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Abstract

Nowadays, the power systems and distribution network’s reliability are
critical issues from electric companies’ and consumers’ perspectives. As sup-
pliers of the power required by the consumers, electric companies are trying
to deliver the power to customers on a continuous and reliable basis. The
existence of customers’ power interruptions causes damage to the customer;
moreover, it may cause damage to the electric company due to the lack of
energy sales during the hours of a power outage. In this paper, the reliability
issue was investigated by examining the two indices EENS and ECOST, on
the test distribution network to evaluate the impact of electricity prices in
TOU demand response on the reliability of the distribution network has been
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investigated. Also find the optimal electricity prices for the best distribution
network reliability. In this research, simulation studies were conducted on
the Roy Billinton Test System (RBTS) distribution network using the GAMS
software. From the analysis of the simulation results, the distribution grid
reliability was improved by implementing optimal electricity prices of the
TOU demand response program.

Keywords: Reliability, demand response, time of use, optimal price.

1 Introduction

Energy generated by large-scale power plants in the power system reached
the transmission lines to the conventional distribution network and supplied
customers. In recent times, researchers are keen on implementing demand
response programs (DRPs) in power grids. This interest is due to a courier
in the distribution curve of the distribution network, resulting in a reduction
of peak load and smoothing of load curve by implementing demand response
programs. Researchers have implemented DRPs in determining the reliability
of distribution networks. A comprehensive methodology for evaluating the
price and risk of nodes is given in terms of the direct relationship between
power system reliability and price [1]. The results reveal that power system
reliability and prices are inherently related. In [2], a method for analyzing the
impact of smart measurement power consumption technology on the system’s
long-term market reliability and prices has been introduced. The results that
the reliability has improved by utilizing demand response. Real-time pricing
(RTPs) benefits to consumers have been examined by a framework based on
a statistical elastic model of maximizing social welfare as an objective [3].
The DR model has been developed under the incentive and the penalty in [4]
so that the behavior of customers under the DRP types is fully modeled.
The simulation results on a real network and the test network indicate the
improvement of energy and load peak technical characteristics in different
scenarios than the base state. In [5], the reliability model of the demand
response source is constructed according to customers’ behaviour, such as
conventional production units, in which access and inaccessibility are made
with two-state and multi-state models.

In this way, the reduction in demand due to the application of demand
response programs is considered equivalent to conventional production
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resources. The results improve DR availability compared with increasing the
DR value for increasing the system reliability. The reference [6] explores
DR effects on the household distribution networks’ reliability. Numerical
results on a distribution network and several probability faults are applied
at different points in the network. Indicate that by interrupting a portion
of the distribution network due to fault and providing it by manoeuvring
points, reliability is improved in all distribution substations by executing DR
programs. Study [7] examines demand response management of a network
connection with a wind farm. Integration DR and wind farms reduce the
potential wind turbine capacity, especially when renewable resources are
high.

An improved model for optimal demand response programs is presented
in [8]. A honey colony artificial algorithm and a pseudo-static tree scenario
technique have been used to solve this optimization problem. Numeri-
cal results from these methods indicate that cost savings and reliability
improvements smart grids. A two-state optimization framework for customer
energy planning and management with battery power systems and demand
response programs is presented [9]. This method can help the customer
choose more valuable programs to join DR programs. In [10], the TOU
program that focuses on consumption is combined with a dynamic supply-
side economics dispatch problem. The optimal pricing mix is determined
to minimize fuel costs for the power plant and optimal prices at different
charge response times. In [11], the impact of emergency demand response
programs (EDRP) on the reliability improvement of the power system under
failures of generation units was investigated. The [12] strategic behaviour
energy service provider (ESP) effective decision model illustrates how the
day ahead market power is divided into smart distribution networks. In [13],
a case study on DR performance to improve system reliability and maintain
network stability on the Pennsylvania, Jersey, and Maryland networks in
North America has shown a high impact of DR in adverse weather conditions.
It Displays the difference between demand response programs. In [14], the
Monte Carlo simulation method has been repeated, and airlines are modeled
using seasonal thermal rating (STR) or real-time thermal ratings (RTTR).
Wind units are connected to verify the uncertainty of wind energy. The
optimal pricing of real-time pricing encourages customers’ participation
in electricity market operation in [15]. Different load response programs
impact the power system reliability and distribution networks by methods
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such as Monte Carlo-Security restrictions models. The fault analysis model –
Two-state models for planning and operation of a customer-algorithm Bee
colony artificial – Models based on statistical elasticity - Considering cus-
tomer behavior in DR programs as conventional sources by researchers in
literature. What has not been studied is optimal prices for demand response
programs to improve distribution network reliability. The current topic of the
TOU program is discussed in this article.

2 The Linear Demand Response Model

Demand response programs can reduce high energy prices in power markets
or improve power system reliability. In this research, the effect of demand
response programs and consumer participation on reliability improvement
is examined—the US Department of Energy (DOE) definition of Demand
Response. As follows: The change in the consumer’s electricity consumption
of the normal amount of consumption pattern in response to a change in
the price of electricity over time or the cost of the incentive definition to
reduce power consumption in times of market power or system reliabil-
ity [16]. In this paper, the linear load model for demand response is used
in (1) [16].

d(i) = d0(i)



1 + E(i.i)
P(i)− P0 (i) + A(i) + Pen(i)

P0 (i)

+

24∑
j=1
j 6=i

E(i.j) (P(j)− P0 (j) + A(j) + Pen(j))

P0 (j)


(1)

Where d(i) is load amount after the demand response program [kWh].
d0(i) is load amount before demand response program [kWh]. P(i) is the
Electricity price after the demand response program. P0(i) is the price of
electricity before demand response program implementation; A (i) is the
customer reward for executing the demand response program at i [$/kWh].
Pen(i) is a penalty at i [$/kWh]. E(i,i) is the price of self- elasticity, and E(i,j)
is the price of cross-elasticity of the i-th period versus the j-thperiod. In time-
based applications such as the TOU used in this research, electricity prices
vary depending on the cost of supply for different times.

For example, the high price in the peak time, the average price in off-
peak time, and the low price in low load time. Time-based programs have no
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penalty and rewards [17]. Thus, Equation (1) can be rewritten as in (2):

d(i) = d0(i)

1 + E(i.i)
P(i)− P0 (i)

P0 (i)
+

24∑
j=1
j 6=i

E(i.j) (P(j)− P0 (j))

P0 (j)


(2)

For the TOU demand response program, Equation (2) can be written as
Equation (3) for three different time periods.

Where in (3):

d(i) = d0(i)



1 +Hlow ∗ E(Low.Low)Plow−P0
P0

+Hoff ∗ E(Low.Off)
Poff−P0

P0

+Hpeak ∗ E(Low.peak)
Ppeak−P0

P0
(in LowLoad period)

1 +Hlow ∗ E(off.Low)Plow−P0
P0

+Hoff ∗ E(off.Off)
Poff−P0

P0

+Hpeak ∗ E(off.peak)
Ppeak−P0

P0
(in off – peak period)

1 +Hlow ∗ E(peak.Low)Plow−P0
P0

+Hoff ∗ E(peak.Off)
Poff−P0

p0

+Hpeak ∗ E(peak.peak)
Ppeak−P0

P0
(in peak period)

(3)

Hlow: The number of hours in low load period
Hoff : The number of hours in off-peak period
Hpeak: The number of hours in peak period
Plow: Electricity prices in low load period
Poff : Electricity prices in off-peak period
Ppeak: Electricity prices in peak period
E: Self-and cross elasticities

3 Reliability Indicators

3.1 Expected Energy Not Served (EENS)

Expected energy not served is the amount of energy that is not supplied due to
power outages at customer points. Electric companies to assess the economic
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strength and power system reliability uses the EENS index [18]. The EENS
index is calculated according to (4):

EENS =
n∑

k=1

λk · rk · Lk

(
KWh

yr

)
(4)

Where λk is the average failure rate of the customer at the k point, rk is
the failure time at the k load point, Lk is the average load at the load point
k [MW], and n is the load points.

3.2 Expected Interruption Cost (ECOST)

The expected Interruption cost index indicates the reliability of the system
financially. According to (5) [19], this index depends on the failure rate, load
amount, and customer interruption cost.

ECOST =

n∑
k=1

λk · Lk · Ck(dk)

(
K$

yr

)
(5)

Where λk is the average failure rate of the customer at the K point,
Lk is the average load at the load point k [MW], Ck is the cost of cus-
tomer interruptions during the interruption time dk($/KW) and n is the load
points.

The cost of customer interruptions is difficult and subjective, requiring
significant information from each customer and distribution system. The
cost of customer interruptions includes economic costs of power outages
in various customers; these costs include unpaid worker wages, equipment
damage, loss of sales, food spoilage, in-product deterioration, cost of gener-
ators, and other commercial costs. Household customers are also affected
by the loss of well-being, equipment failure, and food breakdown [20].
The cost of customer interruption can be described as the customer’s loss
function, which is a function of the load type and interruption duration.
Table 1 shows an example of the values of the Canadian customer’s loss
compensation function in terms of the type of load and the duration of the
interruption.

4 Formulation

The main objective of this research is to minimize distribution system power
outage costs. For this reason, the objective function of [18] is developed in



Optimal Electricity Price of TOU Demand Response Program 1423

Table 1 An example of the value of the customer loss function for Canada ($/KW) [21]

Interruption Time Agricultural Commercial Residential Industrial Gov.

2 sec 0.232 0.782 1.21

1 min 1.63 1.87

20 min 0.0487 4.83 0.0241 2.67 2.39

1 hr 0.243 13.0 0.141 5.65 5.30

2 hr 27.3 10.0

4 hr 2.02 65.7 1.57 20.6 15.6

8 hr 5.64 106 3.46 38.1

1 day 127 15.8 60.7

this paper. The objective function to evaluate the demand response effect of
on distribution network reliability and obtain optimal electricity prices can be
written as (6):

max



n∑
k=1

(ke · EENS0 + ECOST0)

−
n∑

k=1

(ke EENSDR + ECOSTDR)

 (6)

Where suffix 0 represents before implementing the demand response pro-
gram and suffix DR represents after implementation of the demand response
program.

Because the objective function is cost-effective, the EENS index must be
converted into cost, ke coefficient, which is the cost of energy not supplied
(CENS), is used to convert EENS units from MWh/yr to $/yr. This objective
function maximizes savings costs by comparing the indices before and after
the demand response program with optimized prices.

Lk in EENSDR and ECOSTDR is the average annual load at k point after
executing the demand response program. It is obtained from Equation (7):

Lk =
1

365

365∑
d=1

1

24

24∑
i=1

dPm
k (i.d) (7)

Where:

Lk: Average annual load in kWh (kWh).
dρm

k (i.day): The amount of load on day d and hour i with electricity
price Pm (kW)
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The constraints of the objective function are as follows:

i. Load constraints
Lmin ≤ Lk ≤ Lmax (8)

This constraint specifies the upper and lower limit of power at load
points.

ii. Price constraints

Pmin ≤ P ≤ Pmax (9)

Plow load ≤ Poff-peak ≤ Ppeak (10)

Where:

P: Electricity price
Plow load: Electricity prices in low load period
Poff-peak: Electricity prices in off-peak period
Ppeak: Electricity prices in peak period

Equation (9) represents the minimum, and maximum prices, and Equa-
tion (10) shows the price situation at low load, off-peak, and peak periods.

5 Numerical Simulation Results

Simulation on the Roy Billinton Test System (RBTS) modified network is
done by programming in the GAMS software. Then the calculated reliability
indices are extracted and evaluated for different scenarios. Bus 2 of the RBTS
test system has been selected as the distribution network studied in this paper.
Bus 2 is a radial distribution network with 4 main feeders and 22 load points,
and peak load of 20 MW. Other data from the test network is extracted
from [22].

The self-and cross-elasticity values for the TOU demand response pro-
gram are selected according to Table 2. According to the information
provided on Tavanir website in 2018, the basic price of electricity in Iran
is 0.0049 $, and the price of electricity at low load, off-peak and peak periods
is 0.00245 $, 0.0049 $ and 0.0098 $, respectively.

Table 2 Self-and cross elasticities [17]

Peak Off-peak Low load

Peak −0.10 0.016 0.012

Off-peak 0.016 −0.10 0.01

Low load 0.012 0.01 −0.10
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Simulation in this research is based on the following assumptions:

– Feeders are radial.
– There are two tie switches at the end of the feeders 1 and 2 and the

feeders 3 and 4.
– In the event of failure, the transformers will be repaired.
– Ignored from any faults in the 33 kV station and the 11/33 transformers

and 11 kV breakers.
– The reliability of the upstream network is considered being 100%.

For this simulation, 2 scenarios are defined below:

Scenario 1: Basic mode without demand response program
Scenario 2: Implementing the TOU demand Response Program

The results of implementing 2 scenarios defined is inserted for 0.00245 $
for low load hours (24–6 hours) and 0.0049 $ for the off-peak period
(7–13 hours) and 0.0098 $ for the peak period (14–23 hours) in Table 3.

According to Equation (2), implementing the TOU demand response
program reduces the distribution network demand. As a result, the reduction
of the demand and the amount of load (Lk), under Equations (4) and (5),
decreases the EENS and ECOST indices and improve reliability. In the next
step, by specifying the price constraints of Equation (9), which is initialized
in Table 4, the optimal price values are obtained in Table 5. The values of
reliability indices with optimal prices are shown in Table 6.

Table 3 Simulation results for different scenarios and prices
Base Case With DR

EENS (kWh/yr) 37745 27048
ECOST ($/yr) 94607 67795
Cost Saving ($) 0 85646
Improved EENS (%) – 28.338
Improved ECOST (%) – 28.339

Table 4 Maximum and minimum pricing ($)
0.00245 ≤ Plow load ≤ 0.00367
0.00368 ≤ Poff-peak ≤ 0.00735
0.00735 ≤ Ppeak ≤ 0.00980

Table 5 The optimal price values obtained for each time period
Periods Price ($)
Low load 0.00367
Off-peak 0.00735
Peak 0.00980
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Table 6 Values of reliability indices in different scenarios for optimal prices
Base Case With DR

EENS (kWh/yr) 37745 23725
ECOST ($/yr) 94607 59467
Cost Saving ($) 0 112248
Improved EENS (%) – 37.141
Improved ECOST (%) – 37.142
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Figure 1 Comparison of reliability indicators in different scenarios.

Comparing Tables 3 and 6, decreasing reliability indices and increasing
the cost-saving at optimal prices are shown in Table 6. Figures 1 and 2 show
the values of indices in different scenarios and the amount of cost savings.
In the second scenario, there is an improvement in reliability indices and
an increase in cost savings relative to the baseline scenario. In the second
scenario, due to demand response program implementation, the average
annual power of load points will decrease, which will reduce the reliability
indexes.

In Figure 3, the effect of the demand response program with prices of
0.00245 $, 0.00490 $, and 0.00980 $ for different periods are shown on the
daily load curve. Although implementing demand response programs has led
to a significant reduction in peak hours, consumption in low load and off-peak
periods is increased.
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Figure 2 Comparison of saving costs in different scenarios.
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Figure 3 The effect of the TOU demand response program on the total daily load curve at
prices of 0.00245 $, 0.00490 $ and 0.00980 $.

Figure 4 illustrates the TOU program implementation impact on the
daily load curve of the entire distribution network with optimized prices.
Implementing a demand response program at optimal prices and reducing
consumption in the peak period, decreasing consumption in other courses,
and decreasing the average daily consumption are observed.
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Figure 4 The effect of the TOU demand response program on the total daily load curve at
optimal prices.

6 Conclusion

In this paper, the reliability of the distribution network was evaluated by
implementing the TOU demand response program. The linear model of the
demand response program was used, and the electricity price was based
on the prices of the low load-off-peak and peak periods in 2018 in Iran.
Simulations were performed on the Roy Billinton Test System (RBTS) using
GAMS software. The simulation results show the reduction of the EENS
and ECOST indices and improve the distribution network’s reliability by
implementing the TOU demand response program due to the reduction of
average load. Next, optimal prices were obtained for three different periods:
low load, off-peak, and peak. The results of studies on the test system
show that implementing a TOU demand response program at optimal prices
improves reliability and reduces the distribution network’s daily load curve
during peak and off-peak hours. It is recommended for future research to
investigate other demand response models such as nonlinear, logarithmic,
exponential models and compare them with linear models. Also, evaluate
other demand response programs.
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