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Abstract

This paper presents a hybrid methodology for improving load forecasting
in electric power networks by combining the time-frequency data analysis
method based on Empirical Mode Decomposition (EMD) with the Random
Forest (RF) technique. The performance of the hybrid EMD-RF model is
tested on real-time load data of Bengaluru city, Karnataka (India) from 01st
January 2019 to 30th June 2019. An ensemble empirical mode decomposition
is applied to decompose original load data into various signals known as
intrinsic mode functions (IMF). The meteorological variables (MV) such
as moisture content, dew point, dry bulb temperature, humidity, and solar
irradiance (SR) are also taken into consideration for the day ahead seasonal
STLF. The decomposed signals are further analysed using the ensemble
learning-based Random Forest (RF) technique. The result obtained from the
model is aggregated to obtain the final forecasted result. The superiority of the
hybrid EMD-RF model is established through a comparative statistical error
analysis with other non-decomposition and decomposition methods based on
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EMD-Bagging, EMD-ANN, Artificial Neural Network (ANN), Bagging, and
Random Forest (RF).

Keywords: Empirical mode decomposition, ensemble learning, random
forest, short term load forecasting, error metrics.

1 Introduction

Short Term Load Forecasting (STLF) is a necessary activity in the plan-
ning, decision-making, purchasing, and generation of power, load switching,
operation, control, and maintenance of an electric generation system [1, 2].
Accurate load forecasting not only saves fuel potential and costs, but it also
helps to maintain power system operation and control, which are particularly
prone to forecasting errors [3, 4]. The study of short-term load forecasting
(STLF) started in the early 1960s, which Heinemann et al. first conducted
in 1966, where regression analysis was performed on the relationship of
electrical load and temperature [5]. Various techniques and methodologies
for STLF are researched, evaluated and built based on economic operation,
and electrical load planning. Such methods and approaches are broadly
categorized as:

(i) Parametric or conventional techniques
(ii) Non-Parametric techniques

(iii) Machine Learning based techniques

The techniques based on statistical approach are basically parametric or
traditional techniques for prediction of load [6]. This method includes:

(i) Linear Regression and auto-regression models are the statistical
regression-based techniques for STLF [7, 8]. Their models are based
on electrical load and other exogenous factors that depend on climate
and weather conditions.

(ii) The time series analysis is based on a reliable prediction of future load
by using the historical load data on time series plot [9–11]. Some of the
classical time series techniques are:

(a) ARMA and ARIMA: ARMA (autoregressive moving average) is
usually used for stationary processes while ARIMA (autoregres-
sive integrated moving average) is an extension of ARMA for
non-stationary processes. They both use the time and load as the
only input parameters [12, 13].
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(b) ARIMAX: ARIMAX (autoregressive integrated moving average
with exogenous variables) is the most natural tool for load forecast-
ing among the classical time series models because load generally
depends on the weather and time of the day.

Numerical uncertainty and forecast inaccuracy are the two main issues
with the time series approach. This is due to the fact that these models do
not use weather data such as temperature, humidity, wind velocity, and so
on [14–16]. The exponential smoothing approach is likewise a simple time
series prediction method that has the advantages of being easy to calculate
and utilise. It is indeed commonly used for short- and ultra-short-term power
load forecasting, and it’s very accurate [17]. The exponential smoothing
method, on the other hand, is only appropriate when the time series con-
tains only one season pattern [18]. Multi-seasonality fluctuations are now
smoothed using enhanced exponential smoothing algorithms [19, 20]. Sta-
tistical learning theory underpins the SVM algorithm’s theory. The SVM’s
training results in a quadratic programming issue. The theory of the SVM
algorithm is based on statistical learning theory [21]. Training of SVM leads
to a quadratic programming problem. To improve forecast accuracy, the
SVM interpolates among the load and temperature data in a training data
set [22]. Small samples, nonlinearity, large variance, and local minima are
all problems that SVM excels at [23, 24]. SVR can achieve a satisfactory
predicting accuracy in many circumstances, but if the parameters of SVR
are not calibrated properly, it can produce bad results [25]. All of the afore-
mentioned methods’ limitations can be easily solved by using non-parametric
techniques based on Artificial Intelligence (AI). Artificial neural network
(ANN) has attracted the most attention among AI-based approaches due to its
efficient approach for load prediction. The ability to solve complex problems,
fast decision-making process, minimum computational time, and accurate
prediction pattern make ANN a more powerful performer than previous
techniques [26–28]. The advantage of ANN over the statistical model lies
in its ability to model a multivariate problem between input variables without
making complex dependency assumptions [29–33]. These methods, however,
have limits because to their complexity, and they also require a wide variety
of data parameters and activation functions to anticipate correct results. Fuzzy
logic-based algorithms suffer from a similar flaw in that they also have a large
number of parameters, which might cause non-convergence [34]. Machine
learning techniques, a more modern approach for precise and accurate load
forecasting prediction procedures, solve the aforesaid constraints connected
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with ANN techniques. By deliberately mixing various algorithms, ensemble
learning methods strive to improve predicting performance. Ensemble learn-
ing can be classified into two types based on how it is combined sequentially
and parallelly [35, 36]. Bagging or Bootstrap aggregation, random forest, and
stacking based models are employed in a sequentially combined ensemble
technique. Ensemble learning based models are the machine learning based
approach [37–40] which are broadly classified on the basis of the approach
(i) Bagging or Bootstrap Aggregation [41–43] (ii) Random forest [44, 45],
(iii) Stacking [46].

In the domain of machine learning (ML), ensemble-based learning is
a method in which numerous models or predictors are trained as a single
generalised output to get more comprehensive, rapid, and reliable results.
Most academics are interested in obtaining better forecasting outcomes as
a result of this latest approach. For a parallel combined ensemble method, the
training data set is decomposed into a collection of sub datasets [47]. Then
we train a forecasting model for each test data, and aggregate the outputs
from all the models to calculate final prediction results. There are many
examples of parallel ensemble methods in the literature, such as wavelet
decomposition [48, 49], empirical mode decomposition (EMD) [50] and
negative correlation learning [51].

Empirical mode decomposition (EMD), a direct data processing method
developed specifically for dealing with nonlinear and nonstationary data, has
recently been considered for load forecasting [52–56]. IN EMD method,
the original load data is decomposed into a set of intrinsic mode func-
tion (IMF) components and one residue, which can improve forecasting
accuracy [57, 58]. Due to EMD’s ability to partition data into a num-
ber of independent components, some researchers developed a number of
hybrid forecasting approaches that combine EMD with forecasting models
to improve performance in signal processing, short-term electric loads, and
traffic engineering [59]. For improved performance, a hybrid model using
multiple STLF approaches is also used [60–63].

Further, weather diversity factors also pose major challenges in load fore-
casting in driving the transition in energy demand from time to time, i.e. the
use of load in summer is large, while it is marginal in winters and monsoons
and thus implies a major error when load forecasting is made. Therefore, con-
sidering the multi-meteorological variables (dew point, dry bulb temperature,
relative humidity, and solar-irradiance) in practical applications can lead to
an efficient way to improve the load forecast efficacy [64–66].
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The purpose of this study is to present an analysis of the suggested
EMD-RF model for solving the STLF problem using six-month hourly load
data from Bengaluru city (Karnataka, India) for seasonal STLF. Here, EMD
based decomposition method is applied to obtain intrinsic mode function
(IMF’s) of original data to overcome the challenges and therefore proposes
potential alternative for forecasting load. After that, each IMF is combined
with meteorological variables (MV) and solar irradiation (SR). To improve
the accuracy and efficiency of STLF, these IMFs are analysed using ensemble
learning approaches based on Random Forest (RF). The major contributions
of this paper are:

• For short-term forecasting of practical load data, a hybrid model based
on EMD with Random Forest (RF) was developed, taking into account
the influence of multi-meteorological factors.

• A comparison of the proposed model with other decomposition and
non-decomposition methods based on EMD-Bagging, EMD-ANN, Bag-
ging, and Random forest using statistical error metrics Mean Absolute
Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean
Square Error (RMSE), and Relative Root Mean Square Error (RRMSE)
(RRMSE).

The following are the sections that compose this paper: The first section
provides a quick introduction of the evolution of various STLF approaches.
The proposed STLF technique is explained in Section 2. Section 3 discusses
how to put the suggested EMD-RF method into practise. The selection of
load data for STLF and the influence of multi-meteorological factors on load
demand are covered in Section 4. The discussion and comparative analysis are
given in Section 5. The concluding observations are dealt with in Section 6.

2 Proposed Techniques for STLF

The strategies and methodology considered for the STLF in power indus-
try usually deviate far from the actual values, particularly owing to severe
changes in industrial utility and climatic circumstances. The techniques
implied in this paper to overcome above problem is covered below:

2.1 Principle of Empirical Mode Decomposition (EMD)

The empirical mode decomposition is an adaptive time-frequency data anal-
ysis approach that decomposes a non-stationary and non-linear dataset into a
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set of various signals known as the intrinsic mode function (IMF) and a single
residue with individual time scale features [67, 68]. Each IMF must meet the
following two criteria: (a) The number of extremes and zero crossings must
be the same or differ by one, and (b) the average value of maxima (upper
envelope) and local minima (lower envelope) must be zero [69, 70]. The
following are the detailed procedures in the EMD calculation:

Step 1: The original electrical load data x(t) is analyzed.
Step 2:First, the successive extrema of xi(t) are recognized, after that
the local maxima are associated by a cubic spline regression line for
upper envelope xup(t). Similarly, local minima are associated with lower
envelope xlow(t). These two upper maxima and lower minima are used
to compute the average as a function of time E(t).

E(t) =
[xup(t) + xlow(t)]

2
(1)

Step 3: First difference x1(t) is calculated between x(t) and the mean
envelope E(t).

x1(t) = x(t)− E(t) (2)

Step 4: Now, check whether x1(t) meet the two criteria of IMF. If x1(t)
is an IMF, then x1(t) is represented as the first IMF I1(t) and substitute
x(t) by remaining residue R1(t)

R1(t) = x(t)− I1(t) (3)

Step 5: If x1(t) is not an IMF, substitute x(t) with R1(t) and reiterate
steps 2–3 until the termination condition is fulfilled.
Step 6: In last, afterwards EMD estimation, the original time data x(t)
is disintegrated into all the IMF and a residue as:

x(t) =
n∑

i=1

Ii(t) +Rn(t) (4)

where I1(t) = (i = 1, 2, 3 . . . n) is disintegrated IMF and Rn(t) is the
residue afterward n numbers of IMF’s are mined.

2.2 Principle of Random Forest

Random Forest (RF) is a supervised machine learning technique consist of
two parts: the classification and regression tree (CART) [71] as well as
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the Bagging process. Random forest (RF) chooses data points and features
before constructing multiple decision trees (CART) utilizing Bootstrapping,
where each node is randomly picked. In RF, each decision tree has its own
structure and attributes. The random forest methodology considers each result
separately, selecting the one with the most votes as the final forecast. The final
decision is reached by averaging the output for regression over the ensemble,
resulting in more accurate and steady performance. The CART decision tree
is a binary recursive segmentation method that divides a data samples into
two groups at nodes other than the leaf nodes [72]. The Gini Index is used as
a measure in the CART method, and exponential expression of the probability
distribution for the Gini is:

Gini(p) =
K∑
k=1

pk(1− pk) = 1−
K∑
k=1

p2k (5)

Where K is the total no of species of the samples in a node, pk is the
probability of the k-th class of feature samples in the node. For the sample
set D, Gini exponential expression is:

Gini(D) = 1−
K∑
k=1

(
|CK |
|D|

)2

(6)

Where, CK is the set of subsamples of the k-th class in D. For each
partition, Gini exponential expression is:

Ginisplit(D) =
|D1|
|D|

Gini |D1|+
|D2|
|D|

Gini |D2| (7)

Where, D1 and D2 are the binary partition data sets of sample set D.
L. Breman introduced the Bagging technique to increase the forecasting

accuracy of the CART decision tree. Bagging algorithm is a return sampling
approach that employs Bootstrap to extract equally-sized subtraining sets
from the original training set for each CART tree. The generalisation capacity
of unstable classifiers is improved by this strategy [73, 74]. Generalization
error is subjected to unbiased estimate in the developed random forest model.
Random forest has a high degree of generalisation and is unaffected by
aberrant data. The least squares residuals, whose expression is as follows,
are used to measure the regression tree.

Er(t) =
1

nt

∑
Dt

(yi − ki) (8)
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where, nt is the number of objects at node t, ki is the average value of each
node. Bootstrap resampling is used to create the random training set δi and
the decision tree that goes with it. Then a single decision tree’s predicting
value is:

YFi(δi) =

N∑
i=1

λiyFi (9)

Where yFi is the forecasted value, and λi is the weight of the observation
value at the leaf node. The average value of a single decision tree YFi is
the forecasting outcome for a single decision tree in a random forest, and its
expression is

Ci =
1

N
YFi(δi) (10)

The output of the forecasting outcome is

C =

k∑
i=1

Ci (11)

Random forest has the benefit of being able to deal with classification
and regression issues, which are frequent in current machine learning systems
with high model variability. In addition to the low bias and low variance, RF
has several other desirable features, as summarized below: (1) RF requires
only 3 parameters which are very easy to tune. (2) RF algorithm has high
classification accuracy and does not have overfitting problem. (3) RF can
generate variable importance indices in its growing procedure and they turn
out to be nice estimates of variable relevancies. (4) Structured as a tree, RF is
in nature easy to expand itself to fit more data by growing more branches. This
leads to the RF online learning algorithm and has made RF a nice adaptive
machine learning model.

3 Implementation of Proposed Model for STLF

The schematic layout of the EMD-RF approach considered for STLF is
shown in Figure 1. The steps involved in the load forecast determination using
EMD-RF are enlisted below:

Step 1: The decomposed IMF’s and residue are obtained using EMD
from Equation (4).
Step 2: The IMF’s obtained from EMD from Step 1 is combined with
multi meteorological factors dry bulb temperature, dewpoint and solar
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Figure 1 Framework of EMD-RF model for seasonal STLF.
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irradiance for seasonal load data. Here, relative humidity is assumed
60%.
Step 3: The dataset obtained after considering the influence factors from
Step 2 is pre-processed, validated, and classified into training data set
and testing data set.
Step 4: Now the training data is analysed with Random Forest technique
where number of sub-samples are randomly created with replacement.
The steps involved in the Random Forest (RF) are:

Step A: Create random samples (S1, S2 . . . SN ) from the original
dataset through Bagging or Bootstrapping.
Step B: From each sample (S1, S2 . . . SN ) decision trees
(D1, D2 . . . DN ) are constructed.
Step C: At each node in the decision tree, only a random set of
attributes is used to determine the optimal split.
Step D: Each decision tree generates their individual prediction
C1, C2, . . . CN .
Step E: The final prediction is obtained by averaging (in regres-
sion) all of the decision trees’ predictions. (D1, D2 . . . DN ).

Step 5: The final output of N decision trees obtained from Random
Forest is the final result.

The detailed analysis of original six-month hourly load data of Ben-
galuru city (Karnataka, India) with meteorological variables (MV) and solar
irradiance (SR), applied to EMD-RF model is discussed in next section.

4 Data Analysis for STLF

4.1 Analysis of Load Data

In this paper, the above EMD-RF approach is tested on real time original
data of six month of Bengaluru city (Karnataka, India) from 1st January 2019
to 30th June 2019 (i.e. 181 days for 24 hours) [75], to obtain the seasonal
day ahead load forecast for winter season (1st January 2019–28th February
2019), spring season (1st March 2019–30th April 2019) and summer season
(1st May 2019–30th June 2019) as seen in Figure 2. As can be observed,
this hourly dataset contains non-linearity and non-stationarity characteristics.
Table 1 shows the results of the statistical analysis of load data. To determine
the symmetry and distribution of practical data, the skewness and kurtosis are
also calculated.
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(a) 

   
(b) 

(c) 
Figure 2 Hourly Load data (a) Winter Season (January-February), (b) Spring Season
(March-April) and (c) Summer Season (May–June).

Table 1 Statistical parameters of load data
Parameters Winter Season Spring Season Summer Season
Minimum (MW) 6173 6173 4690
Maximum (MW) 12012 12881 12158
Mean 9084 10003 8648
Standard Error 39 34 35
Median 8950 9839 8605
St. Deviation 1450 1290 1336
Sample Variance 2101196 1663367 1785305
Kurtosis −1.09 −0.42 −0.28
Skewness 0.05 0.04 0.08



1170 J. Vaish et al.

(a) 

 
(b) 

(c) 
Figure 3 Load verses dry bulb temperature (a) Winter Season, (b) Spring Season, (c)
Summer season.

4.2 Analysis of Meteorological Variables

The meteorological variables such as moisture content, dew point, dry bulb,
and wet bulb temperature have a significant influence on forecasting future
load demand owing to adverse climatic conditions. The effect of dry bulb
temperature and dew point on load is shown in Figure 3(a)–(c) for winter,
spring and summer seasons. The analysis of meteorological variables is
tabulated in Table 1. The practical load data of Bengaluru city (Karnataka,
India) is being considered, which has a distinct rainy and dry season as well as
pleasant weather all year. Periodic heat waves, however, may make summer



Empirical Mode Decomposition with Random Forest Model 1171

rather uncomfortable due to the negative influence of climatic circumstances.
As a result, consumers are more likely to turn on the air conditioner, causing
the load demand to spike in the summer. As a result, using the temperature
parameter only as a major weather component in load forecasting might lead
to incorrect findings. So, to estimate more improved and precise forecasting
results, solar irradiance is also considered.

4.3 Analysis of Solar Irradiance

An increase and decrease in Solar Irradiance (SR) also play a significant part
in climate models and weather forecasting which have a substantial influence
on the energy system. The solar irradiance collected for Bengaluru city
(Karnataka, India) is shown in Figure 4(a)–(c) for winter, spring and summer

 
(a) 

 
(b) 

(c) 
Figure 4 Solar Irradiance verses Time (a) Winter Season, (b) Spring Season, (c) Summer
season.
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Figure 5 Influence of dry bulb temperature and solar irradiance on load.

Table 2 Six-month meteorological Variables for Bengaluru city (Karnataka, India)
Parameters Jan Feb March April May June
Tmin (◦C) 13 17 20 23 22 25
Tmax (◦C) 29 31 34 36 36 36
Tavg (◦C) 21 24 27 30 29 31
DPmin (◦C) 6.4 9.2 12 12.9 13.9 12.9
DPmax (◦C) 20.4 22.3 25.1 27 27 27
DPavg (◦C) 13.4 15.75 18.55 19.95 20.45 19.95
RHmin (%) 55 58 60 65 64 68
RHmax (%) 58 62 63 69 70 72
RHavg(%) 56.5 60 61.5 67 67 70
SR (W/m2) 855.11 914.32 938.54 944.82 958.41 997.04

season. The statistical properties show that spring season shows maximum
value of solar irradiance as 10443.4 W/m2 for, standard deviation = 453.3,
mean = 302.14 W/m2. Thus, in this case study other than dry bulb temper-
ature, relative humidity and dew point, solar irradiance is taken into account
while evaluating an accurate load forecast. Figure 5 depicts the influence
of solar irradiation and dry bulb temperature on load. Table 2 shows the
characteristics of meteorological data for Bengaluru city (Karnataka, India)
during a six-month period.
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Table 3 Seasonal dataset for day ahead STLF
S.No Season Training Dataset Validation Dataset Testing Dataset

1 Winter
(January–
February)

1st January 2019 to 27th
February 2019 (i.e. 57
days for 24
hours) = 1368

27th February 2019
(i.e. 1 day for 24
hours) = 24

28th February 2019
(i.e.1 day for 24
hours) = 24

2 Spring
(March–April)

1st March 2019 to 28th
April 2019 (i.e. 59 days
for 24 hours) = 1416

29th April 2019 (i.e. 1
day for 24
hours) = 24

30th April 2019 (i.e. 1
day for 24
hours) = 24

3 Summer
(May–June)

1st May 2019 to 28th
June 2019 (i.e. 29 days
for 24 hours) = 1416

29th June 2019 (i.e. 1
day for 24
hours) = 24

30th June 2019 (i.e. 1
day for 24
hours) = 24

4.4 Data Pre-Processing

The EMD decomposition approach is used to deconstruct the six-month
practical load data of Bengaluru City (Karnataka, India) from 01 January
2019 to 30 June 2019 (i.e. 181 days for 24 hours) into a finite number of IMF
components. The decomposed IMF is further divided into training dataset,
validation dataset and testing dataset to determine day ahead (i.e. 24 hours)
STLF as tabulated in Table 3 for three consecutive seasons:

(i) Winter Season – 1st January 2019 to 28th February 2019, i.e. 59 days
for 24 hours.

(ii) Spring Season – 1st March 2019 to 30th April 2019, i.e. 61 days for 24
hours.

(iii) Summer Season – 1st May 2019 to 30th May 2019, i.e. 61 days for 24
hours.

4.5 Assessment Indicators

The appropriate selection of forecasting error indicators is essential for
evaluating the model’s performance. In addition to the simulation plots, the
suggested model’s performance is evaluated using five evaluation criteria:
Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Relative
Root Mean Square Error (RRMSE), and Mean Absolute Percentage Error
(MAPE), whose expressions are:

(i) Mean Absolute Error (MAE)

MAE =
1

N

N∑
i=1

[yFi − yAi] (12)
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(ii) Root Mean Square Error (RMSE)

RMSE =

√√√√ 1

N

N∑
i=1

[yFi − yAi]2 (13)

(iii) Relative Root Mean Square Error (RRMSE)

RRMSE =

√
1
N

∑N
i=1[yAi − yFi]2

1
N

∑N
i=1 yFi

(14)

(iv) Mean Absolute Percentage Error (MAPE)

MAPE =
1

N

N∑
i=1

[yFi − yAi]

yAi
× 100% (15)

Where N is the number of samples, yFi is the forecasted value, and yAi

is the actual value. The smaller these assessment indicators’ values are, the
more exact and accurate the outcomes will be.

5 Result Analysis and Discussion

5.1 Simulation Settings

The simulation of proposed EMD-RF model for STLF is carried out in two
steps: (i) Firstly, EMD method is applied to decompose practical load data
into IMF’s and residue. (ii) Secondly, Random Forest model is constructed
on the parameters given in Table 4.

5.2 Decomposition of Practical Load Data

The six-month practical load data of Bengaluru City (Karnataka, India) is first
analysed using EMD approach. Figure 6 shows the EMD decomposition of

Table 4 Simulation settings for random forest model
Model Parameters
Random Forest Number of Trees Ntree = 500

Number of candidate variables in each split = 3
Minimum Node size = 5
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Figure 6 EMD results for six-month load data.
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(a) 

(b) 

(c) 
Figure 7 Actual load vs Forecasted load based on EMD-RF model considering with and
without the effect of MV and SR (a) Winter season (January–February), (b) Spring season
(March–April) and (c) Summer season (May–June).

the practical data into seven IMF’s and one residue. The decomposed IMF’s
are combined with meteorological variables. Afterwards proposed hybrid
model is implemented using Random Forest (RF) on these IMF’s to obtain
accurate and precise results.

5.3 Model Forecasting Results

The STLF technique based on EMD-RF model is evaluated for day ahead
winter, spring and summer season. Figure 7 represents day ahead STLF
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Table 5 Statistical Error evaluation of day ahead STLF with EMD-RF approach for various
seasons

Winter
(January–February)

Spring
(March–April)

Summer
(May–June)

S.No Error Parameters

With
MV and

SR

Without
MV and

SR

With
MV and

SR

Without
MV and

SR

With
MV and

SR

Without
MV and

SR
1 MAE (MWh) 208.45 310.12 215.63 265 177.13 222.7
2 RMSE (MWh) 222.57 335.31 224.25 275.83 198.78 449.37
3 RRMSE (%) 2.12 3.2 2.13 2.61 2.05 5.18
4 MAPE (%) 2.02 3.3 2.1 2.58 2.09 2.63

considering with and without the influence of meteorological variables (MV)
and solar irradiance (SR) for various seasons. The statistical parameters
estimated for EMD-RF model with and without meteorological variables
(MV) and solar irradiance (SR) for day ahead forecasted load is tabulated
in Table 5. The statistical error estimation shows that when influence factors
is taken into consideration the MAPE obtained for winter season is 2.02%,
spring season is 2.10% and summer season is 2.09%, and MAE estimated for
winter season is 208.45 MWh, spring season is 215.63 MWh and summer
season is 177.13 MWh which is minimum in comparison when influence
factors are not taken into account.

To obtain the clear picture, the comparison between proposed EMD-RF
approach with Random Forest (RF) technique is also analysed and depicted
in Figure 8 to confirm the efficiency of proposed approach. The error met-
rics evaluated for RF technique yields MAPE for winter season is 2.54%,
spring season is 3.59% and summer season is 2.47% and MAE for winter
season is 215.29 MWh, spring season is 340.46 MWh and summer season is
197.59 Mwh which is more when compared with EMD-RF model as shown
in Table 6.

5.4 Comparative Analysis with Various Forecasting Models

The result obtained from the EMD-RF model is compared and evaluated
with other non-decomposition based methods such as Artificial Neural Net-
work (ANN), Bagging and Random Forest (RF) and decomposition method
based combined models such as EMD-ANN and EMD-Bagging to prove the
efficiency of the approach considering the effect of meteorological variables
(MV) and solar irradiance (SR). Figure 9(a)–(c) depicts a visual comparison
of actual load and forecasted load based on EMD methods such as EMD-RF,
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(a) 

(b) 

 
(c) 

Figure 8 Actual load vs Forecasted load based on EMD-RF and RF model considering the
effect of MV and SR (a) Winter season (January–February), (b) Spring season (March–April)
and (c) Summer season (May–June).

Table 6 Statistical Error evaluation of day ahead STLF with EMD-RF and RF technique for
various seasons

Winter
(January–February)

Spring
(March–April)

Summer
(May–June)

S.No Error Parameters EMD-RF RF EMD-RF RF EMD-RF RF
1 MAE (MWh) 208.45 215.29 215.63 340.46 177.13 197.59
2 RMSE (MWh) 222.57 226.63 224.25 398.03 177.78 239.04
3 RRMSE (%) 2.12 2.74 2.13 4.06 2.05 2.88
4 MAPE (%) 2.02 2.54 2.1 3.59 2.09 2.47
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(a) 

(b) 

 
(c) 

Figure 9 Comparison between Actual Load vs Forecasted load considering the effect of
meteorological variables (MV) and solar irradiance (SR) based on EMD-RF, EMD-Bagging,
EMD-ANN (a) Winter Season (January–February) (b) Spring Season (March–April), (c)
Summer Season (May–June).

EMD-Bagging and EMD-ANN taking into account the influence of meteoro-
logical factors and solar irradiance for various seasons. The representation of
quantative assessment of day ahead STLF for different techniques is tabulated
in Table 7 for winter season, spring season and summer.

The pie chart is used to display the MAE, MAPE, RMSE and RRMSE
for comparative analysis between various techniques as depicted in Figure
10(a)–(d). The inner wheel of pie chart represents the error values of winter
season, middle wheel represents the error estimation of spring season and



1180 J. Vaish et al.

Table 7 Quantitative assessment of various techniques for day ahead STLF for winter, spring
and summer

Error MAE (MWh) RMSE (MWh) RRMSE (%) MAPE (%)

Seasons

S.No. Methods Winter Spring Summer Winter Spring Summer Winter Spring Summer Winter Spring Summer

1 ANN 280.31 341.84 399.13 317.98 410.87 478 4.37 4.16 4.85 3.91 3.76 4.09

2 Bagging 238.79 351.31 230.67 248.98 403.03 258.4 3.35 4.12 3.11 3.37 3.65 2.89

3 RF 218.92 340.46 197.59 239.59 398.03 239.04 2.89 4.06 2.88 2.74 3.59 2.47

4 EMD-ANN 256.06 234.86 197.75 265.11 234.93 216.63 2.75 2.25 2.58 2.72 2.28 2.33

5 EMD-Bagging 237.83 260.97 180.09 241.43 272.44 224.25 2.5 2.58 2.64 2.53 2.54 2.62

6 EMD-RF 208.45 215.63 177.13 222.57 224.25 178.59 2.12 2.13 2.13 2.02 2.1 2.1

      
                                (a)                                                                      (b) 
 

               
                           (d)                                                                       (c) 

Figure 10 Comparison between MAE, RMSE, RRMSE and MAPE of various techniques
for day ahead STLF for winter season, spring season and summer season.
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outer wheel represents the error values of summer season. The result shows
that, for winter and summer season MAE obtained for ANN is 280.31 MWh
and 399.13 MWh whereas for spring season MAE is 351.31 MWh which is
more in comparison to other techniques. The RMSE obtained for EMD-ANN
yields 265.11 MWh and ANN yields 317.98 MWh in winter season, in spring
season EMD-Bagging produces RMSE = 271.44 MWh and ANN produces
RMSE = 410.87 MWh and in summer season RF estimates RMSE = 239.04
MWh and ANN estimates RMSE = 478 MWh which is large in comparison
to other techniques. The MAPE estimated in winter for EMD-ANNN and
ANN is 3.91% and 2.74% whereas in spring and summer season EMD-
Bagging yields MAPE = 2.54% and 2.62% and ANN yields MAPE = 3.76%
and 4.09% which is maximum when compared to all decomposition and
mon-decomposition methods.

Thus, for practical six month hourly load data of Bengaluru city (Kar-
nataka, India), the results obtained from the proposed hybrid model based on
the EMD-RF method demonstrate enhanced performance and accuracy with
minimum error variability in forecasting, resulting in optimal cost savings
and better load scheduling in the energy utility and power system.

6 Conclusion

In this study, a decomposition-based EMD approach is suggested and
implemented for short-term load forecasting using the Random Forest (RF)
methodology on real-time seasonal load data from Bengaluru (Karnataka,
India) for six months, with and without the influence of multi-meteorological
factors. The conclusion regarding the results of these results are summarized
as below:

• The proposed hybrid model EMD-RF successfully forecasts the day
ahead of a load of practical load data with a minimum error when
meteorological data is considered as compared to the load forecasted
when meteorological data is not considered with a hybrid model.

• Other decomposition and ensemble-based STLF approaches such as
EMD-Bagging, EMD-ANN, Bagging, and Random Forest are compared
to the evaluated forecasted results achieved by the proposed hybrid
model. The statistical analysis reveals that the suggested hybrid model
for STLF improves performance and produces better outcomes.

As a consequence of the quantitative error measurements, the suggested
hybrid EMD -RF model is recommended as an alternative strategy for
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improved STLF. The suggested hybrid model’s anticipated load provides
great forecasting performance and superior outcomes when compared to
other approaches that take into consideration the influence of meteorological
data, hence enhancing the electric power utility.
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