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Abstract

Microgrids are a small-scale power system that integrates Distributed Gen-
eration, Energy Storage Systems and controllable loads. The intermittent
and variable nature of renewable generation leads to a complex control
mechanism required for Microgrids. Microgrids that are geographically close
to each other are interconnected to form Networked Microgrids. Networked
Microgrids provide enhanced benefits of resource sharing to Microgrids, thus,
improving the reliability and operation costs while reducing the environmen-
tal impact. The Microgrids, based on their generation and load profiles, can
perform energy trading within the Networked Microgrid system for achieving
optimized operational costs. In this paper, the impact of a novel hour block-
based demand response program in Networked Microgrids is explored. In the
proposed model, hour blocks are formed in a Networked Microgrids environ-
ment, dependent on generation and load imbalance, the role of Microgrids
and the Time-of-Use tariff system. The Particle Swarm Optimization method
is used to optimize the individual and overall economic benefits of Microgrids
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in the Networked Microgrid system. The simulations of the proposed method
are performed on a Networked Microgrid system having 4 Microgrids. The
results show a credible reduction in costs of operation for all Microgrids and
the system as a whole.

Keywords: Networked microgrid, energy trading, particle swarm optimiza-
tion, demand response, renewable energy sources, time-of-use-tariff.

Acronyms

t Hour block.
B Set of buyer MGs.
S Set of seller MGs.
N Total number of MGs.
b Buyer MG.
s Seller MG.
v Velocity of Particle.
x Particle position.
p Particle best position.
g Global best position.
MG t

i Generation in MG i during t.
Load t

i Load in MG i during t.
Load t

i , actual Actual total load in MG i for whole day.
Et

i Excess energy generated in MG i during t.
Dt

i Deficit energy in MG i during t.
T t
grid ,s Grid selling tariff during t.

T t
grid ,b Grid buying tariff during t.

T t
NMG,s NMG energy selling tariff during t.

T t
NMG,b NMG energy buying tariff during t.

GenNE
i Energy generated in MG i during t in NE-zone.

LoadNE
i Load demand in MG i during t in NE-zone.

P t
MGi,s

Energy sold by seller MG i to NMG during t.
P t
MGi,b

Energy bought by buyer MG i from NMG during t.

P g,NE
MGi,b

Total Energy bought by MG i from grid during NE zone.

P g,NE
NMG,b Total Energy bought by NMG from grid during NE zone.

P g,t
MGi,s

Energy sold by seller MG i to grid during t.
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P g,t
MGi,b

Energy bought by buyer MG i from grid during t.
Ct
MGi,b

Cost incurred to buyer MG i during t.
Ct
MGi,s

Profit earned by seller MG i during t.
CNE
MGi,b

Total cost incurred to MG i during NE zone.
TCNE

NMG,b Total cost incurred to NMG during NE zone.
TC t

MGb
Total cost incurred to all buyer MG i’s during t.

TC t
MGs

Total profit earned by all seller MG ′is during t.
TCMG,i Total cost for MG i during whole day.
TCNMG Total cost for NMG during whole day.

1 Introduction

Microgrids (MGs) are considered as building blocks capable of transforming
existing power system infrastructure to future Smart Grid (SG) vision [1].
MG is defined as a small Active Distribution Network (ADN) with a fixed
electrical boundary, containing and controlling Distributed Energy Resources
(DERs) [2, 3]. Distributed Generations (DGs), Energy Storage System (ESS)
and controllable load are combined to form DERs. For efficient and stable
operation and control of power systems under high penetration of DERs,
MGs play a very vital role [4]. MGs can run in either grid-connected or
islanded mode. The generation must be greater than the critical peak load
for isolated MG operation. The grid-connected mode allows bi-directional
power flow of energy between the MG and the utility network. In comparison
to conventional and centralized generation systems, MGs provide operators
and customers with minimized carbon emissions, enhanced reliability and
power quality, reduced power losses and minimized investment costs [5].

The uncertain and intermittent nature of renewable DGs, such as Photo-
Voltaic (PV) and Wind, create a demand-supply mismatch in an MG. At one
point of time in a day, the generation would be more than load whereas
the load may be more than the generation at another time. To overcome
this energy imbalance, the inclusion of backup generation, such as diesel
generation, use of ESS, application of Demand Side Management (DSM)
is considered in individual MGs [6, 7]. The integration of diesel generation
is noticed to exacerbate environmental issues, whereas the ESS aggregation
in MG is constrained by its limited power, high maintenance costs and losses
during charging and discharging.

An alternative mechanism of Multiple Microgrids (MMGs)/Networked
Microgrids (NMGs) is considered to minimize the energy imbalances in MGs
and their dependence on the main grid. The increased installations of MGs at
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Figure 1 Architecture of NMG system.

the distribution side allow MGs with different characteristics to operate in
clusters. NMGs are known to be installed at the Medium Voltage (MV) level,
with several Low Voltage (LV) MGs and DERs connected to the adjacent
distribution network [8]. This architecture improves system operation by
enhancing plant load factors through better use of Renewable Energy Sources
(RES), increasing environmental sustainability, minimizing energy losses,
increasing system protection and reliability and allowing MGs to increase
profits by trading energy with other MGs [9].

A review of different NMG topologies is given in [10–13]. The NMG
topology defined in [10] and [11] is based on the connection of NMGs to
the feeder. NMG architecture classified in [12] and [13] is based on the type
of interconnection with the grid and among the MGs. Each MG has an MG
Central Controller (MGCC) to manage DERs and exchange information to
other MGs and Distribution Network Operator (DNO) as shown in Figure 1.
MG’s can directly trade with each other and to the grid through DNO. The
energy trading tariff is decided by DNO.

NMG leverage various DSM strategies to close the supply-demand gap.
DSM enables consumers to transfer and reduce their peak load in response
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to generation [14]. Among the DSM methods, Demand Response (DR) pro-
grams allow shifting of load in correspondence to generation by consumers
and offer price incentives for the same. This enables the reshaping of MG
load profiles in an MMG environment. According to a report by the Federal
Energy Regulatory Commission (FERC), DR programs are divided into two
categories: time-based and incentive-based [15].

In [16], the effect of the DR program in MMG-based ADN is explored.
The preceding problem is modeled as a multi-objective optimization prob-
lem, solved using a Non-dominated Sorting Genetic Algorithm (NSGA-II)
and backward forward load flow. A collaborative multi-objective Energy
Management (EM) strategy for the MMG environment is explored in [17].
The multi-objective problem of minimizing MMG’s cost while reducing
its reliance on the power grid is solved using Compromised Programming
(CP). The implemented DR framework is dependent on the price signal.
In [18], for Day-Ahead (DA) scheduling of MMGs, a time-based DR solution
is proposed. The suggested EMS takes into account load priority, voltage
profiles and the number of loads in MGs to mitigate MG operating costs
and environmental impacts. The optimal dispatch problem with DR is solved
using Particle Swarm Optimization (PSO). A hierarchical bi-level optimiza-
tion approach with upper side network operator at the high level and MG
operator at the lower level for efficient operation of MMGs is proposed [19].
DR program is applied based on Time-of-Use (TOU) price.

In [20], a bi-level Energy Management System (EMS) for isolated
NMGs is suggested, with the outer level considering energy and information
exchange among interconnected MG. The inner level EMS is responsible for
the scheduling of isolated MG, in case of a fault. A novel power exchange
pricing scheme is proposed, as well as step-by-step DR program implemen-
tation for each MG. The problem is solved by modeling it as a Mixed Integer
Linear Programming (MILP) problem. In [21], EMS based on a cooperative
market framework is proposed for MMGs operating in both grid-connected
and isolated modes. The nodal marginal price is used to clear the market,
which maximizes NMG’s social welfare. The stochastic problem is solved
using MILP. A real-time pricing-based incentive DR program is considered.

In [8], the profits of Distributed Network Operator (DNO) are maximized
in the MMG framework, using multi-follower bi-level programming. Energy
trading among MGs, as well as the DR program, are implemented. On the
top level, the DNO aims to reduce operational costs by taking into account
grid power purchasing costs, electricity exchange costs and DER operating
costs. At a lower stage, MGs try to optimize the benefits while satisfying DR
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and energy exchange between DNO and MGs. The problem is described as a
MILP problem with Karush-Kuhn-Tucker (KKT) conditions.

A multi-step hierarchical optimization algorithm based on the Multi-
Agent System (MAS) is proposed in [22] to minimize the operating costs and
increase the reliability of NMGs. In the proposed EMS, adjustable control
and DR programs are included. The MILP model is used to model and
solve the optimization problem. In [23], an intelligent EMS for local and
global markets is proposed. The local market is in charge of energy trade
in MGs, while the global market is in charge of energy trading between
MGs and the grid. In [24], MAS-based energy trading among smart MGs
with DR is proposed. The DR uses a novel incentive strategy focused on
energy generation preference at periods of deficit. After the energy contracts
are executed, the energy losses are distributed among the DGs and loads
using a novel loss distribution method. A priority-driven DR program is used,
similar to [23] except that this time the priority is based on the load size
and frequency of participation. Agent theory is applied for the simulation
of trading and power management. Two-stage energy management based on
Mixed-Integer Quadratic Programming (MIQP) and game theory for NMG
is proposed in [25]. Here, distribution feeder reconfiguration is applied in
the presence of a shiftable load-based DR program. In [26], to optimize the
operation cost of interconnected islanded networked microgrids two-level
framework is proposed. For, this price-based DR is considered.

This research implements a novel hour block-based DR method using
generation and load imbalance, TOU pricing and role of MGs in the NMG
environment in comparison to the literature presented in Table 1. The imple-
mented technique has the advantage of reducing the complexity of the DR
problem by scaling down from a 24-hour optimization problem to a 6-block
optimization. In this article, the NMGs system is assumed to be running in
grid-connected mode. Each MG, in this case, is concerned with the coordi-
nated operation of the RES and flexible load under the NMG structure. The
objective is to reduce individual MG’s running costs, their dependency on the
power network and the cost of energy for customers. In MGs, deterministic
RES generation and load values are considered. The problem is modeled as
an optimization problem to satisfy the interests of both MGs and consumers.
PSO, a heuristic method capable of finding an optimal solution, is used to
solve the problem.

The remainder of the paper is outlined as follows. The system design
and operating strategy for NMGs are defined in Section 2. The optimiza-
tion technique considered is presented in Section 3. Section 4 describes in
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Table 1 Summary of literature reviewed
Reference Objective NMG Details Method Remark

[16] Formation of MG
clusters based on
different technical
indices.
The application of
the DR program
and ESS, with
each index and as
a multi-objective
problem is
presented.

IEEE- 69 bus
system with PV,
wind turbine and
ESS

NSGA-II and
Backward
Forward load flow

The amount of time
spent for each GA run
is 18hr.
The choice of selection
of multi-objective
problem or DR and ESS
with individual index is
left to the operator
based on technical and
economic factors.

[17] Cost
Minimization and
Green-house
gases reduction.

IEEE-6 bus
system with 3
MGs. MGs
include RES,
dispatchable
generation, ESS
and Fuel cell.

CP The optimization
technique depends upon
the distance between
the ideal solution and
optimal Pareto solution
this choice is left to
operators. Different
values here provide
different solutions.

[18] Cost
Minimization

System of 3
NMGs. MGs
include RES
dispatchable
generation, ESS
and Fuel cell.

PSO The computational
effort required for
deriving a solution to
each probable scenario
is huge. The constraint
on power exchange
price is not considered.

[19] Optimal operation
of NMGs

Modified 18-bus
IEEE system with
different
capacities for 3
MGs. The
modified 30 bus
IEEE for the
upstream network.

Hybrid
stochastic/Robust
optimization

The MGs are not
directly connected but
connected through the
power market indirectly
in the NMG system
considered. In the RT
market, the optimal
number of bids to be
submitted by MGs to
USN is not given.

[20] Optimal operation
of isolated NMGs.

Radial network
with 5 NMGs.
MGs consist of
RES, ESS,
dispatchable DG
and responsive
loads.

MILP The pricing mechanism
proposed for energy
trading between NMGs
does not consider RES
constraints and power
line losses.

(Continued)
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Table 1 Continued
Reference Objective NMG Details Method Remark

[21] Optimal operation
of NMGs.

3 NMG system is
considered. Each
MG consists of
RES, dispatchable
DG, ESS and
loads.

MILP

[8] Maximize the
profits of DNO

3 NMG system is
considered. Each
MG consists of
RES, dispatchable
DG, ESS and
loads.

Multi-follower
bilevel
programming

Each level of problem is
considered as a single
bus system without
considering the
constraints of the
network. The
uncertainties of RES,
the role of BES are not
considered.

[22] Cost minimization
and increase
reliability

3 NMG system is
considered. Each
MG consists of
RES, dispatchable
DG, ESS and
loads.

MAS The amount of time
taken to reach an
optimal solution is high
because of the
centralized solver which
considers all system
constraints, network
constraints, demand
flexibility and
generation availability.

[23] Application of DR
in NMG.

2 NMG system is
considered.

MAS The RES is not
considered in the NMG
system.
The energy
transmission lines are
considered to be ideal
without any
transmission losses.

[24] Cost minimization
for consumers.

IEEE 37 node
distribution with 2
MGs. Each MG
consists of RES.

MAS The priority-based DR
method may lead to
starvation of loads with
low priority.

[25] Optimal operation
and cost
minimization

Modified 69-bus
distribution
network.

MIQP and game
theory

The costs obtained of
some individual MGs
and disco are more
compared to the
centralized approach.

[26] Cost minimization 3 NMG system is
considered. Each
MG consists of
RES, dispatchable
DG, ESS and
loads.

MILP The costs of individual
MGs are not provided.
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detail the problem structure of the mentioned problem and the illustrative
application of the suggested process. Section 5 contains detailed findings of
improvement in MGs benefits and whole NMG operational costs. Finally, this
study is concluded in Section 6.

2 System Architecture

A benchmark framework for NMGs, based on different topologies for NMGs
already discussed in the previous section, is proposed in [27]. The benchmark
system is modified to facilitate energy trading amongst the MGs, as shown in
Figure 2. The NMG system considered has four individual MGs of different
sizes with individual MG interconnected to each other and connected to the
distribution network, as well. The total NMG system consists of 40 Buses
and 44 transmission lines. Each MG is considered to consist of PV and
wind generation along with controllable loads. The details of each MG are
presented in Table 2. The first bus of each MG i.e., bus numbers 101, 201,
301, 401 are considered as a slack bus. The MGs are interconnected to each
other through the Point of Common Coupling (PCC). The MGs within the

Figure 2 Single Line Diagram of NMG system [27].
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Table 2 Details of MGs of the NMG system [4]
Components MG1 MG2 MG3 MG4 Total
Buses 6 9 18 7 40
Lines 11 8 17 8 44
PV systems 3 3 6 3 15
WT systems 0 2 2 0 4

NMG environment can exchange energy with each other and the grid through
dedicated lines.

Each MG in the NMG framework will generate power (Gent
i) and has

a load (Load t
i) that needs to be supplied during each hour block. Due to

the variability in the generation, when Gent
i > Load t

i in an MG, then the
respective MG acts as a seller for the corresponding hour block. After meeting
their corresponding load, each seller MG has excess energy as given in
Equation (1). This surplus energy is exchanged with other MGs or the utility
network. These sellers allude to a set S represented through Equation (2).

Et
i = Gent

i − Load t
i ∀i ∈ N (1)

S = {∀i ∈ N |Gent
i ≥ Load t

i} (2)

In contrast, if Load t
i > Gent

i for an MG, then the respective MG func-
tions as a buyer for the corresponding hour block. Each buyer MG has deficit
energy defined by Equation (3). The buyer MGs purchase power from other
MGs or the grid to meet their corresponding demand during the hour block.
The group of buyers is represented as a set B defined through Equation (4).

Dt
i = Load t

i −Gent
i ∀i ∈ N (3)

B = {∀i ∈ N |Gent
i < Load t

i} (4)

In hour block t, the utility network sells energy at T t
grid ,s and purchases

electricity at T t
grid ,b . To activate energy trading within the NMG, the MGs

should trade energy within the NMG environment at a tariff rate between
T t
grid ,s and T t

grid ,b . This tariff setting constraint for T t
NMG,s and T t

NMG,b is
specified in Equation (5). In case, this constraint is not satisfied, the MGs
shall trade energy with the grid rather than other MGs and the objective of
forming NMG for energy trading shall cease to exist.

T t
grid ,b ≤ T t

NMG,s = T t
NMG,b ≤ T t

grid ,s (5)
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Figure 3 Classification of hour blocks.

2.1 Formation of Hour Blocks

Initially, based on the collective generation and load profiles of MGs, two
zones are defined as Excessive zone (E-zone) and Non-Excessive zone (NE-
zone). The E-zone is formed when the energy generated by any of the MGs
is greater than the load to be supplied by corresponding MGs in the NMG
environment. Conversely, when the energy generated by all MGs in the
NMG system is less than the load of that individual MG, it is defined as
NE-zone.

A day will have multiple E-zones and NE-zones. The creation of these
zones is based on TOU prices and load imbalance in the MGs. The role of
MGs as a buyer or seller further splits the E-zones as shown in Figure 3.
These zones may be present during off-peak, intermediate and peak tariff
periods. The hour blocks once created cannot be merged or further split in
the remaining part of the process. In the NE-zone, there are only buyer MGs
whereas, in E-zone, the MGs in the NMG environment maybe act as sellers or
buyers. The consumers in the MGs can benefit by shifting their loads between
these demarcated zones, according to the DR program. PSO is utilized to
obtain the optimal load scheduling in the NMG framework. The load that
can be shifted from one zone to another is restricted to 20% [30] as shown
through Equation (6). The total daily load of an MG should not vary even after
responding to the DR program. In other words, the total daily load should
remain constant for an individual MG of the NMG environment as given by
Equation (7).

0.8 ∗ Load t
i ≤ Load t

i ≤ 1.2 ∗ Load t
i (6)∑

t

Load t
i = Load i ,actual (7)
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3 Particle Swarm Optimization (PSO)

PSO is a population-based evolutionary technique for solving non-linear
equations in real-valued search space, inspired by bird flocking, fish school-
ing and swarm theory [29]. PSO considers initial solutions to be random vari-
ables known as particles. Each particle navigates the search space by interact-
ing with other particles and moving at a velocity through iterations [30]. The
velocity (vi) is dynamically modified according to Equation (8). The velocity
is based on the personal flying experience and companion particle’s findings.
Each particle position in PSO is represented by a set xi = {xi1, xi2, . . . , xin}
where n denotes the number of dimensions. The best position achieved by
a particle is stored as pi = {pi1, pi2, . . . , pin}. The best position among all
the particles is considered as the global best and is represented by (g). As in
Equation (9), the velocity of a particle changes its location from one point to
the next in between iterations.

vi+1
n = ω ∗ vin + c1 ∗ Rand ∗ (pin − xin) + c2 ∗ rand ∗ (pign − xin) (8)

xi+1
n = xin + vi+1

n (9)

By maintaining its value constant or adjusting dynamically, the inertia
constant (ω) balances the global and local search of particles. A higher inertia
value implies global search, while a lower value implies local search. In [31],
the authors suggested the ω value to be greater than 1.0 for early exploration
and reduced this to a value less than 1.0 to focus on the best area found
in the exploration. A constant inertia value is considered in this study. The
speed of flying particles towards the optimum position is represented by the
acceleration constants (c1 and c2). c1 is an experimentally dependent factor
that represents the exploration coefficient. c2 is nominated as the exploitation
coefficient and is instrumental in finding the global optimal solution [32].
c1 and c2 are considered to be 2.05. Rand and rand are random functions
generating a random value between 0 to 1. In Equations (8) and (9), ‘i’
represents the iteration number of PSO.

4 Problem Formulation

Each MG in the NMG system under study is equipped with PV and wind
generation, which intend to supply power to the respective loads during
each time t. However, due to the intermittent nature of PV and wind power
generation power imbalance is observed in MG. The power produced is
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either insufficient or excessive in comparison to the load and this requires
the MGs to purchase/sell electricity from/to the grid or other MGs. To
reduce dependency on the utility network, based on the power generation and
load, the two zones NE-zone and E-zone are established here as previously
mentioned. Equations (5), (6) and (7) represent the constraints for the energy
trading problem in the NMG environment.

The electricity produced in the NE-zone is inadequate to meet the total
load of MGs, the entire deficit of energy is purchased from the grid as in
Equation (10). The total cost incurred for buying this energy is given in
Equation (11). Equations (12) and (13) give the respective power purchased
and cost incurred by individual MGs during the NE zones.

P g,NE
NMG,b =

{
N∑
i=1

LoadNE
i −

N∑
i=1

GenNE
i

}
(10)

TCNE
NMG,b = P grid ,t

NMG,b ∗ T
t
grid ,s (11)

P g,NE
MGi,b

= {LoadNE
i −GenNE

i } (12)

CNE
MGi,b

= {P g,NE
MGi,b

∗ T t
grid ,s} (13)

In E-zone, the amount of energy generated is higher than the amount of
load to be supplied in certain MGs. For a given E-zone there might arise any
of the following two conditions, based on the total generation and total load
demand of the NMG:

1. Excess Generation
2. Excess Demand.

4.1 Excess Generation

In this case, the excess energy generated by seller MGs is greater than or equal
to the amount of energy required by buyer MGs in the NMG framework. The
seller MGs trade energy with buyer MGs at a price that satisfies the constraint
given in Equation (5). The fraction of energy sold by seller MGs to buyer
MGs is following the proportional trading strategy outlined in Equation (14).

P t
MGi,s =

Et
i∑S

j=1E
t
j

∗
B∑

k=1

Dt
k (14)
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If any excess energy remains with the seller’s MGs, it is traded with utility
as in Equation (15). Equations (16) and (17) give the cost incurred by each
buyer MG and all buyer MGs together respectively.

P g,t
MGi,s

= Et
i − P t

MGi,s (15)

Ct
MGi,b

= Dt
i ∗ T t

NMG,s (16)

TCt
MGb

=
B∑
i=1

Ct
MGi,b

(17)

The profit gained by each seller MG and all seller MGs together from
trading excess energy is provided in Equations (18) and (19) respectively.

Ct
MGi,s = P t

MGi,s ∗ T
t
NMG,s + P g,t

MGi,s
∗ T t

grid ,b (18)

TC t
MGs

=
S∑

i=1

Ct
MGi,s (19)

4.2 Excess Demand

In this condition, the energy generated by seller MGs is insufficient to meet
the buyer MG’s total load in NMG. The buyer MGs obtain a fraction of their
required demand from seller MGs and the remaining energy is obtained from
the grid. The energy bought by a buyer MG from the NMG framework is
shown in Equation (20) and the remaining deficit energy purchased from the
grid is given in Equation (21). The cost of energy for individual buyer MG
and that for all buyer MGs together are given in Equations (22) and (23).

P t
MGi,s =

Et
i∑S

j=1E
t
j

∗
B∑

k=1

Dt
k (20)

P g,t
MGi,b

= Dt
i − P t

MGi,b
(21)

Ct
MGi,b

= P t
MGi,b

∗ T t
NMG,s + P g,t

MGi,b
∗ T t

grid ,s (22)

TC t
MGb

=
B∑
i=1

Ct
MGi,b

(23)
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The amount of price earned by individual seller MG and all seller MGs
together for this case is given by Equations (24) and (25).

Ct
MGi,s = Et

i ∗ T t
NMG,s (24)

TC t
MGs

=
S∑

i=1

Ct
MGi,s (25)

The total cost incurred to individual MGs and the NMG system for a
whole day is given by Equations (26) and (27).

TCMG,i = CNE
MGi,b

+
∑

Ct
MGi,b

+
∑

Ct
MGi,s ∀t ∈ {NE , E} (26)

TCNMG = TCNE
NMG,b +

∑
TC t

MGb
+
∑

TC t
MGs

∀t ∈ {NE , E}
(27)

4.3 Flowchart

The proposed methodology is depicted through a flowchart in Figure 3.
Initially, the PV and Wind generation along with its load profile are obtained
for each MG. The input data should also have the TOU prices, specified
by the utility/grid. The zones are established using the power imbalances
in NMG, the TOU prices and also the role of MGs, according to Figure 4.
The DR program is implemented using PSO while satisfying the constraints
on load transfer between zones, given by Equations (6) and (7). The price
range for trading in each zone is kept within a given range as represented by
Equation (5).

The particles are randomly generated to represent the load during dif-
ferent zones for each MG and the NMG energy prices during the E-zones.
The Equations (14)–(25) calculate the amount of energy traded between the
seller and buyer MGs, cost incurred to each buyer and seller MG and overall
NMG system costs. These evaluations help obtain the objective function
value for a particular particle. The individual and global best particles are
demarcated. Velocity is calculated for each particle and the positions are
changed accordingly. The process continues till the stopping criteria are met.
The limits for different parameters have to be kept within range at all times
during the optimization process.
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Figure 4 Flowchart of proposed methodology.

5 Results

The proposed experiment is implemented and analyzed in MATLAB soft-
ware. The NMG system consists of 4 MGs, where MG1 is a 6-bus system,
MG2 is a 9-bus system, MG3 is an 18-bus system and MG4 is a 7-bus
system respectively. In the proposed structure of NMG, each MG can trade
energy with all other MGs and the utility grid. Each MG is installed with
PV, wind energy and schedulable loads. The combined PV and wind energy
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Figure 5 PV and wind generation in NMGs.

generation for a certain day is shown in Figure 5. The PV, wind and load
data is considered through a deterministic approach and the calculations are
performed for the 12th of February. The load for the corresponding day is as
shown in Figure 6.

The TOU prices for the day are taken from [28]. The utility buying price,
i.e., the price at which the grid buys energy from the NMG, is considered to
be a third of the grid selling price given by 1

3 ∗ T
t
grid ,s . The TOU prices for

all hours of the day are shown in Figure 7. These prices are classified as off-
peak, intermediate and peak periods as summarized in Table 3. The periods:
1 – 7, 11 – 12 and 22 – 24 hours are considered as off-peak with T t

grid ,s as
93.6 (USD/MWh). For intermediate, the periods are 8 – 10, 13 – 18 and 21
hours with T t

grid ,s as 124.8 (USD/MWh) and 19 – 20 is peak period with the
T t
grid ,s as 156 (USD/MWh). The parameters considered for PSO are given in

Table 4.

5.1 Hour Blocks

The hour blocks are created through the imbalance between load and genera-
tion and the variation in prices. If Gent

i is less than Load t
i for a particular MG,
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Figure 6 Load in NMGs.

Figure 7 TOU Prices for NMGs.
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Table 3 TOU prices for the day and its classification
Grid Selling Grid Buying

Period Time (Hrs) Price (USD/MWh) Price (USD/MWh)
Off-peak 1 – 7, 11 – 12, 22 -24 93.6 31.2
Intermediate 8 – 10, 13 – 18 and21 124.8 41.6
Peak 19 – 20 156 52

Table 4 PSO parameters
Topology Values
Particles 100
Iterations 500
ω 0.729
C1 2.05
C2 2.05
rand, Rand between 0 and 1

it has to purchase energy from the utility or other MGs. On the other hand,
if Gent

i is greater than Load t
i, MG has excess energy which can be sold. An

E-zone can be formed for a particular hour block/duration if any MG within
the NMG environment has excess energy and the TOU prices remain constant
during this period. The hour blocks when none of the MGs within the NMG
environment have the energy to sell, are considered as NE-zone. The E-zone
may further be split if one or more of the MGs changes its role from buyer
to seller and vice versa. Once the zones are created at the beginning of the
optimization technique then they cannot be merged or increased even if the
MG role changes in the optimal solution.

The whole day is divided into 6 blocks based on their classification
as E-zone or NE-zone. Figures 8 and 9 give the zone-wise distribution of
generation and load respectively. Out of these 6 zones, 3 zones are NE-
zones and 3 zones are E-zones. During (1–7), (8–9), (17–18), (19–20), 21 and
(22–24) hrs, all MGs face deficit energy and these hour blocks are considered
as NE-zones. At 10 and 16 hrs, MG4 has excess energy, whereas, at (11–12)
and (13–15), MG2 and MG4 generate excess energy and these hour blocks
are considered as E-zones.

5.2 Case Studies

The different modes of NMG operation considered in this paper are discussed
in this sub-section.
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Figure 8 Zone wise generation in NMG.

Figure 9 Zone Wise Load in NMG.
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NE_zone NE_zone NE_zone E-zone E-zone E-zone
MG1 7097.46 3647.74 2897.34 701.13 278.80 161.78
MG2 4889.67 2076.86 1968.50 116.75 -165.42 -69.49
MG3 5320.51 2687.93 2113.55 491.66 229.86 177.49
MG4 4062.26 1560.40 1680.79 -15.59 -255.88 -128.40

-1000.00
0.00

1000.00
2000.00
3000.00
4000.00
5000.00
6000.00
7000.00
8000.00

Zone wise cost distribution of MGs 

MG1 MG2 MG3 MG4

Figure 10 Costs of individual mg based on base case.

Case I (Without hour blocks): In the first case, the generation and load
are considered to be the same as shown in Figures 5 and 6 and TOU prices as
shown in Figure 7. The operating cost of each MG for each zone is shown in
Figure 10. The proposed objective function verifies the cost in each MG and
NMG based on TOU prices in each zone without applying DR programs or
hour blocks.

The total combined cost of each MG for the whole day is MG1: 14784.26
(USD/MWh), MG2: 8816.86 (USD/MWh), MG3: 11021 (USD/MWh) and
MG4: 6903.59 (USD/MWh) respectively. The total operating cost of the
whole NMG system is 41525.71(USD/MWh).

Case II (Cost Minimization considering DR and hour blocks): In this case,
the DR program and hour blocks are applied for the minimization of costs
for each MG as well as the overall NMG system. PSO is applied for the
implementation of the DR program in the NMG framework. The results are
compiled after executing PSO 40 times. The comparison of zone-wise actual
load and the load distribution according to PSO is shown in Figure 11. The
role of each MG as a buyer or seller is dependent on the optimal load schedule
obtained through PSO which is displayed in Table 5.

The mean of energy trading price of MGs (T t
MG,s ) in NMG frame-

work for 3 E-zones after multiple executions of PSO are obtained as 74.88
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Figure 11 Comparison of original and optimal case.

Table 5 Role of each MG
MG1 MG2 MG3 MG4 Zone
Buyer Buyer Buyer Buyer NE-zone
Buyer Buyer Buyer Buyer NE-zone
Buyer Buyer Buyer Buyer NE-zone
Buyer Seller Buyer Seller E-zone
Seller Seller Buyer Seller E-zone
Buyer Seller Buyer Seller E-zone

(USD/MWh), 83.2 (USD/MWh) and 56.41 (USD/MWh) respectively. The
optimal costs for energy trading in E zones are obtained as 41.6 (USD/MWh),
41.6 (USD/MWh) and 31.2 (USD/MWh) respectively.

The standard deviation for load in each zone and the trading prices for the
E-zones are shown in Table 6.

In Table 7, the results obtained through PSO show an improvement in
costs compared to the base case. There is a 6.21% and 7.03% reduction in
total operating costs of NMG for mean and optimal PSO results respectively
as compared to the case I. The implementation of the DR program also adds
to the minimization of operation costs in individual MGs.
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Table 6 Zone wise standard deviation of load and price
Zone MG1 MG2 MG3 MG4 Price
NE-zone 5.81 5.42 4.36 3.95 –
NE-zone 0.00 3.33 0.00 3.04 –
NE-zone 1.98 0.87 0.00 1.31 –
E-zone 2.75 2.27 2.32 1.80 41.28
E-zone 3.82 3.19 3.08 2.37 42.13
E-zone 2.23 2.08 2.27 1.69 30.79

Table 7 Optimal results of energy trading for Case 1 and 2
MGs Case 1 Case 2 (Mean) Savings (%) Optimal Solution Savings (%)
MG1 14784.26 14040.89 5.03 13753.61 6.97
MG2 8816.86 8194.54 7.06 8464.89 3.99
MG3 11021.00 10416.23 5.49 9980.88 9.44
MG4 6903.59 6294.95 8.82 6405.17 7.22
NMG 41525.71 38946.61 6.21 38604.55 7.03

6 Conclusion

In this paper, a novel hour block-based DR approach is proposed for energy
trading in NMG. The proposed model aims to minimize the operation cost
of individual MGs and the NMG system. In the proposed methodology,
based on generation and load imbalance the zones are formed, which are
further classified based on TOU prices and roles of MGs. The suggested
approach reduces the complexity since instead of 24 hours, only 6 blocks
are to be optimized. A comparison is presented between different trading
scenarios. The results indicate a significant reduction in operating costs of
individual MGs and the NMG network with the application of the proposed
DR program. The PSO method is applied for obtaining the optimal solution.
The hour block method of applying DR helps reduce the complexity of the
problem and reduces the time required for obtaining optimal results.
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