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Abstract

In power system, maintaining the load generation balance is critical. This
paper proposes an artificial electric field algorithm (AEFA) for dynamic
economic load dispatch (DELD) in a power system with security constraints,
taking into account renewable energy sources (RES).. The RES penetration
and total savings are examined considering variation of underestimation and
overestimation costs associated with RES. Further, the impact of increased
RES penetration on thermal fuel and overall costs has been studied. The
AEFA algorithm performs better than PSO and DE, in terms of performance.
The result reveals that when RES penetration rises savings as well as net
cost of RES rises. Numerically, at 65% penetration of RES, a savings of
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28.19% is achieved in the generator fuel cost and the RES penetration leads
to a reduction in the thermal unit’s fuel cost.

Keywords: Dynamic economic load dispatch, artificial electric field algo-
rithm, renewable energy sources, optimization.

Nomenclature
Pr Rated wind power
Pw,t Wind power at any time t
vr Rated wind speed
vt Wind speed at any time t
vcf Cut-off wind speed
vin Cut-inwind speed
σt Standard deviation
θt Angle of inclination of sun
St Solar power at time t
Smax ,t Maximum solar power at time t
(·) gamma function
PGi ,t Thermal power from unit j at time t
Pwj ,t Wind power from unit j at time t
PPVK ,t Solar power from unit j at time t
NG Number of thermal generators
NW Number of wind generators
NPV Number of solar power generator
H Total number of hours under consideration
Pload Power demand by load
C Total cost
C(PGi ,t ) Fuel cost of thermal generators
C(Pwj ,t ) Operating cost of wind generators
C(PPVK ,t ) Operating cost of solar generators

1 Introduction

Complexity is rising with the increasing integration of renewable energy
sources (RESs) in the existing power. The operation and planning of this
system have become a challenging issue for the utilities [1]. The scheduling of
the generators is one of such operational issues, which is essential for secure
power system operation to fulfill the load demand [2]. The issue of generator
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scheduling has been addressed using several methodologies [3], such as Static
economic load dispatch (SELD) [4]. The SELD fails to include the time-
varying load and generator ramp rates. Also, the look ahead capability is
missing [5]. The dynamic economic load dispatch (DELD) is an extension
of SELD, allowing the power system’s load variations and dynamic nature,
i.e., generator ramp rates [6]. It is equipped with the look-ahead capability
for load scheduling. For DELD, the load demand is divided into small
durations during which the load is kept constant, which is a temporary steady-
state [7]. Due to the quick dispatching nature of thermal and hydropower,
they are considered the primary energy source. There are various optimization
algorithms developed to optimize the power system operation [8].

This paper proposes an artificial electric field algorithm (AEFA) as
an optimization technique to perform the DELD [9, 10]. AEFA provides
(i) good performance for non-linear optimization problems [9], (ii) it has only
two parameters to tune, (ii) faster convergence, (iii) better exploration and
exploitation ability, and (iii) reduced computational effort [11]. The results
are compared to differential evolution (DE) and particle swarm optimization
(PSO). It shows that AEFA can provide better results than PSO and DE. With
rising RES levels in the existing power, it is essential to study their impact
on the power system scheduling for enhancing the operating efficiency of the
overall power system. The information at different RES penetration levels in
the power system is vital to identify which type of RES can be used at a site.
The higher penetration level of RES in the power system faces some severe
challenges [12–14]. An increment in penetration level affects the transient
stability of power in the system [15]. There are significant issues faced by
increasing RES penetration in the power system, such as Interconnection
problems due to different voltage levels and topology [16, 17]. To determine
the effect of higher penetration levels, a solution for the integrated DELD
problem has been done considering different penetration levels with PSO,
DE, and AEFA. The effect of a higher penetration level is discussed. The
work presented in this work is primarily based on the work in reference [18].
However, it extended the work by analysing the penetration of RES in the sys-
tem and application of AEFA for determining the solution. The contribution
can be summarized as:

(a) Application of AEFA algorithm to solve DELD with RES and it
performs better than PSO and DE, in terms of performance.

(b) Examination of the RES penetration and total savings considering
variation of underestimation and overestimation costs associated with
RES.
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(c) Study of impact of increased RES penetration on thermal fuel and
overall costs has been studied.

(d) The results show that the when RES penetration rises savings as well as
net cost of RES rises.

The remaining paper is organized as, in Section 2, the problem formula-
tion is discussed. In Section 3, the AEFA algorithm is elaborated. The results
and discussions are presented in Section 4. Finally, conclusions are drawn in
Section 5.

2 Problem Formulation

The problem includes three energy sources: thermal power generation, solar,
and wind energy system as RES. These sources are modeled mathematically.
The problem is formulated as a dispatch problem for thermal generation only
and different penetration levels of RES, which is solved using AEFA, PSO,
and DE. The complete process is shown in Figure 1. The mathematical model
of the problem is presented below.

 
Figure 1 Flowchart of the methodology.
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2.1 Modelling of RES

Here the models the solar PV and wind energy are discussed. They aremod-
eled through Beta and Weibull probability density functions (PDFs) [17].

2.1.1 Wind power model
The stochastic nature of wind is developed using the two-parameter (scale
and space) based Weibull distribution function [18]. The output power char-
acteristics for the wind speed vtcan be taken as a simplified linear model,
given as [19],

PW.t(vt) =


0 vt < vin, vt > vcf

PW
vt − vin
vr − vin

vin ≤ vt ≤ vr

PW vin ≤ vt ≤ vr

(1)

Using the discrete PDF, wind power PDF is expressed as (2)

Pr(PW.t = 0) = Pr(vt < vin) + Pr(vt > vcf )

= 1− exp

[
−
(
vin
σt

)θt]
+ exp

[
−
(
vcf
σt

)θt]
(2)

The probability of occurrence of the event PW,t = PW is

Pr(PW.t = PW ) = Pr(vr < vt < vcf )

= exp

[
−
(
vr
σt

)θt]
+ exp

[
−
(
vcf
σt

)θt]
(3)

The wind speed energy feature is constant and linear (vin < v < vcf ).
The PDF of wind speed power for the interval of (0 < PW,t < PW ) is given as

fpW.t(PW.t) =

(
θthvin
σtPW

)
(

1 + hPW.t
PW

)
vin

σt



× exp

−

(

1 + hPW.t
PW

)
σt

θt
 (4)

where h = (vr − vin)/vin.
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2.1.2 Solar power model
The solar power generated varies with the solar insolation, PV cell tem-
perature, and type of PV modules. The output power of the PV module is
calculated using solar temperature and solar irradiance [19]. The variation
in solar energy can be estimated using the information about (i) orientation
of the sun and (ii) availability time. The corresponding Beta distribution
function fS.t(St) can be expressed as [20]

fS.t(St) =

{
Γ(δt + ∂t)

Γ(δt)Γ(∂t)

(
St

Smax .t

)δt−1(
1− St

Smax .t

)∂t−1}
,

0 ≤
(

St
Smax .t

)
≤ 1, δt, ∂t > 0 (5)

Where, S represents the solar irradiance, sub-script t and max denotes the
time and maximum irradiance at the location. The Beta distribution param-
eters (δt, ∂t) can be calculated using the mean (µt) and standard deviation
(∅t) [20]. The solar irradiance power PDF can be presented using the Beta
distribution function [20].

2.2 DELD Cost Function

The overall DELD objective function using thermal generator fuel cost,
wind power plant operational cost, and solar power plant operational cost
is given [21].

C =
H∑
t=1

NG∑
i=1

C(PGi,t) +

NW∑
j=1

C(PWj,t) +

NPV∑
K=1

C(PPV K,t)

 (6)

A thermal generator’s cost is determined by a quadratic non-convex
objective function [22], which includes the valve point effect (VPL) [23].

The cost of running a wind-powered generator is divided into three parts:
(i) Direct cost: This is the price of a wind turbine. This expense is ignored if
the system operator owns it. (ii) Cost of Underestimation: This is the cost of
not utilizing available wind power. (iii) Cost of overestimation: If available
wind power is less than scheduled power [24].

The cost of operating a solar-PV module also consists of three parts: (i)
Direct cost: It is the cost of scheduled solar power, (ii) Underestimation cost,
and (iii) Overestimation cost. The underestimation and overestimation costs
are similar to that of the wind operation cost [24].
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2.3 Constraints

The power system operational constraints included in the DELD are (i) power
balance constraint, (ii) ramp rates, (iii) power inequality constraints, and (iv)
prohibited operating zones (POZs).

The power balance constraint is given as

NG∑
i=1

PGi,t +

NW∑
j=1

PWj,t +

NPV∑
K=1

PPV K,t = Pload,t + Ploss,t (7)

The thermal generation boundaries articulated as high and low as for a
stable operation are

Pmin
Gi ≤ PGi,t ≤ Pmax

Gi (8)

Likewise, RES production limits must be limited to certain levels to
enable the system to operate optimally [23].

Pmin
Wj ≤ PWj,t ≤ Pmax

Wj (9)

Pmin
PV K ≤ PPV K,t ≤ Pmax

PV K (10)

The ramp rates and the POZ are modeled using [25].

3 Artificial Electric Field Algorithms

AEFA is an electrostatic force based on Coulomb’s law optimization algo-
rithm. Charged particles represent the set of solutions, and the strength of
each particle is determined by its charge. The electrostatic force of attraction
or repulsion acts on the particles. The most effective solution, i.e., the charged
particle, will attract all the lower charge particles to converge effectively in
the hyperspace [9]. The algorithm’s comprehensive mathematical model can
be found in [9]. Figure 2 depicts the algorithm for the same.

4 Result and Discussion

The main aim of DELD is to get an optimal mix of energy sources at least
operating cost while meeting the load demand. The energy sources consist
of (i) wind energy, (ii) solar energy, and (iii) thermal power plants. Using
the model of these sources discussed in Section above, the performance is
tested on two systems [25], (i) Test system-I: 6 unit system, and (ii) Test
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Figure 2 Flowchart of the AEFA.

system: 15 unit system. The experimentation is performed in two cases for
each system, (i) Case-I: Without RES and (ii) Case-II: With RES. Initially, the
simulation is performed for thermal power plants, only, i.e., without RES. The
results for Case-I are used as a reference system. Thereafter, the impact on
the system cost is observed for increasing penetration of RES in the system.
For each system, the convergence characteristics of the optimization algo-
rithm, namely, AEFA, PSO, and DE, are considered. The complete system
is analyzed on the MATLAB§ platform. The system uses Weibull and Beta
parameters [18] to model the RES. The other parameters for the wind used
in the study are tabulated in Table 1 and solar PV parameters are available
in [18]. The constraint values are available in [25].

4.1 Case-I

For Test system-1 and Test system-2 all constraints are considered. The
maximum number of iterations is set to 300, and the population size is 100.
A total of 50 trial runs are executed, after which the best, worst, and average
results are recorded. First, a single load of 935 MW is considered, only to be
met using the thermal power plants. The optimal cost obtained using for Test



AEFA Based Optimal Dynamic Economic Load Dispatch Problem 987

Table 1 System Parameters used in the study [18]
Parameter Value
Wind’s direct cost($/MWh) 8
Wind penalty cost 1.5
Wind reserve cost coefficient 10
Solar’s direct cost($/MWh) 9
Solar penalty cost 1.5
Solar reserve cost coefficient 11
Peak wattage (PVmax) 340 W
Nominal cell temperature (NOT) 46◦C

Figure 3 Convergence characteristics for 935 MW load.

Figure 4 Different load and active power generation with AEFA.

System-I is optimal cost for 935 MW is around 13600.26$. The convergence
plot for the same is shown in Figure 3.

For DELD, the load data is shown in Figure 4. For Test-system-1 with
all thermal units, the results for DELD are shown in Table 2 using AEFA.
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Figure 5 Cost comparison for six units without RES.

Table 2 Generator scheduling for 24 hours
Units

Time (in Hrs) 1 2 3 4 5 6
0000 440 170 200 150 190 110
0100 380 125.55 205.1 95.73 116.93 50
0200 350 125.94 209.35 102.93 120.1 51.49
0300 380 118.78 196.72 92.14 115.28 50.02
0400 350 128.4 210 98.22 110..81 50
0500 350 127.49 210 100.33 113.66 51.09
0600 380 122.42 210 105.79 113.21 50.19
0700 389.31 130.86 210 101.09 120.1 57.47
0800 397.54 140 210 110 126.56 59.89
0900 418.88 140 240 131.96 150 70.41
1000 426.11 160 243.58 136.01 140 70.33
1100 436.815 165.31 249.1 143.1 150 85
1200 442.28 173.1 256.59 148.89 159.1 85
1300 433.47 162.56 240 144.74 150 86.88
1400 451.21 182.1 260.57 145.07 158.04 85
1500 450.44 179.64 261.08 149.83 162.25 91.2
1600 451.49 179.55 257.37 150 157.27 85
1700 442.2 167.1 264.04 134.07 152.17 91.23
1800 431.9 164.65 253.02 141.32 153.57 85
1900 428.11 160 242.78 139.44 139.95 75
2000 415.12 140 240 110 136.13 75
2100 399.94 140 210 110 123.98 60.05
2200 385.75 130.05 210 104.73 119.86 53.16
2300 383.95 131.39 210 100.38 116.76 51.82
2400 350 134.83 210 110 119.57 53.84
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Figure 6 Cost Comparison for 15 units without RES.

Table 3 Result Comparison without RES for 6-unit
Test System Method Best Cost ($) Worst Cost ($) Average Cost ($)
1 PSO 321164.878 326819.44 323338.536

DE 316604.3363 318420.1815 317162.7697
AEFA 314388.299 317112.99 316024.618

2 PSO 789264.1233 805256.4464 796412.7687
DE 765357.313 780961.8594 772337.2107

AEFA 755404.6924 770807.5756 762302.4099

The maximum power generation for all intervals is presented in Figure 4.
The comparative variation of total fuel cost with AEFA, PSO, and DE is
shown in Figure 5. The statistical analysis of this variation, using the best,
worst, and average fuel cost, is tabulated in Table 3. It shows that AEFA
provides the optimal fuel cost in comparison to another complementary algo-
rithm. Similar results are observed for Test-system-2, as shown in Figure 6.
The results obtained with all thermal operations are considered the base case
for analyzing the addition of RES. It shows that the AEFA can provide a
better solution than PSO and DE in both cases; the cost remains the lowest.

4.2 Case-2

In this case, the DELD is performed for the two test systems with RES. The
results obtained are shown in Table 4. The same load profile as used in Case-
1 is used here. PSO, DE, and AEFA obtained the best, worst, and average
of different costs. It shows that the AEFA provides the lowest cost operation
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(a) 

(b) 
Figure 7 Generation variation with change in the penetration level and load variation (a) 6
unit, and (b) 15 unit (red-thermal, blue- wind, black- solar generation).

in all circumstances. As the penetration of RES increases, the system’s total
operating cost decreases to 65%, then after the cost suddenly increases. This
generation variation with change in the penetration level and load variation
is shown in Figures 7(a) and 7(b) for Test-system: 1 and Test system 2,
respectively. This increase can be attributed to the violation of constraints by
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the parameters. In other words, with an increase in the penetration of RES, the
generation associated with RES increases, which may violate the constraints.
Thus, the cost associated increases.

5 Conclusion

In this work, DELD is performed for a system consisting of the thermal
power plant and RES. DELD problem has been solved for two test systems,
6 generation units and 15 generation units, using AEFA, PSO, and DE.
The results show that AEFA provides better results than PSO and DE. The
problem has also been solved for the different penetration levels of RES in
conventional thermal power plant based power systems. It has been observed
that at a higher penetration level, proper RES scheduling is required. Based
on this, the following observations are drawn

i. The net cost increases with the increased penetration level, mainly
caused by underestimation and overestimation cost of wind and solar.

ii. Though net cost increases with RES penetration, higher penetration
leads to a reduction in the thermal unit’s fuel cost.

iii. At 65% RES penetration, 28.19% savings are observed in the thermal
generators’ fuel cost. However, the total cost rose by 16.4%. At this
level of penetration, 21.15% of increment in net cost is caused by
underestimation and overestimation of wind and solar; the significant
increment is caused by wind overestimation of almost 94%.
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