascertained that whereas using these
ABBC calculated values of Kp and Ki, the THD of supply current and voltage

are reduced staggeringly, proving that the values are optimum” [29].

The effectiveness of this algorithm is proved by the great results and less
computational time. “There has been a counter used, which will count the
number of iterations. Therefore the program will stop once the count is up to

forty, i.e., the stopping criteria are forty iterations” [8].
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3.3.3 Aircraft active power filter using combination of artificial
intelligent techniques

In this section, combinations of different advanced techniques discussed
before have been simulated for the aircraft power utility. Two combinations
have been taken. In the first combination, ANN and FLC have been applied
to the system. They have been simulated to estimate the system’s perfor-
mance. In the second combination, ABBC, GA, and ANN control have been
considered to evaluate the optimized performance of the AAPF.

3.3.4 AAPF using ANN & fuzzy logic controller

As discussed earlier that ANN has been applied to the current control section.
In contrast, FLC has been associated to the voltage control section of the
filter. The same has been applied in this section. The difference is that they
have been applied together to optimize the system together.

3.3.5 Aircraft active power filter using ANN with application of
genetic & adaptive blanket body search algorithm

As discussed earlier, the ABBC algorithm has been applied to discover the
Kp and KI values of the controller used in the voltage control loop. GA has
been employed to find out the optimum value of the filter inductor and, ANN
has been applied to the current control section. The same has been applied in
this section. The difference is that they have been applied together to optimize
the system together.

4 Comparisons Using Simulation Results

In this section, the comparisons have been made based on the THD calculated
by Matlab. Initially, the simulation results of the aircraft system without any
filter, i.e., the uncompensated system, have been discussed. Later on, the
comparisons were made based on the simulation results for conventional and
advanced control schemes.

4.1 Uncompensated System

“The set of loads for the aircraft system consist of three loads. The first load is
a three-phase rectifier parallel with the inductive load and an unbalanced load
connected in a phase with a midpoint (Load 1). The second one is a three-
phase rectifier that connects a pure resistance directly (Load 2). The third
one is a three-phase inductive load linked with the ground point (Load 3). A
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Figure 7 Waveforms of source voltage and current with three loads.

combination of all three loads connected with the system together at different
time intervals to study the effectiveness of the control schemes has been used
to verify the active filter’s functionality in its ability to compensate for current
harmonics. For all three loads connected, Load 1 is always connected, Load
2 is initially connected and is disconnected after every 2.5 cycles, Load 3 is
connected and disconnected after every half cycle. All the simulations have
been done for 15 cycles” [29]. Figure 7 shows the MATLAB/SIMULINK
model for load 1, 2, and 3 connected in the circuit. Load 1 is always con-
nected. Load 2 is initially connected and disconnects after every 2.5 cycles.
Load 3 connects to the aircraft supply system after every half cycle.

The THD of source current and source voltage was 9.5 percent and 1.55
percent, respectively, according to the simulation findings given in Figure 7,
which is outside the stated limit of international standards [30-36].

4.2 Compensated System

In this section, three different loads connected with the aircraft system will be
simulated alone and together at different time intervals. THD of current and
voltage will be calculated. In the following sections, compensated systems
using conventional and advanced control techniques have been discussed.
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4.2.1 Compensated systems using conventional control
techniques

This section will talk about the simulation results for three power theories,

i.e., constant instantaneous power control theory, sinusoidal current control

theory, and synchronous reference frame theory, to develop the reference

signal generating algorithms.

4.2.1.1 Simulation of aircraft active power filter with ACIPC,
ASCC & ASRF strategy

As depicted in Figure 8, the results show that the THDs of source current

for the ACIPC, ASCC, and ASREF strategy were 2.84%, 2.72%, and 2.78%,

respectively. On the other hand, THDs of source voltage have been calculated

by 1.88%, 1.65%, and 1.91% for the ACIPC, ASCC, and ASREF strategies.

200
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Figure 8 Source voltage and Source current for ACIPC, ASCC & ASREF strategy.
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Therefore, the compensation has been completed within 0.0147 sec, 0.0100
sec, and 0.0072 sec respectively, for the ACIPC, ASCC, and ASRF strategy.

4.2.2 Compensation using advanced controllers

In this section, different advanced controllers/Algorithms have been used to
optimize the conventional control strategies. Consequently, ANN controller,
Fuzzy logic controller, Genetic algorithm, Adaptive blanket body search
algorithm, and a combination of these have been used in the dc loop of the
current control section to optimize control strategies.

4.2.2.1 Simulation of aircraft active power filter with ACIPC,
ASCC & ASRF strategies using ANN

As depicted in Figure 9, the results show that the source current THDs for the
ACIPC-ANN, ASCC-ANN, and ASRF-ANN strategy were 3.01%, 2.83%,
and 2.73%, respectively. THDs of source voltage have been calculated by
1.78%, 1.55%, and 1.91% for the ACIPC-ANN, ASCC-ANN, and ASRF-
ANN strategies. Therefore, the compensation has been completed within
0.0066 sec, 0.0066 sec, and 0.0068 sec respectively, for the ACIPC-ANN,
ASCC-ANN, and ASRF-ANN strategy.

4.2.2.2 Simulation of aircraft active power filter with ACIPC,
ASCC, & ASREF strategies using fuzzy logic controller

As depicted in Figure 10, the results indicate that the THDs of source
current for the ACIPC-FLC, ASCC-FLC, and ASRF-FLC strategy were
2.33%, 2.22%, and 2.30%, respectively. On the other hand, THDs of source
voltage have been calculated 1.03%, 1.01%, and 1.10% for the ACIPC-FLC,
ASCC-FLC, and ASRF-FLC strategy. Therefore, the compensation has been
completed within 0.0044 sec, 0.0066 sec, and 0.0067 sec for the ACIPC-FLC,
ASCC-FLC, and ASRF-FLC strategy.

4.2.2.3 Simulation of active power filter with ACIPC, ASCC, &
ASRF strategies using genetic algorithm
As depicted in Figure 11, the results indicate that the THDs of source current
for the CIPC-GA, SCC-GA, and SRF-GA strategy were 2.12%, 1.92%, and
2.11%, respectively. THDs of source voltage were 1.88%, 1.60%, and 2.01%
for the ACIPC-GA, ASCC-GA, and ASRF-GA strategies. The compensation
time at which the waveforms for source voltage and source current have
become sinusoidal was 0.0066 sec, 0.0066 sec, and 0.0064 sec for the
ACIPC-GA, ASCC-GA ASRF-GA strategy, respectively.
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4.2.2.4 Simulation of active power filter with ACIPC, ASCC, &
ASRF strategies using adaptive blanket body search
algorithm

As depicted in Figure 12, the results indicate that the THDs of source cur-

rent for the ACIPC-ABBC, ASCC-ABBC, and ASRF-ABBC strategy were

2.72%, 2.42%, and 2.62%, respectively. THDs of source voltage were 1.07%,
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Figure 10 Source voltage and source current for ACIPC, ASCC & ASREF strategies using
fuzzy logic controller.

1.06%, and 1.03% for the ACIPC-ABBC, ASCC-ABBC, and ASRF-ABBC
strategy. The compensation time was 0.0064 sec, 0.0065 sec, and 0.0068 sec
for the ACIPC-ABBC, ASCC-ABBC, and ASRF-ABBC strategy.

4.2.2.5 Simulation of active power filter with ACIPC, ASCC, &
ASREF strategies using ANN & fuzzy logic controller

The results in Figure 13 gave a picture of THDs of source current for

the ACIPC-ANN-FLC, ASCC-ANN-FLC, and ASRF-ANN-FLC strategy,
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Figure 11 Source voltage and source current for ACIPC, ASCC & ASREF strategies using
genetic algorithm.

which were 2.30%, 2.20%, and 2.27%, respectively. THDs of source voltage
were 1.01%, 1.01%, and 1.05% for the ACIPC-ANN-FLC, ASCC-ANN-
FLC, and ASRF-ANN-FLC strategies. The compensation time was 0.0040
sec, 0.0065 sec, and 0.0065 sec for the ACIPC-ANN-FLC, ASCC-ANN-
FLC, and ASRF-ANN-FLC strategies.
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Figure 12 Source voltage and source current for ACIPC, ASCC & ASREF strategies using
adaptive blanket body search algorithm.

4.2.2.6 Simulation of active power filter with ACIPC, ASCC, &
ASRF strategies using ANN with application of genetic &
adaptive blanket body search algorithm

The results in Figure 14 gave a picture of THDs of source cur-

rent for the ACIPC-ANN-GA-ABBC, ASCC-ANN-GA-ABBC, SRF-ANN-

GA-ABBC strategy, and they were 0.93%, 0.40%, and 2.17%, respec-

tively. THDs of source voltage were 1.15%, 0.78%, and 1.03% for the
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Figure 14 Source voltage and source current for ACIPC, ASCC & ASREF strategies using
ANN with application of genetic & adaptive blanket body search algorithm.
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ACIPC-ANN-GA-ABBC, ASCC-ANN-GA-ABBCASRF-ANN-GA-ABBC
strategy, respectively. The compensation time was 0.0040 sec, 0.0030 sec,
and 0.0064 sec for the ACIPC-ANN-GA-ABBC, ASCC-ANN-GA-ABBC,
and ASRF-ANN-GA-ABBC strategies, respectively.

5 Results and Discussions

A comparative analysis between the conventional control schemes and
advanced control techniques has been carried out in this section. The basis
for the comparison is total harmonic distortion (THD) calculated for source
current & source voltage and the compensation time. The results and discus-
sion henceforth have highlighted optimum filter selection based on the least
THD and compensation time.

5.1 Analysis of Results Based on THD for Conventional Control
Schemes for the Aircraft Supply System

THD of voltage and current has been computed for all three conventional
control strategies modeled and simulated. Table 2 presents the THDs and
compensation times of ACIPC, ASCC, ASRF control strategy, respectively,
for the different load connected. THD-I (%) shows the THD of source current,
and THD-V (%) shows the THD of source voltage, respectively.

From the results, as depicted in Figure 15, the ASCC strategy has been
discovered best for the minimum THD, and ASRF has been found fastest
based on compensation time.

5.2 Analysis of Results Based on THD for Among Advanced and
Conventional Control Schemes for the Aircraft Supply
System

Four artificial intelligent techniques ANN, FLC, GA, and ABBC algorithm,
have been simulated. These techniques have been simulated alone as well as

Table 2 Source current, source voltage thd and compensation time of conventional control
scheme

Strategy THD-1(%) THD-V (%) Compensation Time(sec)
ACIPC 2.84 1.88 0.0147
ASCC 2.72 1.65 0.0100
ASRF 2.78 1.91 0.0072
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Figure 15 Bar chart of THD for source current and voltage of conventional control tech-
niques.

Table 3 Source current, source voltage thds and compensation time of different advanced
control techniques

Strategy THD-1 (%) THD-V (%) Compensation Time(sec)
ACIPC-ANN 3.01 1.78 0.0066
ASCC-ANN 2.83 1.55 0.0066
ASRF-ANN 2.73 1.91 0.0068
ACIPC-FLC 2.33 1.03 0.0044
ASCC-FLC 2.22 1.01 0.0066
ASRF-FLC 2.30 1.10 0.0067
ACIPC-GA 2.12 1.88 0.0066
ASCC-GA 1.92 1.60 0.0066
ASRF-GA 2.11 2.01 0.0064
ACIPC-ABBC 2.72 1.07 0.0064
ASCC-ABBC 242 1.06 0.0065
ASRF-ABBC 2.62 1.03 0.0068
ACIPC-ANN-FLC 2.30 1.01 0.0040
ASCC-ANN-FLC 2.20 1.01 0.0065
ASRF-ANN-FLC 2.27 1.05 0.0065
ACIPC-ANN-GA-ABBC 0.93 1.15 0.0040
ASCC-ANN-GA-ABBC 0.40 0.78 0.0030
ASRF-ANN-GA-ABBC 2.17 1.03 0.0064

with their best combinations. The combinations used are ANN & FLC and
GA, ABBC & ANN. These advanced techniques have been used to optimize
the earlier discussed three conventional control techniques for different loads
connected at different time intervals. As presented in Table 4, THD of voltage
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Figure 16 Bar chart of THD for source current and voltage of advanced control techniques.

Table 4 Comparisons of Strategies employed in AAPF

Optimum Control Optimum Control Strategy

Compensation Strategy Based Based on Source THD
Technique on Compensation  THD(Current) THD(Voltage)
Conventional ASRF ASCC

Advanced ASCC-ANN-GA-ABBC

Conventional & Advanced ASCC-ANN-GA-ABBC

and current has also been computed for all advanced techniques. Their
analysis has been done.

As shown in Figure 16 and Table 4, these results have been compared,
and their analysis has been done. Then, it was found that the ASCC-ANN-
GA-ABBC technique has been found best among all of them.

6 Conclusion

In this paper, a comparison has been made among conventional and advanced
control techniques used in AAPF. Three types of loads have been used to
check each control technique’s ability individually or in combination with
others. The basis to check the ability was THD and the compensation time
(speed). The optimum control technique has been found as the Aircraft
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Sinusoidal Current control Strategy for minimum THD of current and voltage
in conventional control strategies. On the other hand, the fastest compensation
has been achieved by the Aircraft Synchronous reference frame Strategy.
Finally, among advanced and conventional control techniques, ASCC-ANN-
GA-ABBC has been discovered as best for minimum THD and fastest
compensation.
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