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Abstract

The growing use of electric vehicles (EVs) in today’s transport sector is
gradually reducing the use of petroleum-based vehicles. However, as EV
penetration grows, the EV’s demand influences distribution network parame-
ters such as power loss, voltage profile. Therefore, an improved bald eagle
search (IBES) algorithm is suggested for the optimal placement of FCSs
into the distribution network with high penetration of randomly distributed
solar power generation (SPDG). This study suggests a two-stage approach
for placing FCSs. The charging station investor decision index (CSIDI) was
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introduced in the first stage, taking into account the land cost index (LCI)
and the electric vehicle population index (EVPI). The CSIDI was developed
to decrease land costs while increasing EV population for FCS installation.
In the next one, an optimization problem is constructed to minimize total
active power loss while taking distribution system operator (DSO) constraints
into consideration. The IEEE-34 bus distribution system is used as the
proposed network. The simulation is carried out in MATLAB to integrate
the EVCSs in three cases in the distribution network with SPDGs randomly
placed. Therefore, The IBES found the best optimal positions with a power
loss of 198.43 kW. When compared to the PSO technique, the IBES technique
has a reduced average power loss of 2.02%.

Keywords: Charging stations, electric vehicle population, land cost,
improved bald eagle search algorithm, optimal placement.
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1 Introduction

Electric vehicles (EVs) are gaining popularity among government organi-
zations and the automotive industry due to significant reductions in CO2

emissions and maintenance costs when compared to the most populous
internal combustion vehicles [1]. Furthermore, according to a study, the fossil
fuel reserves will be depleted in this century, with oil lasting 51 years, natural
gas lasting 53 years, and coal lasting 114 years [2]. Moreover, the researchers
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examined data to determine that the development of EVs could reduce CO2

emissions by 28% by 2030 [3]. As a result, the global EV population is grow-
ing, posing new challenges for DSO. In addition, new business opportunities
are developing, such as service providers for EV consumers, load demand
management, and ancillary services. As a result, excessive electrical power
demand may affect distribution system parameters such as bus voltages,
power loss, reliability, harmonic distortion, voltage imbalance and power
quality [4]. Furthermore, the rapidly expanding EV population necessitates
the development of well-developed charging infrastructure. Charging stations
(CSs) are classified as slow, medium, fast and ultra-fast based on their
charging time and power rating [5].

FCSs are an appropriate choice for charging EV batteries in 20–30 min-
utes [6]. As a result, installing FCSs is a beneficial option for EV customers;
nevertheless, installing FCSs has a negative influence on the distribution
system [7]. Furthermore, the proper placement of FCS can reduce the burden
on the distribution system [8]. Furthermore, the number of FCSs and their
locations are critical problems for DSOs, charging station investors and EV
consumers. As a result, the number of FCSs and the appropriate location
of FCSs have become more interesting study topics in the previous decade.
Furthermore, most studies have published their findings on FCS placement
by including DSO parameters such as bus voltage, power loss, and reliabil-
ity [9]. On the other hand, the placement of FCSs has taken into account the
investment cost as well as the EV user’s approach. The authors are motivated
by the current literature to place the FCS using the DSO approach, the EV
users approach, and the FCS investor approach.

1.1 Literature Review

Most of the researchers have worked for the placement of slow or medium
charging stations whereas, some authors have discussed the optimal location
for FCS. In addition, very little research has been published on the integration
of medium and fast charging together. In [10], optimal siting and sizing of
CS optimization problem is formulated for obtaining the optimal results by
considering investment cost, connection cost, active power losses cost and
demand response, which is solved by PSO algorithm. The authors created a
multi-objective mixed integer non-linear problem (MINLP) in [11] including
FCS development costs, EV specific energy consumption costs, electrical
network power loss costs, DGs costs, and voltage variation costs. In addition,
the simultaneous allocation of EV parking lots and the distributed renewable
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Figure 1 The framework of the proposed problem.

resources have been placed at the optimal location through the ant colony
optimization (ACO) algorithm [12]. Eventually, a multi-objective problem
has formulated considering the minimization of power loss and maximizing
the EV population for the optimal CS location which was gained by the grey
wolf optimization (GWO) technique [13].

In [14], The authors employed a hybrid Chicken Swarm Optimization and
Teaching Learning Based Optimization method to reduce the investment cost
for establishing the charging station, as well as a voltage deviation, reliability,
and power loss (VRP) index to improve distribution system characteristics.
Furthermore, in [15], the same authors have published a literature review on
optimal location and sizing of CSs, the impact on distribution systems, and
techniques for solving the corresponding problem.

Furthermore, the authors in [16], proposed a capacitated-flow refuel-
ing location model (CFRLM) and formulated an optimization problem that
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included investment cost, penalty for unsatisfied charging demands, and
power distribution network cost, which is solved by branch and bound (B&B)
technique. Moreover, the stability and power loss minimization is the objec-
tive function of the optimization problem which is solved by the adaptive
particle swarm optimization (APSO) algorithm [17]. Similarly, in [6], the
power loss and voltage deviation have been selected as objective functions
for CS placement with the integration of PV generation while formulated
problem solved by PSO method. Furthermore, a mixed-integer programming
model has been established to express the problem of optimizing total plug-in
EV populations in the network, and the GA has been utilized to solve the sug-
gested problem [18]. In [19], the authors have suggested the multi-objective
approach for the placement of CSs and DGs with V2G strategy, whereas
an improved harmony PSO algorithm has obtained the optimal results of
the proposed problem. Moreover, the authors in [20], have suggested the
fuzzy grasshopper optimization algorithm for optimal placement of CSs,
DGs, and shunt capacitors. Furthermore, in [9] authors have obtained the
optimal location of CS by minimizing the development cost of CS, power
loss, and maximizing the voltage quality, and formulated problem is solved
by a balanced mayfly algorithm.

1.2 Objectives and Contribution of the Proposed Work

The objective of this research is to determine the optimal locations for
FCSs while reducing investment costs and increasing profit from installation,
as well as to optimize distribution system parameters. Therefore, for the
modeling of the optimization problem, land cost, EV population, and power
loss of distribution system are considered as the objective for the placement
of charging stations. All the existing structures aim to achieve the optimal
location of the CS considering various objective functions. However, to the
best of the authors’ knowledge, no such method has considered the land
cost and EV population in the optimization problem. In this paper, a novel
approach for the location of FCSs is proposed considering the land cost,
EV population, and power loss cost. This synchronic approach significantly
enhances the productivity of smart distribution networks in terms of reaching
the best degree of loss reduction by incorporating both the charging station
investor’s decision factor and distribution network constraints.

The optimal location of FCSs is identified in two stages. CSIDI is
optimized in the first phase for sorting the possible locations for FCSs that
increase EV population while minimizing land cost. Furthermore, power loss
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is reduced for the next phase to get the optimal locations. The majority of
the presented study has determined the optimal location of CS by taking
installation costs, quality enhancement parameters of distribution systems,
and their combination into account. For the placement of FCSs in this study,
installation cost, quality enhancement component of the distribution system,
and profit were all taken into account.

The main contribution of this paper is expressed as:

• A two-stage novel optimization problem is developed to maximize the
EV population while reducing investment costs and power loss costs for
the FCSs deployment.

• In the first step, the charging station investor decision index (CSIDI) is
developed to reduce the optimization algorithm’s search space. Further-
more, the LCI and EVPI are established to optimize the value of land
cost and EV population for the investor to receive more return with less
capital for FCS installation.

• In the second phase, a single objective optimization problem with power
loss cost as the objective function is created to identify the optimal posi-
tions from the first stage identified locations. Furthermore, the Improved
Bald Eagle Search algorithm has been proposed for the optimal solutions
of the specified optimization problem to optimize the FCSs position
to increase their performance in terms of power loss, and the obtained
results were compared with the PSO algorithm.

• The integration of EV charging stations with randomly placed solar
power distribution generation (SPDG) for distribution network is pre-
sented realistically and thoroughly, taking into account electrical and
geographic limits.

1.3 Organization of the Paper

The remainder of this work is structured as follows: Section 2 presents the
problem formulation for optimal FCS placement. Section 3 illustrates the
optimization technique for achieving the optimal solution. Section 4 further
explains the results of the presented problem. Section 5 brings the paper to a
conclusion.

2 Problem Formulation

Figure 1 is suggested the problem framework for optimal FCS location,
therefore the EV charging station investor decision index (CSIDI) is framed



The Optimal Placement of Electric Vehicle Fast Charging Stations 1283

by including the land cost for FCS installation and EVs population at each
bus. Furthermore, the objective function under the distribution system opera-
tor approach is suggested with some distribution constraints. Afterward, the
price of land in the cities is very high and sometimes changes within a city
with very high differences. Therefore, the FCS investors first ruminate the
land cost for the placement of FCS. On the other side, the FCS location
should be accessible by the EV users, therefore the FCS investors investigate
the EV population at all possible FCS locations to maximize the profit.
Eventually, the optimization problem is created to minimize the power loss of
the distribution system with network constraints for the optimal FCS location.
In addition, first, calculate the number of FCS in the proposed area with the
IEEE-34 bus system to obtain the optimal location.

2.1 Formulation of Charging Station Investor Decision Index

The number of FCSs in the intended region was calculated by looking at the
overall EV population in the area, battery capacity, load factor, and charging
time, which is expressed in (1) [21]. As a result, the number of FCS (NFCS )
is illustrated.

NFCS =

[
p ∗NEV ∗ ch_time
st ∗ q ∗ CFCS ∗ lf

]
(1)

Where p is the mean power of EVs, NEV is the number of EVs to be
charged per day, ch_time is the charging time, st is the charger service time,
CFCS is the capacity of fast charger, q is charging efficiency, lf is the load
factor of the charger.

2.2 Formulation of Charging Station Investor Decision Index

2.2.1 Land cost index
The land prices in cities are quite high, and they vary greatly within the
city. As a result, FCS investors first analyze the land costs of each possible
FCS location. Furthermore, for the probable position of FCS, each bus of the
proposed IEEE-34 distribution system should be evaluated. In addition, the
land cost index is proposed to include the land cost in problem design. As a
result, the load cost data on the buses, branch line data, and EV population on
each bus are stated in Table 1 for the IEEE-34 bus system, and a single line
diagram of the IEEE-34 bus system is represented in Figure 2. Furthermore,
the normalized LCI is represented in (2) for each bus, which is calculated by
dividing the land cost of each bus by the maximum land cost of the buses.
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Table 1 IEEE34 Bus Load data, line data, and EV population

Bus Load Load EVs From To Resistance Reactance
No. (kW) (kVAR) Population Bus Bus (ohm) (ohm)

1 0 0 0 1 2 0.117 0.048

2 230 142.5 10 2 3 0.1072 0.044

3 0 0 100 3 4 0.1644 0.0456

4 230 142.5 20 4 5 0.1495 0.0415

5 230 142.5 30 5 6 0.1495 0.0415

6 0 0 30 6 7 0.3144 0.054

7 0 0 40 7 8 0.2096 0.036

8 230 142.5 40 8 9 0.3144 0.054

9 230 142.5 50 9 10 0.2096 0.036

10 0 0 50 10 11 0.131 0.0225

11 230 142.5 50 11 12 0.1048 0.018

12 137 84 50 3 13 0.1572 0.027

13 72 45 60 13 14 0.2096 0.036

14 72 45 80 14 15 0.1048 0.018

15 72 45 100 15 16 0.0524 0.009

16 13.5 7.5 120 6 17 0.1794 0.0498

17 230 142.5 150 17 18 0.1644 0.0456

18 230 142.5 170 18 19 0.2079 0.0473

19 230 142.5 200 19 20 0.189 0.043

20 230 142.5 30 20 21 0.189 0.043

21 230 142.5 20 21 22 0.262 0.045

22 230 142.5 20 22 23 0.262 0.045

23 230 142.5 10 23 24 0.3144 0.054

24 230 142.5 10 24 25 0.2096 0.036

25 230 142.5 10 25 26 0.131 0.0225

26 230 142.5 10 26 27 0.1048 0.018

27 137 85 30 7 28 0.1572 0.027

28 75 48 30 28 29 0.1572 0.027

29 75 48 20 29 30 0.1572 0.027

30 75 48 20 10 31 0.1572 0.027

31 57 34.5 20 31 32 0.2096 0.036

32 57 34.5 20 32 33 0.1572 0.027

33 57 34.5 10 33 34 0.1048 0.018

34 57 34.5 10 1 2 0.117 0.048
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Figure 2 Presentation of an IEEE-34 bus system.

Therefore, the LCI lay between 0 and 1 according to the land cost on buses.

LCINb
i =

LCNb
i

max{LCNb
i }

(2)

where, LC i is the land cost at ith bus, Nb is the total buses in the distribution
system.

2.2.2 Electric vehicle population index
Furthermore, the number of EVs charged at the FCS will decide the investor
profit. In other words, the profit is determined by the number of EVs on the
bus. Furthermore, for each bus, an electric vehicle population index (EVPI)
is produced, which is used to rank the buses with the highest EV population.
Furthermore, the normalized EVPI at each bus is calculated, which is stated
in (3) as the EVs at each bus divided by the maximum EVs of the buses.

EVPINb
i =

EVPNb
i

max{EVPNb
i }

(3)

where, EVP i is the EV population at ith bus.
Finally, the charging station investor decision index (CSIDI) is repre-

sented in (4), which is the combination of the normalized LCI and EVPI for



1286 F. Ahmad et al.

each bus.
CSODINb

i = α× LCINb
i − β × EVFINb

i (4)

where α and β are the positive coefficients that are used to change the prior-
ities in decision making between land cost and EV population. In addition,
α and β both have 0.5 values for equal weightage for the land cost and EV
population.

According to the proposed CSIDI, the investor chooses to install the
FCS in the bus, which meets the following conditions. (1) cheaper land cost
attracts investors for FCS installation, and (2) large EV population at buses is
also chosen by investors for maximum profit.

2.3 Objective Function

As stated in the CSIDI formulation, the possible location for FCS has been
narrowed down due to land cost and EV population sorting. In the second
step, the optimization problem is phrased further by employing power loss
as an objective function with certain inequality constraints. As a result, the
objective function for minimizing distribution network power loss is depicted
in (5).

f = min

 br∑
j=1

Ploss,j

 (5)

where, Ploss,j is the power loss for jth branch in the distribution system, br
is the total number of branches in the distribution system.

Constraints:

Voltage constraint: The magnitude of the voltage at each node must be kept
within acceptable limits, which is expressed in (6).

V min < Vi < V max where i = 1, 2 . . . Nb (6)

where V min and V max are the minimum and maximum voltage limits of
buses, Vi is the voltage of ith bus.

Current constraint in branches: The capacity of the distribution line must
not be exceeded (7).

Ij < Imax where j = 1, 2 . . . br (7)

where and Imax is the maximum current limits of buses, Ij is the current flow
in jth line.
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Table 2 Placement of SPDGs with capacity
Types of DGs Location at Bus Capacity (kW)
SPDG1 6 250
SPDG2 11 250
SPDG3 22 500

Reactive power constraints: to maintain the reactive power of each bus
within limitations, a reactive power restriction has been created (8).

Qmin < Qi < Qmax where i = 1, 2 . . . Nb (8)

where Qmin and Qmax are the minimum and maximum reactive power limits
of buses, Qi is the reactive power at ith bus.

2.4 Solar Power Distributed Generation

By 2040, global energy demand will increase by one-third, owing mostly to
increased transportation use in China, India, and other Asian countries [22].
Solar power distributed generation (SPDG) is a fast-growing source of renew-
able energy for the grid. As a result, there have already been a huge number of
articles on solar efficiency and solar converters. Furthermore, the integration
of FCSs into the grid has resulted in a mismatch between power consumption
and electricity output. As a result, the SPDG position was generated at
random on the distribution network buses, as shown in Table 2. Furthermore,
including SPDG into the distribution network world minimizes grid stress
induced by EV load. The SPDG locations are eventually determined at
random because the authors only recommended the FCS placement in this
article.

3 Solution Technique

To get the optimum solution or the unconstrained maxima and minima of
continuous and differentiable functions, classical optimization techniques
can be applied. Furthermore, because they need objective functions that
are not continuous and/or differentiable, classical approaches have limited
practical use. As a result, advanced optimization techniques are employed
to achieve the best solution to the defined optimization problem. The results
of unimodal function from F1–F7 are represented in Table 3 for proposed
techniques. Further, the results of the multimodal benchmark from F8–F13
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Table 3 Parameters
Parameters Name Value Unit
Number of EVs (NEV) 1620 –
Charging time (Ch_time) 0.33 hours
Capacity of FCS (CFCS) 480 kW
Service time of FCS (st) 18 hours
Average power for each EV (p) 96 kW
Load factor of FCS (lf) 0.95 –
Charging efficiency (q) 0.9 –

Table 4 Results of unimodal benchmark functions
Functions PSO BES IBES

F1 Best 1.00 × 10−23 0 0
Worst 9.21 × 10−21 0 0
Mean 1.92 × 10−21 0 0

F2 Best 4.32 × 10−13 0 0
Worst 1.03 × 10−10 1.37×10−270 4.47 × 10−303

Mean 1.96 × 10−11 6.85×10−272 2.73×10−304

F3 Best 5.08 × 10−50 0 0
Worst 7.79 × 10−45 0 0
Mean 4.20 × 10−46 0 0

F4 Best 3.69 × 10−11 0 0
Worst 5.29 × 10−10 1.51×10−260 1.60×10−294

Mean 2.49 × 10−10 7.56×10−262 8.32×10−296

F5 Best 26.20355 23.42343 23.49114
Worst 28.72399 25.76698 25.32653
Mean 27.28987 24.26849 24.66361

F6 Best 0.03963 6.7 × 10−7 1.43 × 10−5

Worst 0.228144 7.96 × 10−5 0.249381
Mean 0.102408 1.79 × 10−5 0.03938

F7 Best 0.000839 1.58 × 10−5 2.25 × 10−6

Worst 0.009435 0.000348 0.00031
Mean 0.002914 0.000142 8.49 × 10−5

are given in Table 4. Moreover, the results of composite benchmark functions
from F14–F23 are obtained in Table 5 for the suggested algorithm. For the
benchmark function, the IBES algorithm got the best results, therefore the
authors in this paper proposed an IBES algorithm for the optimal location of
the charging station.
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Table 5 Results of multimodal benchmark functions
Functions PSO BES IBES

F8 Best −1830.71 −1777.18 −1731.16
Worst −1642.02 −1043.35 −1354.55
Mean −1720.61 −1503.62 −1543.11

F9 Best 0 0 0
Worst 0 0 0
Mean 0 0 0

F10 Best 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16

Worst 3.7 × 10−8 20 20
Mean 4.09 × 10−9 18 11

F11 Best 0 0 0
Worst 2.04 × 10−9 0 0
Mean 1.02 × 10−10 0 0

F12 Best 0.000366 2.91 × 10−9 6.53 × 10−6

Worst 0.00209 3.41 × 10−7 9.95 × 10−5

Mean 0.001236 1.04 × 10−7 4.13 × 10−5

F13 Best 0.104263 2.24745 1.95995
Worst 0.475712 2.966102 2.968414
Mean 0.2188 2.904654 2.916155

3.1 Particle Swarm Optimization Technique

The PSO is a well-known algorithm that was inspired by the social behav-
ior of birds flocking or fish schooling and was enhanced by Kennedy and
Eberhard in [23]. Furthermore, when compared to mathematics and other
evolutionary algorithms, the PSO method stands out for its easy imple-
mentation, parameter controllability, and ability to explore global and local
minimum points.

Furthermore, the PSO algorithm is investigated for selecting the best
position for FCSs. The PSO is a population-based evolutionary algorithm
in which each solution confirms its position and velocity. Furthermore, each
particle adapts its new position by modifying its velocity based on its own
experience. Equations (9) and (10) calculate the particles’ new velocity and
location, respectively.

V new = w∗V old+c1 ∗ rand(plocal − pold )+c2 ∗ rand(pglobal − pold ) (9)

xnew= xold+V new (10)
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Table 6 Composite benchmark functions results
Functions PSO BES IBES

F14 Best 0.998004 0.998004 0.998004
Worst 3.96825 12.67051 0.998004
Mean 1.196218 1.978449 0.998004

F15 Best 0.000307 0.000307 0.000307
Worst 0.020363 0.020363 0.001223
Mean 0.001647 0.001356 0.000358

F16 Best −1.03163 −1.03163 −1.03163
Worst −1.03163 −1.03163 −1.03163
Mean −1.03163 −1.03163 −1.03163

F17 Best 0.397887 0.397887 0.397887
Worst 0.397887 0.397887 0.397887
Mean 0.397887 0.397887 0.397887

F18 Best 3 3 3
Worst 3 3 3
Mean 3 3 3

F19 Best 0.03963 −0.30048 −0.30048
Worst 0.228144 −0.30048 −0.30048
Mean 0.102408 −0.30048 −0.30048

F20 Best −3.322 −3.322 −3.322
Worst −3.2031 −3.2031 −3.2031
Mean −3.28633 −3.29822 −3.28633

F21 Best −10.1532 −10.1532 −10.1532
Worst −5.0552 −5.0552 −5.05483
Mean −7.60386 −7.60275 −8.1162

F22 Best −10.4029 −10.4029 −10.4029
Worst −3.7243 −4.68994 −5.08767
Mean −7.34321 −7.94017 −8.01313

F23 Best −10.5364 −10.5364 −10.5364
Worst −2.42734 −3.83543 −5.12848
Mean −7.11694 −9.38996 −9.99511

where, plocal and pglobal are the best local and best global position of the
particle, c1 and c2 can have 1 or 2 integer values, rand(·) generate the random
number between 0 and 1.

The PSO algorithm is good at exploitation but not so good at exploration.
Furthermore, exploitation implies that the algorithm does a very good local
search. Exploration ability, on the other hand, boosts its ability to discover
suitable starting positions, maybe around the global minimum. As a result,
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Figure 3 Flowchart of IBES.
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a well-designed algorithm strikes a balance between exploitation and explo-
ration. PSO suffers from converging to a local minimum due to exploration
capabilities when the starting location of the PSO algorithm is distant from
the global minimum.

3.2 An Improved Bald Eagle Search Technique

Based on the bald eagle search algorithm [24], the improved bald eagle search
(IBES) algorithm is inspired by bald eagle search behavior during the hunting
phase [25] and the flowchart of IBES algorithm is given in Figure 3. The
hunting technique is divided into three stages: selecting the space, searching
the space, and finally swooping in on the prey.

Selecting the space: Based on the previous search information, the bald
selects the space at random.

pnew,i = pbest +α× r(pmean − pi) (11)

Instead of having a fixed value in the original BES method, the parameter
alpha for managing position changes can be derived using the following
equation.

α =
1.5× (MaxIter − t+ 1)

MaxIter
(12)

This parameter influences the bald position of eagles and improves explo-
ration and exploitation in the IBES approach. r is a number between 0 and 1.
The new and current search spaces are denoted by pnew and pbest , respec-
tively. pmean shows that these eagles have consumed all the information from
the previous.

Search stage: To speed up their search for prey in this area, the eagles move
in a spiral form. At this point, the eagle’s location is updated using Equation.

pi,new = pi + y(i)× (pi − pi+1)pbest + x(i)× r(pi − pmean) (13)

x(i) =
xr(i)

max|xr|
, y(i) =

yr(i)

max|yr|
(14)

xr(i) = r(i)× sin(θ(i)), yr(i) = r(i)× cos(θ(i)) (15)

θ(i) = α× π× rand (16)

r(i) = θ(i)×R× rand (17)
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where α is a parameter with a range of 5 to 10, and R is a parameter with a
range of 0.5 to 2.

Swooping stage: At this stage, the eagles begin to swing from the optimal
search position towards their prey, as expressed in Equation.

pi,new = rand× pbest + x1(i)× (pi − s1 × pmean)

+y1(i)× (pi − s2 × pbest) (18)

x1(i) =
xr(i)

max|xr|
, y1(i) =

yr(i)

max|yr|
(19)

xr(i) = r(i)× sinh(θ(i)), yr(i) = r(i)× cosh(θ(i)) (20)

θ(i) = α× π× rand, r(i) = θ(i) (21)

where, s1 and s2 have value from 1 to 2.

4 Results

To carry out this work, MATLAB 2018a programming language has been
used, which is installed in a computer window 8.1, intel i7 processor, 2.4GHz
clock speed with 4GB Ram.

4.1 Results of CSIDI

The number of charging stations has been determined based on the data
provided for the proposed region, as shown in Table 3. Furthermore, as
mentioned in Section 2, the CSIDI value is determined for each bus in the
distribution system. As a result, the LCI for land cost is depicted in Table 4
for three cases, and certain locations do not have land for FCS installation,
which is represented by infinite. Furthermore, the value of CSIDI increases
from top to bottom, as shown in Table 4 by the bus number. As a result of the
low land cost and large EV population, the top buses have the highest priority
for placing the FCS. Case-1 (C-1) utilizes the top eight buses to find a feasible
position in the optimization problem, whereas Case-2 (C-2) likewise uses the
top eight buses to find the optimal location of FCS. Furthermore, case-3 (C-3)
looked for the best location of FCS among the top eight buses, as shown in
Table 4. In a conclusion, the study for the optimal location of FCSs on the
distribution system in the first stage has decreased the searching space for the
optimization problem. In addition, the power loss is chosen as an objective
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Table 7 LCI of 34 bus system and bus order based on CSIDI for IEEE34 Bus system
C-1 C-2 C-3

Bus No. LCI Bus Order CSIDI Bus No. LCI Bus Order CSIDI Bus No. LCI Bus Order CSIDI

1 Inf 19 −0.933 1 Inf 17 −0.700 1 Inf 18 −0.516

2 0.833 17 −0.700 2 0.050 18 −0.516 2 0.500 15 −0.450

3 Inf 18 −0.516 3 Inf 19 −0.333 3 0.666 19 −0.333

4 0.050 13 −0.233 4 0.500 9 −0.183 4 Inf 17 −0.250

5 0.666 10 −0.200 5 0.033 5 −0.116 5 Inf 28 −0.116

6 0.166 28 −0.116 6 0.333 31 −0.050 6 0.333 21 −0.050

7 0.833 30 −0.083 7 0.833 2 0 7 0.833 32 −0.050

8 0.666 4 −0.050 8 0.666 6 0.183 8 0.666 25 0.016

9 0.333 32 −0.050 9 0.066 28 0.183 9 0.666 3 0.166

10 0.050 6 0.016 10 0.500 29 0.233 10 0.500 6 0.183

11 Inf 24 0.033 11 Inf 30 0.233 11 Inf 29 0.233

12 0.666 9 0.083 12 0.666 10 0.250 12 0.666 30 0.233

13 0.066 29 0.233 13 0.666 34 0.283 13 0.666 10 0.250

14 1 31 0.233 14 1 15 0.333 14 1 34 0.283

15 0.833 34 0.283 15 0.833 20 0.350 15 0.050 20 0.350

16 Inf 15 0.333 16 Inf 13 0.366 16 Inf 13 0.366

17 0.050 20 0.350 17 0.050 4 0.400 17 0.500 31 0.400

18 0.333 12 0.416 18 0.333 32 0.400 18 0.333 9 0.416

19 0.066 8 0.466 19 0.666 12 0.416 19 0.666 12 0.416

20 0.500 5 0.516 20 0.500 8 0.466 20 0.500 2 0.450

21 0.666 21 0.566 21 0.666 21 0.566 21 0.050 8 0.466

22 Inf 14 0.600 22 Inf 14 0.600 22 Inf 14 0.600

23 0.833 26 0.616 23 0.833 26 0.616 23 0.833 26 0.616

24 0.083 33 0.616 24 0.833 33 0.616 24 0.833 33 0.616

25 1 7 0.633 25 1 7 0.633 25 0.066 7 0.633

26 0.666 27 0.683 26 0.666 27 0.683 26 0.666 27 0.683

27 0.833 2 0.783 27 0.833 23 0.783 27 0.833 23 0.783

28 0.033 23 0.783 28 0.333 24 0.783 28 0.033 24 0.783

29 0.333 25 0.950 29 0.333 25 0.950 29 0.333 1 Inf

30 0.016 1 Inf 30 0.333 1 Inf 30 0.333 4 Inf

31 0.333 3 Inf 31 0.050 3 Inf 31 0.500 5 Inf

32 0.050 11 Inf 32 0.500 11 Inf 32 0.050 11 Inf

33 0.666 16 Inf 33 0.666 16 Inf 33 0.666 16 Inf

34 0.333 22 Inf 34 0.333 22 Inf 34 0.333 22 Inf

function for optimal position. Furthermore, the land cost and EV population
have been considered in the selection for the best placement of FCS on the
distribution system.

As previously noted, the number of possible FCS locations has been
decreased from 33 to 8. Following that, the three best locations on the
distribution system from the obtained possible locations were selected by
minimizing power loss with some distribution limits. As a result, the IEEE
34 bus distribution system proved the efficacy of the suggested FCS planning.
The IEEE 34 distribution system proposed includes active power demands of
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4636.5 kW and reactive power loads of 2873.5 kVAR. The backward forward
flow algorithm is used in this study to calculate power flow. Furthermore, total
active power loss (221.72 kW), lowest voltage (0.94171 at 27), and highest
voltage (0.99414 at 2) are acquired values for the proposed distribution
network without any FCS and SPDG installation.

4.2 Results of Optimal Location of FCS Using IBES Technique

According to the previously acquired data, there were eight (19,17,18,13,10,
28,30,4) buses available for FCS installation. Furthermore, the findings for
the optimal location of FCS have been achieved by reducing the power loss in
C-1 utilizing the previously suggested PSO techniques. Figures 4(a) and 4(b)
show the voltage at each bus and the power flow in each line. Furthermore,
by reducing power loss, the optimal position of FCS from the possible buses
was identified. As a result, Table 5 represents total power loss, minimum
voltage, and optimal location on distribution network buses. The acquired
bus voltage and power flow data for C-2 are shown in Figures 5(a) and 5(b).
Eventually, the obtained results from the PSO algorithm for optimal location
of FCSs by minimizing power loss are illustrated in Table 5 for C-3, while
the optimal location of FCSs at buses 15, 17, and 18 have total active power
losses (221.90 kW), minimum voltage (0.94378 at 27), and maximum voltage
(0.99365 at 2). Furthermore, Figures 6(a) and 6(b) show the voltage and
power flow findings for buses and lines, respectively.

4.3 Results of Optimal Location for FCS Using IBES Technique

Furthermore, the IBES algorithm has recommended a suitable location for
the FCS problem. The findings for the optimal location of FCS on the 4,13,17

(a) (b) 

Figure 4 The bus voltage and power flow using PSO in C-1.
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 (a) (b) 

Figure 5 The bus voltage and power flow using PSO in C-2.

 (a) (b) 
Figure 6 The bus voltage and power flow using PSO in C-3.

 

(a) (b) 

Figure 7 The bus voltage and power flow using IBES in C-1.

bus for reducing power loss while maintaining voltage and power limitations
were obtained in C-1. As a result, the minimum voltage at each bus and power
flow in each line are shown in Figures 7(a) and 7(b). As already described.
The authors obtained some improvements in the IBES technique results,
including a 2.68% reduction in power loss. Furthermore, with a power loss
of 198.43 kW, the optimal position of FCSs was found to be at 2, 5, 6 in C-2.
Figures 8(a) and 8(b) suggest the voltage at each bus and the power flow in
each line for optimal FCS position. Furthermore, the IBES approach reduced
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 (a) (b) 

Figure 8 The bus voltage and power flow using IBES in C-2.

(a) (b) 

Figure 9 The bus voltage and power flow using IBES in C-3.

 

Figure 10 Power loss in different cases.

power loss by 1.89% when compared to PSO. Eventually, the optimal FCS
position findings were achieved with a power loss of 217.85 kW. whereas
the obtained voltage at each bus and power flow in each line are shown in
Figures 9(a) and 9(b) for C-3. As a result, the IBES algorithm achieves a
power loss decrease of 1.52%. Power loss for different cases is represented in
Figure 10.
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Table 8 Results comparison in three scenarios for the IEEE34 bus system
PSO IBES

— Base Case C-1 C-2 C-3 C-1 C-2 C-3

Power loss
(kW)

221.72 208.32 202.75 221.90 202.34 198.43 217.85

Min. Voltage
(p.u.)

0.94171 at
bus 27

0.94854 at
bus 27

0.94651 at
bus 27

0.94378 at
bus 27

0.94678 at
bus 27

0.94752 at
bus 27

0.94542 at
bus 27

Max. Voltage
(p.u.)

0.99414 at
bus 2

0.99372 at
bus 2

0.99367 at
bus 2

0.99365 at
bus 2

0.99369 at
bus 2

0.99372 at
bus 2

0.99373 at
bus 2

FCSs location – 4,10,17 2,5,17 15,17,18 4,13,17 2,5,6 15,7,28

5 Conclusion and Recommendation

The purpose of this research was to integrate FCS into a distribution net-
work with randomly distributed solar power generation (SPDG) utilizing
an IBES optimization technique. The optimization problem was simulated
using MATLAB 2018a. The objective was to optimally locate the FCSs so
that they would not impact network quality. The objective functions were
developed to decrease active power losses, investment costs and maximize the
EV population. The SPDGs were randomly sized and sited using Microsoft
Excel and then uploaded to MATLAB. When the results of the PSO and BES
algorithms are examined, the significance of IBES is verified for the bench-
mark functions. In all three cases, the simulation results demonstrated the
effectiveness of the IBES for obtaining the best locations for the installation
of the FCSs across the distribution network. The performance of the IBES
was validated by measuring its findings to those obtained while employing
PSO for the placement of FCSs in the distribution network with randomly
sized and located SPDGs. The simulation results show that the suggested
IBES is an effective optimization approach for the placement of FCSs in
current distribution networks with random SPDGs.

The future scope of this research will address the daylight variation
of solar power generation, EV user driving patterns, distribution network
uncertainties, and EV charging time for the best allocation of FCSs in the
distribution network.
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