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Abstract

The DC microgrid has become a greater power system in modern power tech-
nology due to its wider acceptance as compared to the AC-based traditional
power distribution network. Nevertheless, protection of the DC microgrid is
a difficult and complicated task due to numerous types of fault scenarios
such as pole-to-ground and pole-to-pole faults, variation in fault current
magnitude during grid connected and islanded mode, as well as bidirectional
behaviour of the converters. In addition to the abovementioned challenges,
fault detection during varying fault resistance and intermittency is also a
crucial and tricky task because the level of the fault current can vary due
to the distinct value of the fault resistance. Therefore, in this manuscript, an
ANN-based protection scheme is proposed to detect the fault under varying
fault conditions. Furthermore, to investigate the appropriateness of the pro-
tection scheme, DT and kNN-based techniques have also been considered
for analysis purpose. In the proposed protection scheme, the tasks of mode
identification, fault detection/classification, as well as section identification,
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have been proposed. The results in Section 5 indicate that the protection
scheme is capable and accurate for fault detection in any type of faulty
condition.

Keywords: DC microgrid, artificial neural network (ANN), fault detec-
tion/classification, pole to ground and pole to pole fault, distributed energy
resources (DERs).

1 Introduction

In the modern era, the crisis of power is tremendously increasing due
to advancements in industrial and commercial infrastructure. To meet the
required power demand for the reduction of this type of energy crisis, various
types of power generating sites are installed in all over the world, where
majority of them are based on coal, nuclear fuel, and some other petroleum
products. The common drawbacks with such plants are the emission of
hazardous particles into the atmosphere and their dependency on the available
fossil fuels. Therefore, the traditional energy scenario is continuously shifting
towards the adoption of alternate sources of energy such as solar [1, 2],
geothermal, wind, and biomass for the further utilization [3–5] and this has
led to the concept of a small-scale microgrid as a future power generation
technology. The microgrid is the integration of low-rated distributed energy
resources, converters, energy storage devices [6], and loads with some clearly
defined electrical boundaries [7, 8]. On the basis of category, microgrids can
be classified as AC, DC, or hybrid microgrids [9]. In recent times, utilization
of DC-based appliances has been tremendously increasing in various applica-
tions such as shipboard power systems, residential loads [10], power system
control devices, data centers [11], and lighting appliances [12]. Therefore,
the DC microgrid has attained wide acceptance in various fields. The DC
microgrid offers numerous benefits over AC-based systems, such as environ-
mental friendliness, efficient and reliable [13], absence of frequency [14],
no need for synchronization, safer for human bodies, higher power transfer
capability, and fewer conversion stages of power. Nevertheless, the protection
of DC microgrids is a challenging task due to various types of challenges,
such as variation in the magnitude of fault current during grid connected
and islanded mode as well as varying nature of fault resistances, types of
fault as PG and PP fault (pole to ground and pole to pole fault), absence of
zero crossing, and limited fault current capacity of converters. To illustrate
the problems related to the varying fault resistances and their effects on
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Figure 1 Dissimilarities in voltage and fault current magnitude during grid connected (a),
(b), and islanded modes (c), (d).

C
ur

re
nt

 a
t b

us
 B

1 
(A

)
C

ur
re

nt
 a

t b
us

 B
1 

(A
)

Figure 2 (a) Level of the fault current during high-fault resistance (grid connected mode).
(b) Level of the fault current during high-fault resistance (islanded mode).

the fault current, Figures 1 and 2 have been considered. In Figure 1, (a)
pole-to-ground fault has been created at t = 0.4 s under grid connected and
islanded mode, and the test model has been simulated for a time duration of
t = 0.8 s. The results in the proposed figure indicate that the magnitude of
the fault is higher due to the low value of fault resistance, while, it is less
in (Figure 2) due to greater value of fault resistance. Therefore, detection
of the fault is tricky and difficult. Figure 1, (a) and (b) are depicted for grid
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connected mode, while (c) and (d) are dedicated for islanded mode. Similarly,
Figure 2, (a) is illustrated for grid connected mode and (b) for islanded mode
of operation under pole-to-ground fault. A number of literatures have been
reported by the authors regarding DC microgrid protection, such as protection
scheme for ring based DC microgrid in [15], differential current based fault
detection in [16], centralised strategy based DC microgrid protection in [17],
high speed differential strategy in [18], and transient analysis based protec-
tion scheme [19], Firefly algorithm-based DC microgrid protection scheme
in [20], a non-unit protection scheme for DC microgrid [21], a non-iterative
protection framework in [22], and poverty severity index-based protection
scheme [23]. However, in reported protection schemes, the impact of the
varying fault resistance has not been analysed, as well as the protection
schemes have also been not analysed under the distinct level of wind speed
and solar irradiance. Under such circumstances and difficult operating condi-
tions, the protection scheme must be invulnerable and accurate. Therefore, in
this article, an ANN (artificial neural network-based) algorithm is proposed to
provide immunity to the system after detection of unhealthy faulty conditions.
The major highlights of this article are:

[1] Development of a protection scheme which can easily detect the faults
under varying dynamics of the fault parameters.

[2] Validation of protection scheme under different types of faulty condi-
tions.

[3] Analysis of the protection scheme to evaluate the accuracy of the
mode detector, fault detector/classifier, and section identifier under grid
connected and islanded mode.

[4] Comparison of proposed work with other reported techniques for
analysis of the appropriateness of protection scheme.

The rest of the manuscript is organised as follows: Section 2 describes
the DC test microgrid model to simulate the fault scenarios, while Section 3
deals with the description of the ANN-based algorithm. In Sections 4 and
5, development of protection scheme and performance evaluation are given,
while in Section 6, conclusion of the proposed work is given. In Section 7,
references are given.

2 Single Line Diagram of DC Microgrid System

The single line diagram of a 500 kW DC microgrid model with a ring
configuration is illustrated in Figure 3. In the proposed DC microgrid system,
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Figure 3 Single line diagram of DC microgrid system.

three DERs (distributed energy resources) such as photovoltaic generators,
synchronous diesel generators, and wind turbine generators are integrated at
different locations in the system. Further, for energy management purposes,
a battery has also been incorporated. The proposed system consists of the
six buses in the entire system, namely B1, B2, B3, B3, B4, B5, and B6,
respectively, as well as six sections from S1 to S6. As discussed earlier in
this section, the DERs are located at different positions, therefore power
electronics converters are connected between the sources and ring of the DC
microgrod. The entire length of the system is extended over six kilometers,
where each section is stretched over a length of one kilometer. Two loads, L1
and L2, are connected by buses B3 and B4 respectively. The utility grid is
connected to bus B1 with the help of the bidirectional converter, therefore
microgrid can be operated into islanded mode also if the utility grid is
disconnected [24] due to fault.
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Figure 4 Architecture of artificial neural network.

3 Outline of the Artificial Neural Network (ANN)

In recent times, ANN (artificial neural network) has become an emerging
tool for diagnosis of faulty conditions in the power system network [25–27].
To understand the operation of the artificial neural network, Figure 4 is
considered where the basic architecture of the ANN is given with details of
the network. The proposed algorithm consists of three layers: an input layer,
a hidden layer, and an output layer. There are many hidden layers inside the
network that connect each layer for appropriate operation of the system. To
process the data from input to output layer, various nodes are utilised by the
network, which is called artificial neurons. The performance of the artificial
neurons can be compared with that of the units of biological neurons in the
brain. To train the ANN modules samples of the voltage and current are
utilised to design the input and target dataset from bus B1.

4 Flow Chart of the Proposed Algorithm for Fault
Detection-Classification and Section Identification

In this section, the flow chart of the ANN-based protection scheme is pro-
posed and illustrated in Figure 5, where the sequence of operations to perform
the intended tasks such as mode detection, fault detection, classification, and
section identification can be easily observed. In order to identify the mode of
operation such as GC (grid-connected) and IM (islanded mode), ANN-1 has
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Figure 5 Protection scheme based on artificial neural network (ANN).

been developed with levels of 0 and 1. On the basis of the output of the mode
detector module, the remaining modules of the algorithm will be automati-
cally active. Therefore, for tasks of fault detection/classification, and section
identification in each mode, a total of four ANN modules have been devel-
oped, as illustrated in Figure 5. In grid connected mode, ANN-2 and ANN-3
are utilized, where ANN-2 is considered for fault detection/classification,
while ANN-3 is for section identification. Similarly, ANN-4 and ANN-5 are
considered during islanded mode for the same task. Once the fault type and
faulty section are identified, the relay will issue a trip signal to operate the
circuit breaker. To test all the ANN modules in the proposed algorithm, a
number of test cases have been considered under dissimilar fault parameters.
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5 Performance Analysis

The high performance of any protection scheme decides the invulnerability
and reliability of the system. Therefore, in this section, the performance of
the protection scheme has been examined for mode detection, fault detec-
tion/classification, and section identification of the proposed system. A total
of 7056 fault cases have been generated under both of the modes, including
500 no fault cases from different conditions such as variation in linear and
non-linear load, solar irradiance and wind speed. Various types of fault
parameters such as variation in length, fault resistance and fault inception
has been considered for generation of datasets. Apart from the above fault
parameters, variations in the solar irradiance and wind speed have also been
considered as earlier described. To observe the efficacy of the protection
scheme, a number of test cases have been considered for training and testing
of the modules. A total of six subsections have been considered for analysis
of the ANN modules.

5.1 Mode Detection Module (ANN-1)

To analyse the appropriateness of the mode detection module (ANN-1), a
total number of 1967 test cases have been considered, then the percent-
age accuracy has been analyzed to investigate the accuracy of the mode
detector module. After successful testing of the proposed mode detector, it
has been found that the accuracy of the mode detector is 100% during the
grid-connected as well as islanded mode of operation.

5.2 Fault Detectiopn/Classification Modules (ANN-2 and ANN-4)

The accurate fault detection for any protection scheme is an important task to
ensure the reliability of the system. Hence, like the mode detection module,
ANN-2 AND ANN-4 modules have also been tested. A total of 1862 test
cases have been considered during the grid connected and islanded mode of
operation, with 150 no-fault cases. The overall accuracy under both modes is
illustrated in Table 1. Two reliability indices, dependability and security, have
been considered for investigation of the protection scheme, where depend-
ability ensures the actual detection of fault cases out of total given fault cases,
while security ensures the generation of the false alarm signal. If the accuracy
of the security is high, then the probability of the false generation of the
alarm signal is lower, while higher accuracy of dependability can increase
the accurateness of the protection scheme for fault detection. Further, to



Artificial Neural Network Based Algorithm for Fault Detection 31

Table 1 Performance of the fault detector/classifier in terms of dependability and security

Type of Mode

Grid Connected Islanded

Name Overall Overall

of Dependability Security Accuracy Dependability Security Accuracy

Algorithms (%) (%) (%) (%) (%) (%)

ANN 98.97 100 99.48 98.11 100 99.05

DT 97.63 98.88 98.25 96.33 97.33 96.83

Standalone kNN 96.55 97.63 97.09 95.77 96.76 96.26

Ac
cu

ra
cy

 (%
)

Figure 6 Comparison of detected accuracy in grid connected mode.

examine the performance of the proposed fault detector/classifier, two other
techniques, i.e., DT and kNN, have also been considered and tested for the
same datasets. The accuracy of the proposed fault detector classifier reveals
that the scheme outperforms and is immune in cases of adverse conditions
in the power distribution network. Further, to depict the differences in the
accuracy during fault detection a bar graph is plotted in Figure 6 where
variation in the percentage accuracy can be easily analysed.

5.3 Section Identification Module (ANN-3 and ANN-5)

To ensure the appropriate continuity of power supply without any long
interruption in the consumer side, it is a must to identify the faulty section
quickly in the existing power distribution network. Rapid identification of
faulty section helps in the reduction of the serious hindrance in the system
by earlier restoration of the power supply. Therefore, in this subsection,
the performance of the section identifier is examined. ANN-3 and ANN-5
are used for identification of the faulty section in both modes of operation.
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Table 2 Performance of ANN-3 and ANN-5 for section identification
Mode of Operation Section No of Test Cases ANN (Accuracy %)
Grid connected mode S1 160 98.71

S2 158 98.73
S3 139 98.63
S4 158 98.41
S5 160 98.75
S6 156 97.89
Overall accuracy % 98.52

Islanded mode S1 158 97.95
S2 156 97.22
S3 160 97.88
S4 139 97.44
S5 160 97.27
S6 158 97.39
Overall accuracy % 97.52

Figure 7 Comparison of percentage accuracy during section identification (grid-connected).

To perform the section identification task, a total of 1862 test cases were
considered in grid connected and islanded mode, and the performance is
summarised in Table 2. All sections from S1 to S6 have been taken into
account for investigation of the faulty sections in entire DC microgrid. The
accuracy during the section identification (pole to ground fault) is 98.52%
and 97.52%, respectively, for grid connected and islanded mode. Further, to
demonstrate the detection accuracy of faulty sections by proposed section
identifiers, two plots (bar plots) are depicted in Figures 7 and 8, where
differences in the percentage accuracy can be easily observed.
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Figure 8 Comparison of percentage accuracy during section identification (islanded-mode).

5.4 Response of the Protection Scheme Against PG, PP Fault
and Distinct Fault Resistance Under Grid Connected and
Islanded Mode

In this subsection, the immunity of the protection scheme has been evaluated,
and the response of the protection scheme under stressed conditions is dealt
with in the below table. The range of the fault resistance is considered
between 5 to 100 ohm for both of the modes. For pole to pole fault, value
of the fault resistance is 0.1 ohm instead of higher value because it is too
much smaller when compared with pole to ground fault (in pole to ground
fault conditions can vary due to contact of the conductor with dissimilar
surfaces such as sand, branches of trees, wet surfaces while constant for pole
to pole fault). The wind speed is considered between 3 to 15 m/s while solar
irradiances between 100 to 1000 W/m2. Results in Tables 3 and 4 indicate that
the protection scheme outperforms during stressed conditions and accurately
responds for each section when a pole to ground and pole to pole fault
has been created. The generation of the trip signal under pole to ground is
depicted in Figures 9 and 10, where it can be seen that the protection scheme
is capable to detect the fault rapidly.

5.5 Robustness of the Protection Scheme Under Different Fault
Inception and Type of Fault

The accuracy of the protection scheme under different fault inceptions has
been evaluated in this subsection. Further responses of the ANN modules
are demonstrated in Table 5. Pole to ground as well as pole to pole faults
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Table 3 Response of the protection scheme for pole to ground fault under distinct solar
irradiance and wind speed
Types Type Fault Solar Irradiance Response Relay Response
of of Resistance (W/m2) and Wind Faulty of Time
Mode Fault (Ω) Speed (m/s) Section ANN (m/s)
Grid connected PG 10 100 W/m2, 5 m/s S1 PG 1.7

PG 15 200 W/m2, 8 m/s S4 PG 1.5
PG 25 400 W/m2, 10 m/s S3 PG 1.5
PG 40 600 W/m2, 13 m/s S6 PG 1.8
PG 50 700 W/m2, 15 m/s S5 PG 1.7
PG 55 1000 W/m2, 6 m/s S1 PG 1.6
PG 75 800 W/m2, 9 m/s S2 PG 1.8
PG 100 300W/m2, 10 m/s S5 PG 1.6

Islanded mode PG 20 200 W/m2, 3 m/s S4 PG 1.8
PG 35 300 W/m2, 10 m/s S1 PG 1.7
PG 40 500 W/m2, 14 m/s S3 PG 1.7
PG 45 400 W/m2, 12 m/s S1 PG 1.9
PG 65 500 W/m2, 8 m/s S6 PG 1.7
PG 85 800 W/m2, 7 m/s S5 PG 1.8
PG 90 700 W/m2, 5 m/s S3 PG 1.7
PG 100 800 W/m2, 10 m/s S2 PG 1.8

Table 4 Response of the protection scheme for pole to pole fault under distinct solar
irradiance and wind speed
Types Type Fault Solar Irradiance Response Relay Response
of of Resistance (W/m2) and Wind Faulty of Time
Mode Fault (Ω) Speed (m/s) Section ANN (m/s)
Grid connected PP 0.1 100 W/m2, 5 m/s S1 PP 1.5

PP 0.1 200 W/m2, 8 m/s S4 PP 1.4
PP 0.1 400 W/m2, 10 m/s S3 PP 1.4
PP 0.1 600 W/m2, 13 m/s S6 PP 1.7
PP 0.1 700 W/m2, 15 m/s S5 PP 1.6
PP 0.1 1000 W/m2, 6 m/s S1 PP 1.6
PP 0.1 800 W/m2, 9 m/s S2 PP 1.5
PP 0.1 300W/m2, 10 m/s S5 PP 1.5

Islanded mode PP 0.1 200 W/m2, 3 m/s S4 PP 1.6
PP 0.1 300 W/m2, 10 m/s S1 PP 1.5
PP 0.1 500 W/m2, 14 m/s S3 PP 1.6
PP 0.1 400 W/m2, 12 m/s S1 PP 1.8
PP 0.1 500 W/m2, 8 m/s S6 PP 1.7
PP 0.1 800 W/m2, 7 m/s S5 PP 1.8
PP 0.1 700 W/m2, 5 m/s S3 PP 1.6
PP 0.1 800 W/m2, 10 m/s S2 PP 1.7
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Figure 9 Trip signal generation for PG fault (grid-connected).

Figure 10 Trip signal generation for PP fault (grid-connected).

have been considered for analysis of the protection scheme under dissimilar
fault conditions. In case of PG fault, fault resistance can vary due to different
grounding conditions, so the magnitude of the fault current can vary from low
to high value (for PP fault low value of fault resistance has been considered
for analysis purpose). The result in the below table indicates the immunity
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Table 5 Response of the protection scheme under distinct fault inception and low and high
fault resistance
Types of Mode Type of Fault Fault Resistance Faulty Inception Response of ANN
Grid connected PG 20 0.4 PG

PG 45 0.6 PG
PG 60 0.8 PG
PG 70 0.5 PG
PP 0.1 0.2 PG
PP 0.1 0.4 PG
PP 0.1 0.3 PG
PP 0.1 0.1 PG

Islanded mode PG 55 0.4 PG
PG 65 0.6 PG
PG 75 0.8 PG
PG 85 0.5 PG
PP 0.1 0.2 PG
PP 0.1 0.4 PG
PP 0.1 0.3 PG
PP 0.1 0.1 PG

Table 6 Performance comparison of the ANN based algorithm with other reported literatures
Parameters of Proposed
Comparison [13] [18] [15] Algorithm
Input features Voltage and

current
Current only Current only Voltage and

current
Task performed Detection of

fault
Detection of
fault

Detection of
fault

Mode detection,
Fault detec-
tion/classification
and section
identification

Test cases Not-considered Not-considered Not-considered 2167
Stochastic
conditions

Not-considered Not-considered Not-considered considered

of the protection scheme is excellent under varying fault resistance and
dissimilar fault inceptions.

5.6 Comparison of Proposed Algorithm with Reported
Literatures

The performance of the ANN-based algorithm has been analysed in this
subsection with some other reported literature as mentioned in the reference.
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The parameters during comparison of the protection scheme are illustrated in
Table 6. When compared to other reported algorithms, it is concluded that the
ANN-based algorithm is reliable and outperforms in terms of all parameters.

6 Conclusion

The DC microgrid offers many advantages over the traditional AC based
power distribution network. Nevertheless, the protection of the microgrid is
an important task due to the various types of protection issues. In the proposed
work for the development of the protection scheme, samples of the voltage
and current were utilized in each ANN module. To examine the authenticity
of the protection scheme, performance of the protection scheme has been
compared with DT and kNN based algorithms for the same datasets. A total
of 7056 fault cases were generated through simulation of the proposed DC
microgrid model. Results in section 5 indicate that the protection scheme is
robust and accurate for detection of the fault under diverse fault conditions.
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