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Abstract

Networked Microgrids are a concept that emerged as a result of growing
microgrid deployments in the distribution network. Microgrids in close geo-
graphical or electrical proximity are coupled to build networked microgrids.
Networked microgrids offer coordinated energy management, as well as
interaction and energy exchange across microgrids. This increases the relia-
bility of microgrids and lowers their running costs. Hour-to-hour, depending
on generation and load profiles, Time-of-Use pricing, microgrids can manage
energy inside the microgrid and participate in energy trading with linked
microgrids to reduce costs. Demand response is also utilized in energy
management to achieve the above objectives. In contrast to the preceding
hour-to-hour strategy, a unique hour-block-based demand response program
in Networked Microgrids is suggested in this paper. In this paper, in con-
trast, to the above hour-to-hour approach a novel hour block-based demand
response program in Networked Microgrids is proposed. Each hour block
is formed based on generation and load imbalance, the role of Microgrids
and the Time-of-Use tariff system. Both techniques are evaluated in terms
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of time and complexity using the Particle Swarm Optimization method.
The economic benefits of individual microgrids and networked microgrids
are also compared.

Keywords: Networked microgrid, energy trading, particle swarm optimiza-
tion, demand response, renewable energy sources, time-of-use-tariff.

Acronyms

t Hour block.

B Set of buyer MGs.

S Set of seller MGs.

N Total number of MGs.

b Buyer MG.

s Seller MG.

v Velocity of Particle.

x Particle position.

pbest Particle best position.

pgbest Global best position.

Ld t
i Load in MG i during t.

Ld t
i ,al Actual total load in MG i for whole day.

Et
i Excess energy generated in MG i during t.

Dt
i Deficit energy in MG i during t.

P t
grid ,s Grid selling tariff during t.

P t
grid ,b Grid buying tariff during t.

P t
NMG,s NMG energy selling tariff during t.

P t
NMG,b NMG energy buying tariff during t.

GNE
i Energy generated in MG i during t in NE-zone.

LdNE
i Load demand in MG i during t in NE-zone.

Et
MGi,s

Energy sold by seller MG i to NMG during t.
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Et
MGi,b

Energy bought by buyer MG i from NMG during t.

Eg,NE
MGi,b

Total Energy bought by MG i from grid during NE zone.

Eg,NE
NMG,b Total Energy bought by NMG from grid during NE zone.

Eg,t
MGi,s

Energy sold by seller MG i to grid during t.

Eg,t
MGi,b

Energy bought by buyer MG i from grid during t.

Ct
MGi,b

Cost incurred to buyer MG i during t.

Ct
MGi,s

Profit earned by seller MG i during t.

CNE
MGi,b

Total cost incurred to MG i during NE zone.

TCNE
NMG,b Total cost incurred to NMG during NE zone.

TCt
MGb

Total cost incurred to all buyer MG ′is during t.

TCt
MGs

Total profit earned by all seller MG ′is during t.

TCMG,i Total cost for MG i during whole day.

TCNMG Total cost for NMG during whole day.

1 Introduction

Distributed Energy Resources (DERs) effectuate is unrivaled recently in the
power system to improve resource utilization, increase security, maximize
technical, economic advantages and reduce the carbon footprint. The imple-
mentation of DERs allows prosumers to actively participate in the market, but
the installation of DERs brings technical challenges to the present system.
The Microgrid (MG) concept is introduced to effectively integrate DERs in
the distribution system. MG within a fixed electrical boundary, allow wide-
range integration of DERs with control and operational functions to supply
loads. They can operate in both islanded and grid-connected modes. This
increases the reliability and benefits in emergency and normal operating
condition. The MG acts as a single controllable entity according to the grid
with fixed electrical boundaries. The MG provides several advantages to the
network as minimized network losses, improved reliability, power quality and
minimized investment costs. But the MGs must be able to maintain voltage
and frequency in both the operating modes.

With the developments and increased installations of MGs, the con-
cept of interconnecting MGs and forming a Networked Microgrid (NMG)
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framework is proposed to utilize the full potential of MGs. The NMG
framework allows for better utilization of Renewable Energy Sources (RES),
increase profits of MGs through trading energy with other MGs, reducing
the investment costs, enhancing environmental sustainability and improving
the operational aspects like voltage regulation, frequency and reliability [1].
The energy trading in NMGs is performed, if there exist one or more MGs
with excess energy and deficit energy. The MGs can be benefitted from
implementing Demand Side Management (DSM) along with energy trading
among MGs because of their dependence on the RES and Battery Energy
Storage System (BESS). Among the DSM techniques, Demand Response
(DR) gained popularity in NMG energy management. The DR techniques
are classified as price-based and incentive-based DR programs [2]. In the
price-based DR method, the loads are shifted based on price signals. In the
incentive-based DR method, the consumers are given the incentive to shift
the load and or supply more load into the network according to network
requirements.

In literature, the application of DR programs for energy management is
studied. In [3], the impact of DR intensity and BESS size on the MG cost,
trading among MGs, power transfer to loads in MGs and BESS charging is
studied. In this, for the NMG framework, both price-based and incentive-
based DR methods are considered. The proposed methodology increased the
amount of internal trading among MGs, reduced the external energy trading
with grid and operational costs. An Energy Management System (EMS) for
optimal scheduling of MGs is proposed in [4], where time-based DR is
utilized. The time-based DR proposed is based on microeconomics, where
load shifting depends on the price differentiated as single price model and
multi-sensitivity model. A survivability-oriented DR program is proposed
based on the generation and load level in MG [5]. The proposed method
depends on the ratio of critical loads and non-critical loads, shiftable loads
and fixed loads. This is applied for isolated MGs interconnected with each
other. In [6], Real-Time Price (RTP) based DR is applied for NMGs to
increase the reliability of the system.

Time-based DR is applied in NMG for reconfiguration of MGs in the
distribution network and determining the states of interconnecting switches
between MGs and the grid [7]. A step-wise DR program is applied in bi-level
EMS proposed for isolated NMG framework [8]. The step-wise DR program
here depends upon a stepwise price-demand curve. The application of the
DR program minimizes the total cost of NMG and individual MGs. In [9],
an incentive-based DR approach is applied to a cooperative-based approach
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to determine market transactions and the energy trading price of NMGs. A
price-based DR is proposed along with adjustable power for NMG [10], to
minimize the cost for MGs. In [11], also price-based DR program is included
in EMS for NMG to minimize the cost, reduce dependence on the main grid
along with other objectives. Two DR programs, time-based and incentive-
based DR programs are proposed for networked multi-carrier networked
microgrids to improve flexibility and minimize costs [12]. In [13], a hybrid
machine learning algorithm based on adaptive neuro-fuzzy inference system
(ANFIS), multilayer perceptron (MLP) artificial neural network (ANN), and
radial basis function (RBF) ANN has been proposed for forecasting required
parameters in residential prosumer MGs. The forecasted load and generation
data are utilized for developing a price-based DR program considering BESS
degradation for minimizing operational costs. For residential prosumers,
considering 2-level corrective forecasting, the cost for purchasing energy
from the grid and BESS degradation cost is minimized [14]. A bi-level
problem is proposed for optimal operation of multi microgrids (MMGs) while
considering the impact of price-based DR, but the energy trading among MGs
is absent [15]. The objective of both lower-level and upper-level problems is
to minimize the operation costs of individual MGs and utility. A multi-step
hierarchical optimization algorithm based on the multi-agent method (MAS)
is proposed in [16] to minimize the operating costs considering price based-
DR program. The MILP model is used to model and solve the optimization
problem.

The literature mentioned above considers an hour-to-hour DR approach
which depends on the generation of DGs, BESS, load and price signals from
the grid. In this paper, we propose a novel hour-block method to reduce
the complexity and amount of time required for the application of the DR
program in the NMG framework. The proposed methodology also considers
the time-based DR approach but we form hour-blocks based on generation
and load imbalance, Time-of-Use (TOU) prices and the role of MGs in the
NMG environment in comparison to the literature presented. The proposed
method reduces the complexity of the DR problem by reducing the 24
hours optimization approach to a 6-block optimization approach. For this,
we give a comparison between the hour-to-hour energy trading and hour-
block-based energy trading with DR in NMGs. The NMGs objective is to
reduce the operating costs of individual MGs and the dependence on the grid
by trading energy among the MGs. For this, the MGs are considered to be
interconnected with each other and also connected to the grid. A deterministic
approach is considered, with the RES and load values to be constant. Particle
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Swarm Optimization (PSO), a heuristic method is applied after modelling the
problem as an optimization problem, such that customers and the MGs in
NMG are satisfied.

This paper is organized into 5 sections, where in the first section the
NMGs are introduced and the NMG topology, operating strategy are given
in Section 2. PSO is explained in detail in Section 3. Section 4 describes the
problem formulation of the problem mentioned and the application of the
process proposed. Section 5 contains a detailed comparison of the hour-to-
hour and hour-block-based methods findings for minimizing NMG costs and
individual MGs. Finally, this study is concluded in Section 6.

2 Networked Microgrids

NMGs are a cluster of MGs i.e., having physical interconnection among
two or more MGs and exchanging energy among MGs. In addition to the
exchange of energy among MGs, MGs can also trade with the grid. An MG
can be ac type or dc type based on the generation type. The NMG framework
allows both types of MGs to be connected and also interchange energy.
Figure 1 below shows an example topology of the NMG system. Each MG in
an NMG has a Microgrid Operator (MGO), who is responsible for managing
energy in the MG. The MGO is also responsible for sharing the information
about excess/deficit in an MG with the NMG manager/ aggregator. The MGs
with excess energy are defined as sellers and the MGs with deficit energy
as buyers. The NMG manager/aggregator is responsible for collecting this
information and allocating the energy from seller MGs to buyer MGs. Here,
the NMG manager or aggregator is also responsible for determining prices
for energy trading among MGs.

At a particular hour t, each MG in the NMG framework will generate
power (Gt

i) based on the sources in MG to supply a load (Ld t
i). Depending

on the environmental condition and the number of sources available in MG,
sometimes Gt

i > Ld t
i in an MG, then the respective MG acts as a seller

for that hour t. The seller MGs are assigned as set ‘S’ as in Equation (1).
When, Ld t

i > Gt
i for an MG, then the respective MG functions as a buyer

for the same corresponding hour t. The buyer MGs are assigned to a set ‘B’
as in Equation (2). The seller MG, after supplying the corresponding load
is left with excess energy as in Equation (3). The buyer MG, after receiving
energy from its corresponding generation requires additional energy given as
Equation (4). The surplus energy with seller MGs in ‘S’ is exchanged with
buyers MGs in ‘B’. At the corresponding hour t, if the excess energy with
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Figure 1 Topology of NMG system.

seller MGs is more than the energy required by buyer MGs, it is sold to the
grid. Also, if the energy required by buyer MGs is more than the energy with
seller MGs, it is bought from the grid.

S = {∀i ∈ N |Gt
i ≥ Ld t

i} (1)

B = {∀i ∈ N |Gt
i < Ld t

i} (2)

Et
i = Gt

i − Ld t
i ∀i ∈ N (3)

Dt
i = Ld t

i −Gt
i ∀i ∈ N (4)

At an hour t, the TOU prices given by the grid are P t
grid ,s and P t

grid ,b .
Where, P t

grid ,s is the price at which the grid sells energy to the customers
and P t

grid ,b is the price which the grid pays for energy sold by the customer
to the grid. While, trading energy among the MGs in the NMG framework,
the price is in between the range of P t

grid ,s and P t
grid ,b . This influences the
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MGs to trade among them rather than with the grid. Because the price at
which energy bought (P t

NMG,b) is lesser than the grid selling price and sold
to MGs (P t

NMG,s) at a price greater than the grid buying price as shown
in Equation (5). This allows MGs to optimize their profits. In case, this
constraint is not satisfied, the MGs shall trade energy with the grid rather
than other MGs and the objective of forming NMG for energy trading shall
cease to exist.

P t
grid ,b ≤ P t

NMG,s = P t
NMG,b ≤ P t

grid ,s (5)

3 Problem Formulation

Each MG is equipped with either Photo-Voltaic (PV) or wind generation
in the NMG framework to supply power to the corresponding loads during
each hour t. But, the variable and intermittent nature of RES create a power
imbalance in the MGs. This allows for energy trading among the MGs or with
the grid. This energy trading is performed based on the hour-to-hour approach
in literature. Here, we propose the hour-block-based approach to reduce the
complexity and time required as shown below.

3.1 Hour-to-Hour Trading Approach

In MGs, based on the amount of energy generated and utilized, they are
classified as buyers and sellers as discussed. In each hour t, the amount
of energy generated is calculated for each MG and the power imbalance
is calculated to determine the buyers and sellers as given in Equations (3)
and (4). The excess energy and deficit energy information is collected by
the NMG manager and is responsible to distribute the energy among the
MGs based on the proportional approach as discussed below. The NMG also
decides the trading prices among the MGs satisfying Equation (5). Along
with, energy trading the MGs can also benefit by shifting the loads from
one hour to other hours. The amount of load shift is limited by 20% as
given in Equation (6) and the total load in a day must be satisfied as in
Equation (7) [17].

0.8 ∗ Ld t
i ≤ Ld t

i ≤ 1.2 ∗ Ld t
i (6)

24∑
t=1

Ld t
i = Ldi ,al (7)
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While, trading energy among MGs two conditions arise in the NMGs,

1. The total amount of excess energy is greater than or equal to the deficit
energy, called excess energy generation.

2. The total amount of excess energy is less than deficit energy, called
excess demand.

3.1.1 Excess energy generation
In this case, the excess energy of seller MGs is greater than or equal to the
demand of buyer MGs in the NMG framework. The price at which this energy
is decided by the NMG manager as in Equation (5). The energy sold by NMG
manager from seller MGs to buyer MGs follows a proportional approach as
in Equation (8).

Et
MGi,s =

Et
i∑S

j=1 E
t
j

∗
B∑

k=1

Dt
k (8)

If any excess energy remains after proportional trading, is exchanged with
the grid as in Equation (9).

Eg,t
MGi,s

= Et
i − Et

MGi,s (9)

The amount each buyer MG is to pay is given by Equation (10) and the
total cost for all buyer MGs together is given by Equation (11).

Ct
MGi,b

= Dt
i ∗ P t

NMG,s (10)

TCt
MGb

=

B∑
i=1

Ct
MGi,b

(11)

The amount each seller MG gains is given in Equation (12). and the total
amount gained by all seller MGs is given by Equation (13) respectively.

Ct
MGi,s = Et

MGi,s ∗ P
t
NMG,s + Eg,t

MGi,s
∗ P t

grid ,b (12)

TCt
MGs

=
S∑

i=1

Ct
MGi,s (13)

3.1.2 Excess demand
In this, the energy demand of buyer MGs is more than the energy generated
by seller MGs. The small amount of excess energy from seller-buyer MGs is
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obtained by buyer MGs from proportional trading and the remaining energy
is obtained from the grid. The energy traded in the NMG framework is shown
in Equation (14) and the remaining deficit energy is purchased from the grid
as given in Equation (15).

Et
MGi,b

=
Dt

i∑B
k=1 D

t
k

∗
S∑

j=1

Et
j (14)

Eg,t
MGi,b

= Dt
i − Et

MGi,b
(15)

The amount to be paid by individual buyer MG and for all buyer MGs
together are given in Equations (16) and (17).

Ct
MGi,b

= Et
MGi,b

∗ P t
NMG,s + Eg,t

MGi,b
∗ P t

grid ,s (16)

TCt
MGb

=

B∑
i=1

Ct
MGi,b

(17)

The amount earned by individual seller MG and by all seller MGs
together is given by Equations (18) and (19).

Ct
MGi,s = Et

i ∗ P t
NMG,s (18)

TCt
MGs

=

S∑
i=1

Ct
MGi,s (19)

The total cost incurred to individual MGs and the NMG system for a
whole day is given by Equations (20) and (21).

TCMG,i =
∑

Ct
MGi,b

+
∑

Ct
MGi,s (20)

TCNMG =
∑

TCt
MGb

+
∑

TCt
MGs

(21)

During some hours, all the MGs could be acting as buyers and buy this
energy from the grid as shown in Equation (22). The total cost incurred by
NMG for buying this energy is given in Equation (23). Equations (24) and
(25) represent the power purchased and the cost incurred by individual MGs.

Eg,t
NMG,b =

{
N∑
i=1

Ld t
i −

N∑
i=1

Gt
i

}
(22)
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TCt
NMG,b = Eg,t

NMG,b ∗ P
t
grid ,s (23)

Eg,t
MGi,b

= {Ld t
i −Gt

i} (24)

Ct
MGi,b

= Eg,t
MGi,b

∗ P t
grid ,s (25)

3.2 Hour-Block Energy Trading Approach

3.2.1 Formation of hour blocks
Different from the above hour-to-hour energy trade, to reduce dependence
on utility network hour-block energy trading, based on the generation and
load profiles of MGs, two zones are defined: Excessive zone (E-zone) and
Non-Excessive zone (NE-zone). In E-zone, energy generated by any of the
MGs is more than the load of corresponding MGs in the NMG environment.
Conversely, in NE-zone, energy generated by all MGs in the NMG system
is less than the load of that individual MG. In the proposed method, it is
possible to have multiple E-zones and NE-zones. The NE-zone is further
classified based on TOU prices i.e., during off-peak, intermediate and peak
tariff periods, whereas the E-zone is divided based on TOU prices and the
role of MGs as shown in Figure 2. The blocks cannot be merged or further
split once created.

So, there are no sellers in the NE-zone, whereas there can be sellers
and buyers in the E-zone. The MGs can benefit from shifting the load
from one zone to another zone i.e., DR program satisfying the constraint in
Equation (6).

The electricity produced in the NE-zone is inadequate to meet the total
load of MGs, the entire deficit of energy is purchased from the grid as in
Equation (10). The total cost incurred for buying this energy is given in

Figure 2 Classification of hour blocks.
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Equation (11). Equations (12) and (13) give the respective power purchased
and cost incurred by individual MGs during the NE zones.

Eg,NE
NMG,b =

{
N∑
i=1

LdNE
i −

N∑
i=1

GNE
i

}
(26)

TCNE
NMG,b = Egrid,t

NMG,b ∗ T
t
grid ,s (27)

Eg,NE
MGi,b

=
{
LdNE

i −GNE
i

}
(28)

CNE
MGi,b

= {Eg,NE
MGi,b

∗ T t
grid ,s} (29)

In E-zone, the amount of energy generated is higher than the amount of
load to be supplied in certain MGs. For a given E-zone there might arise the
same two conditions as discussed above excess energy and excess demand.
The NMG aggregator will follow the same proportional approach for trading
energy among the MGs as in Sections 3.1.1 and 3.1.2. But the total incurred
for the MGs and NMG system for a whole day is given by Equations (30)
and (31).

TCMG,i = CNE
MGi,b

+
∑

Ct
MGi,b

+
∑

Ct
MGi,s ∀t ∈ {NE,E}

(30)

TCNMG = TCNE
NMG,b +

∑
TCt

MGb
+
∑

TCt
MGs

∀t ∈ {NE,E}
(31)

Both the approaches hour-to-hour and hour-block based are implanted
using PSO and compared.

4 Particle Swarm Optimization (PSO)

PSO is a population-based evolutionary technique developed for solving
continuous non-linear equations [18]. The PSO algorithm was inspired by
the social behaviour of animals like inspired by bird flocking, fish schooling,
which works in groups to find optimal solution points [19]. PSO navigates
through the search space based on the best position found individually and
also the best position found by other particles. In PSO, particles are the simple
entities that are placed in the search space of the problem and used to find the
objective function at its position. The next iteration starts after all particles
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move from their initial position. PSO has three D-dimensional vectors, the
current best position xi, previous best position pi and velocity vi. The current
position is considered to be the solution in every iteration and it gives a point
in space. If the position found is better than the positions in previous iterations
it is stored in the previous best position pbesti . The current best position and
previous best position are updated by adding the velocity to the current best
position. As discussed, PSO works on the interaction among the particles,
the position of the particle is affected by the best position found among all
the particles in the neighbourhood called the global best position pgbesti .
The velocity is updated in each iteration such that the particle oscillates
between the current best position and the global best position as given in
Equation (32).

vi = ω ∗ vi + c1 ∗Rand ∗ (pbesti − xi) + c2 ∗ rand ∗ (pgbesti − xi) (32)

As in Equation (9), the position of the particle changes its location from
one position to another position based on the velocity.

xi = xi + vi (33)

The inertia constant (ω), balance the global and local search for an
optimal solution by maintaining its value constant or adjusting dynamically.
A higher inertia value assists global search, while a lower value assists
local search [20]. A constant inertia value is considered in this study. c1
represents the exploration coefficient, c2 as the exploitation coefficient and is
instrumental in finding the global optimal solution. c1 and c2 are considered
to be 2.05. Rand and rand are random functions generating a random value
between 0 to 1.

4.1 Step-by-Step for Implementation of Proposed Method

(1) Input the values of RES generation, load and TOU prices of the NMG
framework for given day.

(2) Determine the zones based on Section 3.
(3) Find the maximum and minimum load limits for each zone and obtain

TOU prices for E-zone.
(4) Initialize the particles for loads and TOU prices, set population size,

configure the algorithm parameters, number of iterations.
(5) Check if the particles are within limits and satisfy Equation (7).
(6) Solve the objective function, update the current particle position and best

particle position as given in Section 3.
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(7) According to Equations (32) and (33), update the velocity and particle
position.

(8) Repeat steps 5 and 6.
(9) Solve the objective function, for updated particles.

(10) Check if the stopping criterion is reached, i.e., maximum number of
iterations, if so, the solution is obtained. Otherwise, repeat step 7.

5 Results

For this study, a modified NMG framework given in [21] is considered, which
consists of 4 MGs. Each MG is interconnected to the other and enables
trading among MGs through the NMG manager. MG1 is a 6-bus system,
MG2 is a 9-bus system, MG3 is an 18-bus system and MG4 is a 7-bus
system respectively. Each MG is equipped with either PV or Wind or both,
schedulable loads. The maximum limits of the energy generation in MGs are
presented in Table 1. The combined RES generation for MGs for the 12th
of February is shown in Figure 3. The load for 24 hours of the same day is
as shown in Figure 4. In the system, the grid purchasing price, i.e., the price
at which the grid buys energy from the NMG, is maintained at one-third of
the grid selling price given by 1

3 ∗ T
t
grid ,s . The TOU prices for all hours of

the day are shown in Figure 5. The price of the whole day is classified into 3
categories off-peak, intermediate and peak periods as summarized in Table 2.

The parameters considered for the implementation of the proposed
problem are given in Table 3.

5.1 Hour-to-Hour Trading Results

For the considered system, on performing hour-to-hour energy trading-based
DR application as discussed in Section 3 the load is shifted as shown in
Figure 6. For 24-hour the role of MGs is shown in Table 4. The energy
trading price obtained for 24 hours between MGs is shown in Figure 7.

Table 1 Power generation limits [21]
PV Limits (kW) Wind Limits (kW)

MG Min Max Min Max Total (kW)
MG-1 0 6400 0 0 6400
MG-2 0 5600 0 1300 6900
MG-3 0 5600 0 1700 7300
MG-4 0 6400 0 0 6400
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Figure 3 RES Generation in NMGs.

 
Figure 4 Load in NMGs.

The total combined cost of each MG for the whole day is MG1: 14054.61
(USD/MWh), MG2: 8339.865 (USD/MWh), MG3: 10942.53 (USD/MWh)
and MG4: 6159.603 (USD/MWh) respectively. The total operating cost of
the whole NMG system is 39410.07 (USD/MWh).

PSO is run 40 times and the average amount of time taken for each
iteration is 4.578602 seconds. The average and minimum for the objective
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Figure 5 TOU Prices for NMGs.

Table 2 TOU prices for the day and their classification
Grid Selling Grid Buying

Period Time (Hrs) Price (USD/MWh) Price (USD/MWh)
Off-peak 1–7, 11–12, 22–24 93.6 31.2
Intermediate 8–10, 13–18 and 21 124.8 41.6
Peak 19–20 156 52

Table 3 PSO parameters
Topology Values
Particles 1000
Iterations 10
ω 0.729
C1 2.05
C2 2.05
rand, Rand between 0 and 1

function are 39674.19 (USD/MWh) and 39410.07 (USD/MWh). The stan-
dard deviation for 40 runs is 139.3305.

5.2 Hour Blocks Trading Results

The whole day is divided into 6 blocks based on their classification as Ezone
or NE- zone as discussed above. Zone-wise distribution of generation and
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Figure 6 Load in NMGs for hour-to-hour based trading.

Table 4 Role of MGs for hour-to-hour energy trading
MG1 MG2 MG3 MG4
Buyer Buyer Buyer Buyer
Buyer Buyer Buyer Buyer
Buyer Buyer Buyer Buyer
Buyer Buyer Buyer Buyer
Buyer Buyer Buyer Buyer
Buyer Buyer Buyer Buyer
Buyer Buyer Buyer Buyer
Buyer Buyer Buyer Buyer
Buyer Buyer Buyer Buyer
Buyer Buyer Buyer Seller
Buyer Buyer Buyer Seller
Buyer Seller Buyer Seller
Buyer Seller Buyer Seller
Buyer Seller Buyer Seller
Seller Buyer Buyer Seller
Buyer Seller Buyer Seller
Buyer Buyer Buyer Buyer
Buyer Buyer Buyer Buyer
Buyer Buyer Buyer Buyer
Buyer Buyer Buyer Buyer
Buyer Buyer Buyer Buyer
Buyer Buyer Buyer Buyer
Buyer Buyer Buyer Buyer
Buyer Buyer Buyer Buyer
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Figure 7 Energy trading prices among MGs in hour-to-hour trading.

load is shown in Figures 8 and 9. The 6 zones obtained, consists of 3 NE-
zones and 3 E-zones. During (1–7), (8–9), (17–18), (19–20), 21 and (22–24)
hrs, all MGs require energy, so these hour blocks are assigned as NE-zones.
MG4 has excess energy at 10 and 16 hrs, MG2 and MG4 generate excess
energy at (11–12) and (13–15) and these hour blocks are considered as E-
zones.

PSO is compiled for 40 times similar to the above case, then results are
computed. The zone-wise loads of MGs in NMG based on the proposed
method are shown in Figure 10. The role of each MG as a buyer or seller
is dependent on the optimal load schedule obtained through PSO which is
displayed in Table 5. The optimal costs for energy trading in E zones are
obtained as 41.6 (USD/MWh), 41.6 (USD/MWh) and 93.6 (USD/MWh)
respectively.

The total combined cost of each MG for the whole day is MG1: 13980.15
(USD/MWh), MG2: 8133.47 (USD/MWh), MG3: 10186.27 (USD/MWh)
and MG4: 6304.62 (USD/MWh) respectively. The total operating cost of
the whole NMG system is 38604.52 (USD/MWh). The average amount of
time taken for each iteration is 1.469999 seconds. The average and min-
imum for the objective function are 38942.55 (USD/MWh) and 38604.52
(USD/MWh). The standard deviation for 40 runs is 214.1659.
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Figure 8 Zone wise generation in NMG.

Figure 9 Zone wise load in NMG.
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Figure 10 Zone wise loads for hour-block based energy trading.

Table 5 Role of each MG
MG1 MG2 MG3 MG4 Zone
Buyer Buyer Buyer Buyer NE-zone
Buyer Buyer Buyer Buyer NE-zone
Buyer Buyer Buyer Buyer NE-zone
Buyer Seller Buyer Seller E-zone
Seller Seller Buyer Seller E-zone
Buyer Seller Buyer Seller E-zone

6 Conclusion

In this paper, a novel hour block-based DR approach is proposed to reduce
the complexity and amount of time taken for the application of the DR
program in comparison to the hour-to-hour block period. In the proposed
method, the objective is to reduce the cost of each MG and the combined
NMG framework. In the comparison of hour-to-hour and block-based energy
trading, hour-block-based energy trading zones are formed depending on
generation and load imbalance further classified in E-zone based on TOU
prices. The comparison of both approaches is presented and results indicate
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a reduction in operating costs of individual MGs except for MG4 and the
NMG network for the proposed method. PSO is applied for obtaining the
optimal solution. The average amount of time for execution of each iteration
is reduced from 4.578602 seconds to 1.469999 seconds.

References

[1] Liang Che, Xiaping Zhang, Mohammad Shahidehpour, Ahmed Alab-
dulwahab, and Abdullah Abusorrah. Optimal interconnection planning
of community microgrids with renewable energy sources. IEEE Trans-
actions on Smart Grid, 8(3):1054–1063, 2015.

[2] Michael Lee, Omar Aslam, Ben Foster, David Kathan, Jordan Kwok,
Lisa Medearis, Ray Palmer, Pamela Sporborg, and Michael Tita. Assess-
ment of demand response and advanced metering. Federal Energy
Regulatory Commission, Tech. Rep, 2013.

[3] A. Hussain, V.-H. Bui, and H.-M. Kim, “Impact analysis of demand
response intensity and energy storage size on operation of networked
microgrids,” Energies, vol. 10, no. 7, p. 882, 2017.

[4] R. Bahmani, H. Karimi, and S. Jadid, “Stochastic electricity market
model in networked microgrids considering demand response programs
and renewable energy sources,” International Journal of Electrical Power
& Energy Systems, vol. 117, p. 105606, 2020.

[5] N. Nikmehr, S. Najafi-Ravadanegh, and A. Khodaei, “Probabilis-
tic optimal scheduling of networked microgrids considering time-
based demand response programs under uncertainty,” Applied energy,
vol. 198, pp. 267–279, 2017.

[6] N. Nikmehr, L. Wang, S. Najafi-Ravadanegh, and S. Moradi-
Moghadam, “Demand response enabled optimal energy management
of networked microgrids for resilience enhancement,” in Operation of
Distributed Energy Resources in Smart Distribution Networks. Elsevier,
2018, pp. 49–74.

[7] A. Ajoulabadi, S. N. Ravadanegh, and B. Mohammadi-Ivatloo, “Flexi-
ble scheduling of reconfigurable microgrid-based distribution networks
considering demand response program,” Energy, vol. 196, p. 117024,
2020.

[8] S. E. Ahmadi and N. Rezaei, “A new isolated renewable based multi
microgrid optimal energy management system considering uncertainty
and demand response,” International Journal of Electrical Power &
Energy Systems, vol. 118, p. 105760, 2020.



1236 L. Vankudoth and A. Q. H. Badar

[9] R. Bahmani, H. Karimi, and S. Jadid, “Stochastic electricity market
model in networked microgrids considering demand response programs
and renewable energy sources,” International Journal of Electrical Power
& Energy Systems, vol. 117, p. 105606, 2020.

[10] M. Movahednia, H. Karimi, and S. Jadid, “Optimal hierarchical energy
management scheme for networked microgrids considering uncertain-
ties, demand response, and adjustable power,” IET Generation, Trans-
mission & Distribution, vol. 14, no. 20, pp. 4352–4362, 2020.

[11] H. Karimi and S. Jadid, “Optimal energy management for multi-
microgrid considering demand response programs: A stochastic multi-
objective framework,” Energy, vol. 195, p. 116992, 2020.

[12] M. Azimian, V. Amir, R. Habibifar, and H. Golmohamadi, “Proba-
bilistic optimization of networked multi-carrier microgrids to enhance
resilience leveraging demand response programs,” Sustainability,
vol. 13, no. 11, p. 5792, 2021.

[13] J. Faraji, A. Ketabi, H. Hashemi-Dezaki, M. Shafie-Khah, and J. P.
Catalão, “Optimal day-ahead self-scheduling and operation of pro-
sumer microgrids using hybrid machine learning-based weather and
load forecasting,” IEEE Access, vol. 8, pp. 157 284–157 305, 2020.

[14] J. Faraji, A. Ketabi, and H. Hashemi-Dezaki, “Developing an energy
management system for optimal operation of prosumers based on a
modified data-driven weather forecasting method,” in 2020 10th Smart
Grid Conference (SGC). IEEE, 2020, pp. 1–6.

[15] M. S. Misaghian, M. Saffari, M. Kia, M. S. Nazar, A. Heidari, M. Shafie-
khah, and J. P. Catalão, “Hierarchical framework for optimal opera-
tion of multiple microgrids considering demand response programs,”
Electric power systems research, vol. 165, pp. 199–213, 2018.

[16] V.-H. Bui, A. Hussain, and H.-M. Kim, “A multiagent-based hierar-
chical energy management strategy for multi-microgrids considering
adjustable power and demand response,” IEEE Transactions on Smart
Grid, vol. 9, no. 2, pp. 1323–1333, 2016.

[17] Hongbin Wu, Xin Liu, Bin Ye, and Bin Xu. Optimal dispatch and
bidding strategy of a virtual power plant based on a stackelberg game.
IET Generation, Transmission & Distribution, 14(4):552–563, 2019.

[18] James Kennedy and Russell Eberhart. Particle swarm optimization. In
Proceedings of ICNN’95-international conference on neural networks,
volume 4, pages 1942–1948. IEEE, 1995.

[19] Qinghai Bai. Analysis of particle swarm optimization algorithm. Com-
puter and information science, 3(1):180, 2010.



Comparison of Hour-to-Hour and Hour-Block Energy Trading 1237

[20] Daniel Bratton and James Kennedy. Defining a standard for particle
swarm optimization. In 2007 IEEE swarm intelligence symposium,
pages 120–127. IEEE, 2007.

[21] Mahamad Nabab Alam, Saikat Chakrabarti, and Xiaodong Liang. A
benchmark test system for networked microgrids. IEEE Transactions on
Industrial Informatics, 16(10):6217–6230, 2020.

Biographies

 

Lokesh Vankudoth received the bachelor’s degree in Electrical and Elec-
tronics Engineering from Kakatiya University in 2013, the master’s degree in
Integrated Power Systems from Visvesvaraya National Institute of Technol-
ogy Nagpur in 2017, respectively. He is currently working as a Ph.D. Scholar
at the Department of Electrical Engineering, National Institute of Technology
Warangal.



1238 L. Vankudoth and A. Q. H. Badar

Altaf Q. H. Badar received his bachelor’s degree in Electrical Engineering
from RTM Nagpur University in 2009, the master’s degree in Power Systems
from RTM Nagpur University in 2009, and the philosophy of doctorate from
Visvesvaraya National Institute of Technology Nagpur 2015, respectively.
He is currently working as an Assistant Professor at the Department of Elec-
trical Engineering, National Institute of Technology Warangal. His research
areas include Evolutionary Optimization Algorithms, Energy Management,
Energy Trading, Smart Grids, Forecasting.


	Introduction
	Networked Microgrids
	Problem Formulation
	Hour-to-Hour Trading Approach
	Excess energy generation
	Excess demand

	Hour-Block Energy Trading Approach
	Formation of hour blocks


	Particle Swarm Optimization (PSO)
	Step-by-Step for Implementation of Proposed Method

	Results
	Hour-to-Hour Trading Results
	Hour Blocks Trading Results

	Conclusion

